JPH07100699B2 - Process for producing 4-methylimidazole - Google Patents

Process for producing 4-methylimidazole

Info

Publication number
JPH07100699B2
JPH07100699B2 JP62307487A JP30748787A JPH07100699B2 JP H07100699 B2 JPH07100699 B2 JP H07100699B2 JP 62307487 A JP62307487 A JP 62307487A JP 30748787 A JP30748787 A JP 30748787A JP H07100699 B2 JPH07100699 B2 JP H07100699B2
Authority
JP
Japan
Prior art keywords
ammonia
reaction
dmi
salt exchange
exchange reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62307487A
Other languages
Japanese (ja)
Other versions
JPH01149769A (en
Inventor
黄一 竹内
研一 荒井
光昭 千田
光雄 板倉
直和 塩谷
Original Assignee
三井東圧化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井東圧化学株式会社 filed Critical 三井東圧化学株式会社
Priority to JP62307487A priority Critical patent/JPH07100699B2/en
Publication of JPH01149769A publication Critical patent/JPH01149769A/en
Publication of JPH07100699B2 publication Critical patent/JPH07100699B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高純度4−メチルイミダゾール(以下、4−MI
と略記する。)の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to highly pure 4-methylimidazole (hereinafter referred to as 4-MI).
Is abbreviated. ) Manufacturing method.

4−MIは医薬品を製造するための価値ある中間体であ
る。
4-MI is a valuable intermediate for manufacturing pharmaceuticals.

〔従来の技術〕 4−MIの製造方法としては米国特許第3,715,365号に記
載がある。該発明は電離定数が1×10-3より大きい酸の
アンモニウム塩を用い、PH7以下の水媒体中でグリオキ
ザール又はメチルグリオキザール(以下、MGXと略記す
る。)をホルムアルデヒドと反応させて、イミダゾール
類を製造するものであり、該酸として特に硫酸アンモニ
ウム及び蓚酸を挙げている。MGXから4−MIを製造する
具体例としては、MGX、硫酸アンモニウム及びホルムア
ルデヒドを混合し、これにアンモニア水を滴下して、PH
4.7からPH4.4で反応せしめ、その後、水酸化カルシウム
を添加して、アンモニアを飛散させ、硫酸根を硫酸カル
シウムとして沈澱させ、沈澱物を濾別した後、脱水、蒸
留して4−MIを得ると開示している。
[Prior Art] A method for producing 4-MI is described in US Pat. No. 3,715,365. The invention uses an ammonium salt of an acid having an ionization constant of more than 1 × 10 −3 and reacts glyoxal or methylglyoxal (hereinafter abbreviated as MGX) with formaldehyde in an aqueous medium having a pH of 7 or less to form imidazoles. It is produced, and ammonium sulphate and oxalic acid are mentioned as the acid. As a specific example of producing 4-MI from MGX, MGX, ammonium sulfate and formaldehyde are mixed, and aqueous ammonia is added dropwise to the mixture to obtain PH.
After reacting from 4.7 to PH 4.4, calcium hydroxide was added to disperse ammonia to precipitate sulfate as calcium sulfate, and the precipitate was separated by filtration, dehydrated and distilled to give 4-MI. It has been disclosed to obtain.

しかしながら、その製品純度はガスクロマトグラフ分析
による面積純度で77.2%、収率は59%であり、医薬品中
間体として用いるには更に精製操作が必要となり、その
ため収率も低下し、その方法は満足なものではない。
However, the product purity is 77.2% in area purity by gas chromatographic analysis, and the yield is 59%, and further purification operation is required to use it as a pharmaceutical intermediate, so the yield is lowered, and the method is satisfactory. Not a thing.

また、特開昭57−9766号は前記米国特許を改良する方法
として、PHが7以上の条件下、原料の供給順序に特徴を
もたせて、アンモニアとアルデヒドとMGXを反応させ
て、4−MIを得ることが開示し、PHが7以上で、且つア
ンモニアを用いることにより反応器の腐食の問題及び大
量の無機塩溶液による余分の操作が必要なくなり、米国
特許第3,715,365号より有利であることも開示してい
る。しかし、実施例に示される如く、PH9.2〜9.4の領域
で反応するとMGXの分解が起こり、アセトアルデヒドが
生成し、2,4−ジメチルイミダゾール(以下、2,4−DMI
と略記する。)の副生が多くなる。該特許では、この副
生を抑制するために希薄溶液で実施しているが完全では
ない。
Further, as a method for improving the above-mentioned US patent, JP-A-57-9766 is characterized in that the feed order of raw materials is characterized under the condition that PH is 7 or more, and ammonia, aldehyde and MGX are reacted to give 4-MI. It is disclosed that the pH of 7 or more and the use of ammonia eliminates the problem of the corrosion of the reactor and the extra operation with a large amount of the inorganic salt solution, which is more advantageous than US Pat. No. 3,715,365. Disclosure. However, as shown in the examples, MGX decomposition occurs when reacting in the region of PH 9.2 to 9.4, acetaldehyde is generated, and 2,4-dimethylimidazole (hereinafter, 2,4-DMI) is generated.
Is abbreviated. ) Will be more by-products. In the patent, the dilute solution is used to suppress this by-product, but it is not perfect.

更に特開昭60−104072号及び特開昭60−105664号では、
米国特許第3,716,365号の改良法として、MGXに対して総
水量を規制することにより、高純度の4−MIを高収率で
得ているが、米国特許と同じようにアンモニア源として
蓚酸アンモニウムを用いるために、4−MIの蓚酸塩の濾
過及びアンモニアで同塩を分解した後の蓚酸アンモニウ
ムの濾過と濾過工程が多く、プロセスが複雑となり、経
済的でない。
Further, in JP-A-60-104072 and JP-A-60-105664,
As an improved method of US Pat. No. 3,716,365, by controlling the total amount of water with respect to MGX, high-purity 4-MI is obtained in high yield, but as in the US patent, ammonium oxalate is used as an ammonia source. For use, the filtration process of 4-MI oxalate and the filtration process of ammonium oxalate after decomposing the salt with ammonia are many and the process becomes complicated, which is not economical.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明者らは、2,4−DMIの副生及び4−MI2モルとホル
ムアルデヒド1モルより生成するメチレンビスイミダゾ
ール類の副生を抑制し、且つ反応濃度が濃く、濾過等の
複雑な工程を含まない、簡略化された工業的に容易に実
施可能な、高純度、高収率の4−MIが得られるプロセス
を開発すべく検討した結果、PH2〜4に調節しながら、M
GXとホルマリンとアンモニアを硫酸アンモニウム存在
下、水媒体中で反応させて好結果を得、先に出願した
(特開平1−139567号)。
The present inventors suppress the by-product of 2,4-DMI and the by-product of methylenebisimidazoles produced from 4-mol of 2-MI and 1 mol of formaldehyde, and the reaction concentration is high, and complicated steps such as filtration are performed. As a result of studying to develop a process that does not contain, is simplified and can be industrially easily carried out, and can obtain 4-MI of high purity and high yield, while adjusting to PH2-4, M
GX, formalin, and ammonia were reacted in an aqueous medium in the presence of ammonium sulfate to obtain good results, and the application was filed earlier (JP-A-1-139567).

しかし、MGX、ホルムアルデヒドとアンモニアを硫酸ア
ンモニウム存在下で反応させて4−MIの硫酸塩を得た
後、アンモニアを用いて塩交換反応を行い、遊離の4−
MIと硫酸アンモニウムとする際、4,5−ジメチルイミダ
ゾール(以下、4,5−DMIと略記する。)の副生が増大す
るという大きな欠点を有し、4−MIと4,5−DMIが簡単に
分離することが困難であるため純度低下の原因となるこ
とが判明した。
However, MGX, formaldehyde, and ammonia are reacted in the presence of ammonium sulfate to obtain 4-MI sulfate, and then a salt exchange reaction is performed using ammonia to release free 4-
When MI and ammonium sulphate are used, 4-MI and 4,5-DMI are simple, with the major drawback of increasing the by-product of 4,5-dimethylimidazole (hereinafter abbreviated as 4,5-DMI). It was found that it is difficult to separate into 2 and causes a decrease in purity.

〔問題点を解決するための手段および作用〕[Means and Actions for Solving Problems]

本発明者らは、塩交換反応を行う際、4,5−DMIの副生を
抑制すべく鋭意検討した結果、4,5−DMIの副生は原料MG
X中に不純物として存在するジアセチル体が原因である
のか、また、副生する中間体の転移反応で生成するのか
不明であるが、塩交換反応を50℃以下で実施すれば抑制
できることを見出し、本発明を完成させるに至った。
When the present inventors conducted a salt exchange reaction, as a result of diligent studies to suppress the 4,5-DMI byproduct, the 4,5-DMI byproduct was the raw material MG.
It is unclear whether the cause is the diacetyl compound present as an impurity in X, or whether it is generated by the transfer reaction of the by-product intermediate, but it was found that it can be suppressed if the salt exchange reaction is carried out at 50 ° C or lower, The present invention has been completed.

即ち、本発明は、メチルグリオキザールと、ホルムアル
デヒドとおよびアンモニアとを硫酸アンモニウム存在下
で反応させて4−メチルイミダゾールの硫酸塩を得た
後、アンモニアを用いて塩交換反応を行い、遊離の4−
メチルイミダゾールと硫酸アンモニウムとする際、塩交
換反応を50℃以下で実施することを特徴とする4−メチ
ルイミダゾールの製造方法である。
That is, in the present invention, methylglyoxal, formaldehyde, and ammonia are reacted in the presence of ammonium sulfate to obtain a sulfate of 4-methylimidazole, and then a salt exchange reaction is performed using ammonia to give a free 4-
A method for producing 4-methylimidazole, which comprises performing a salt exchange reaction at 50 ° C. or lower when using methylimidazole and ammonium sulfate.

塩交換反応温度が50℃を越えると、4,5−DMIの副生が多
くなり、4−MIと4,5−DMIが簡単に分離することが困難
なため純度が低下する。
When the salt exchange reaction temperature exceeds 50 ° C, the amount of 4,5-DMI by-produced increases, and it is difficult to easily separate 4-MI and 4,5-DMI, resulting in a decrease in purity.

本発明の製造方法によれば、MGX、ホルムアルデヒドと
アンモニアを硫酸アンモニウム存在下で反応させて4−
MIの硫酸塩を得た後、アンモニアを用いて塩交換反応を
行い遊離の4−MIと硫酸アンモニウムとするが、塩交換
反応で用いるアンモニアの量は反応液中の酸分を中和す
るに足りる量を用いれば十分である。又該硫酸塩は、MG
Xとホルムアルデヒドとを、反応温度50〜100℃、反応時
間2〜5時間、PH2〜4もしくは初期PH値=硫酸アンモ
ニウム水溶液のPH値とし反応中PH2〜4に調節するとい
う条件下で、硫酸アンモニウムの存在下、アンモニアを
反応させて得られる。
According to the production method of the present invention, MGX, formaldehyde and ammonia are reacted in the presence of ammonium sulfate to give 4-
After obtaining the sulfate of MI, the salt exchange reaction is performed with ammonia to make free 4-MI and ammonium sulfate, but the amount of ammonia used in the salt exchange reaction is sufficient to neutralize the acid content in the reaction solution. It is sufficient to use the amount. Also, the sulfate is MG
Presence of ammonium sulfate under the condition that X and formaldehyde are adjusted to a reaction temperature of 50 to 100 ° C., a reaction time of 2 to 5 hours, PH2 to 4 or initial PH value = PH value of ammonium sulfate aqueous solution to PH2 to 4 during the reaction. It is obtained by reacting ammonia underneath.

塩交換反応に用いるアンモニアは、アンモニア水溶液或
いはアンモニアガスを用いる。
As the ammonia used in the salt exchange reaction, an aqueous ammonia solution or ammonia gas is used.

塩交換反応時間は、特に規定する必要がなく、反応温度
が50℃以下となるように時間を調節する。塩交換反応方
法としては、反応進行中の温度を50℃以下に維持しなが
ら、反応液にアンモニア水溶液或いはアンモニアガスを
加えて塩交換反応を実施する。
The salt exchange reaction time does not have to be specified in particular, and the time is adjusted so that the reaction temperature is 50 ° C. or lower. As a salt exchange reaction method, an aqueous ammonia solution or ammonia gas is added to the reaction solution to carry out the salt exchange reaction while maintaining the temperature during the reaction at 50 ° C. or lower.

前記の方法で塩交換反応が終了した液に、水に不溶な有
機溶媒、例えば、イソブタノール等を加えて4−MIを抽
出し、抽出液を減圧蒸留して4−MIを分取する。
An organic solvent insoluble in water, for example, isobutanol is added to the liquid in which the salt exchange reaction has been completed by the above-mentioned method to extract 4-MI, and the extract is distilled under reduced pressure to separate 4-MI.

〔実施例〕〔Example〕

以下に実施例を挙げ本発明を具体的に説明する。 The present invention will be specifically described below with reference to examples.

実施例1 攪拌機、還流コンデンサー付の3lガラス製セパラブルフ
ラスコに蒸留水1331g、硫酸アンモニウム608gを仕込
み、溶解後80℃まで昇温し、95重量%硫酸53gを仕込ん
でPHを2とした。その後40重量%MGX水溶液750gと37重
量%ホルマリン338gの混合液を2時間で滴下した。その
間PH2を維持するために28重量%アンモニア水溶液239g
を追加しながら行った。滴下終了後、同じPH値で2時間
熟成反応を行い、反応を完結させた。HPLC分析結果、4
−MI収率(対MGX、以下同じ)は87.5%、4,5−DMIの4
−MIに対する液体クロマトグラフ分析(以下、液クロ分
析と略記する。)による面積%は0.08%であった。
Example 1 A 3 l glass separable flask equipped with a stirrer and a reflux condenser was charged with 1331 g of distilled water and 608 g of ammonium sulfate. After dissolution, the temperature was raised to 80 ° C. and 53 g of 95% by weight sulfuric acid was charged to obtain a PH of 2. Then, a mixed solution of 750 g of 40 wt% MGX aqueous solution and 338 g of 37 wt% formalin was added dropwise over 2 hours. Meanwhile, 239 g of 28 wt% aqueous ammonia solution to maintain PH2
Was done while adding. After completion of the dropping, the reaction was completed by performing an aging reaction for 2 hours at the same PH value. HPLC analysis results, 4
-MI yield (relative to MGX, same hereafter) is 87.5%, 4 of 4,5-DMI
-Area% by liquid chromatography analysis for MI (hereinafter abbreviated as liquid chromatography analysis) was 0.08%.

この反応液200gを用い、28重量%アンモニア水溶液31.8
gを温度20℃を保つように加え、塩交換反応を行った。
その結果4,5−DMIの4−MIに対する液クロ分析による面
積%は0.20%であった。
Using 200 g of this reaction solution, 28% by weight aqueous ammonia solution 31.8
g was added so that the temperature was kept at 20 ° C., and a salt exchange reaction was performed.
As a result, the area% by liquid chromatography analysis of 4,5-DMI with respect to 4-MI was 0.20%.

実施例2 実施例1で得られた反応液200gを用い、28重量%アンモ
ニア水溶液31.8gを温度40℃を保つように加え、塩交換
反応を行った。その結果4,5−DMIの4−MIに対する液ク
ロ分析による面積%は0.20%であった。
Example 2 Using 200 g of the reaction solution obtained in Example 1, 31.8 g of 28% by weight aqueous ammonia solution was added so as to keep the temperature at 40 ° C. to carry out a salt exchange reaction. As a result, the area% by liquid chromatography analysis of 4,5-DMI with respect to 4-MI was 0.20%.

実施例3 実施例1で得られた反応液200gを用い、28重量%アンモ
ニア水溶液31.8gを温度50℃を保つように加え、塩交換
反応を行った。その結果4,5−DMIの4−MIに対する液ク
ロ分析による面積%は0.24%であった。
Example 3 Using 200 g of the reaction solution obtained in Example 1, 31.8 g of 28% by weight aqueous ammonia solution was added so as to keep the temperature at 50 ° C. to carry out a salt exchange reaction. As a result, the area% of 4,5-DMI with respect to 4-MI measured by liquid chromatography was 0.24%.

比較例1 実施例1で得られた反応液200gを用い、28重量%アンモ
ニア水溶液31.8gを温度60℃を保つように加え、塩交換
反応を行った。その結果4,5−DMIの4−MIに対する液ク
ロ分析による面積%は0.65%であった。
Comparative Example 1 Using 200 g of the reaction solution obtained in Example 1, 31.8 g of 28% by weight aqueous ammonia solution was added while keeping the temperature at 60 ° C. to carry out a salt exchange reaction. As a result, the area% of 4,5-DMI with respect to 4-MI by liquid chromatography was 0.65%.

比較例2 実施例1で得られた反応液200gを用い、28重量%アンモ
ニア水溶液31.8gを温度80℃を保つように加え、塩交換
反応を行った。その結果4,5−DMIの4−MIに対する液ク
ロ分析による面積%は1.15%であった。
Comparative Example 2 Using 200 g of the reaction solution obtained in Example 1, 31.8 g of 28% by weight aqueous ammonia solution was added so as to keep the temperature at 80 ° C. to carry out a salt exchange reaction. As a result, the area% of 4,5-DMI with respect to 4-MI by liquid chromatography analysis was 1.15%.

〔発明の効果〕〔The invention's effect〕

本発明の方法は、2,4−DMI、4,5−DMI及び二量体の副生
を抑制し、高純度、高収率の4−MIが得られる、簡略化
されたプロセスである。
The method of the present invention is a simplified process in which by-products of 2,4-DMI, 4,5-DMI and dimers are suppressed and 4-MI of high purity and high yield is obtained.

本発明の方法によって得られた4−MIは、特別の精製を
しなくても純度97%以上で、4,5−DMIの4−MIに対する
液クロ分析による面積%は0.5%以下である。
The 4-MI obtained by the method of the present invention has a purity of 97% or more without any special purification, and the area% by liquid chromatography analysis of 4,5-DMI with respect to 4-MI is 0.5% or less.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】メチルグリオキザールと、ホルムアルデヒ
ドとおよびアンモニアとを硫酸アンモニウム存在下で反
応させて4−メチルイミダゾールの硫酸塩を得た後、ア
ンモニアを用いて塩交換反応を行い、遊離の4−メチル
イミダゾールと硫酸アンモニウムとする際、塩交換反応
を50℃以下で実施することを特徴とする4−メチルイミ
ダゾールの製造方法。
1. A method of reacting methylglyoxal with formaldehyde and ammonia in the presence of ammonium sulfate to obtain a sulfate of 4-methylimidazole, and then performing a salt exchange reaction with ammonia to give free 4-methylimidazole. And ammonium sulfate, the salt exchange reaction is carried out at 50 ° C. or lower.
JP62307487A 1987-12-07 1987-12-07 Process for producing 4-methylimidazole Expired - Lifetime JPH07100699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62307487A JPH07100699B2 (en) 1987-12-07 1987-12-07 Process for producing 4-methylimidazole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62307487A JPH07100699B2 (en) 1987-12-07 1987-12-07 Process for producing 4-methylimidazole

Publications (2)

Publication Number Publication Date
JPH01149769A JPH01149769A (en) 1989-06-12
JPH07100699B2 true JPH07100699B2 (en) 1995-11-01

Family

ID=17969681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62307487A Expired - Lifetime JPH07100699B2 (en) 1987-12-07 1987-12-07 Process for producing 4-methylimidazole

Country Status (1)

Country Link
JP (1) JPH07100699B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3715365A (en) 1971-02-08 1973-02-06 Jefferson Chem Co Inc Imidazole synthesis

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3715365A (en) 1971-02-08 1973-02-06 Jefferson Chem Co Inc Imidazole synthesis

Also Published As

Publication number Publication date
JPH01149769A (en) 1989-06-12

Similar Documents

Publication Publication Date Title
US5087736A (en) Process for producing methyl methacrylate
US5258550A (en) Process for preparing glycine
JPS5829296B2 (en) Method for producing monomethylhydrazine
JPH0737436B2 (en) Method for producing carbodihydrazide
JPH07100699B2 (en) Process for producing 4-methylimidazole
JP3318992B2 (en) Method for producing N- (α-alkoxyethyl) formamide
JP3319007B2 (en) Method for producing N- (α-alkoxyethyl) formamide
JP2581538B2 (en) Purification method of isophoronediamine
JPS6357574A (en) Production of imidazoles
JPS6338020B2 (en)
JPH01149771A (en) Production of 4-methylimidazole
US4082775A (en) Preparation of d, l-pantolactone
JPH0244472B2 (en)
JPH0239502B2 (en) MONOMECHIRUHIDORAJINNOKAISHUHOHO
JPH01139567A (en) Production of 4-methylimidazole
JP4378488B2 (en) Process for producing 2-aminomethylpyrimidine and its salt
JP2613518B2 (en) Method for producing 4,4-dimethoxy-2-butanone
JPH0798785B2 (en) Method for producing oximes
JPH0276859A (en) Production of 4-methyl-5-((2-aminoethyl)-thiomethyl)-imidazole
CA2355266C (en) Process for producing salt of cyanobenzylamines
JPH0725745B2 (en) Method for producing amine compound
JPH01149770A (en) Production of 4-methylimidazole
JP2814941B2 (en) Method for producing N-butoxymethyl (meth) acrylamides
JPS6127979A (en) Preparation of hydroxyflavan compound
JPS58120507A (en) Continuous manufacture of hydrazine