JPH07100624B2 - Method for manufacturing PMN-based ferroelectric - Google Patents

Method for manufacturing PMN-based ferroelectric

Info

Publication number
JPH07100624B2
JPH07100624B2 JP1279386A JP27938689A JPH07100624B2 JP H07100624 B2 JPH07100624 B2 JP H07100624B2 JP 1279386 A JP1279386 A JP 1279386A JP 27938689 A JP27938689 A JP 27938689A JP H07100624 B2 JPH07100624 B2 JP H07100624B2
Authority
JP
Japan
Prior art keywords
pmn
phase
mol
manufacturing
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1279386A
Other languages
Japanese (ja)
Other versions
JPH03141146A (en
Inventor
肇 斎藤
Original Assignee
肇 斎藤
株式会社エス・ティー・ケー・セラミックス研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 肇 斎藤, 株式会社エス・ティー・ケー・セラミックス研究所 filed Critical 肇 斎藤
Priority to JP1279386A priority Critical patent/JPH07100624B2/en
Publication of JPH03141146A publication Critical patent/JPH03141146A/en
Publication of JPH07100624B2 publication Critical patent/JPH07100624B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (技術分野) 本発明は、PMN系強誘電体の製造法に係り、特に、焼成
温度が低く、安価な内部電極材としてAg−Pd合金または
Agを用いることの出来る積層コンデンサ材料或いはサブ
ミクロンのオーダーで光路長や位置を調整可能なアクチ
ュエータ材料として利用出来る強誘電体の製造方法に関
するものである。
TECHNICAL FIELD The present invention relates to a method for manufacturing a PMN-based ferroelectric material, and in particular, a low firing temperature and an inexpensive Ag—Pd alloy or an internal electrode material as an internal electrode material.
The present invention relates to a method of manufacturing a ferroelectric material that can be used as a laminated capacitor material that can use Ag or an actuator material that can adjust the optical path length and position on the order of submicrons.

(背景技術) Pb(Mg1/3Nb2/3)O3(以下、PMNと略称する)は、複合
型ペロブスカイト構造を持つ強誘電体であって、1950年
に初めて合成されたものであるが、優れた誘電及び電歪
特性を示し、且つ低温合成が可能であるところから、近
年、積層コンデンサやアクチュエータ材料として注目を
受けている。
(Background Art) Pb (Mg 1/3 Nb 2/3 ) O 3 (hereinafter abbreviated as PMN) is a ferroelectric substance having a composite perovskite structure, which was first synthesized in 1950. However, since it has excellent dielectric and electrostrictive properties and can be synthesized at a low temperature, it has recently received attention as a material for a multilayer capacitor or an actuator.

そして、このPMNの焼結体の製造法として、従来から種
々の方法が提案されているが、そのような従来の製造プ
ロセスにおいては、ニオブ酸鉛をベースとしたパイロク
ロア相(Pb2Nb2O7,Pb3Nb4O13,Pb3Nb2O8)が共生し、単
相のPMNペロブスカイト相を得ることは困難であったの
である。また、このパイロクロア相の誘電率は200程度
で、PMN単結晶の15000〜20000に比して著しく小さいた
め、誘電特性及び電歪効果を著しく低下させ、実用上の
障害となっているのであり、それ故にこのようなパイロ
クロア相を含まないPMN単相からなる焼結体の製造法の
開発が望まれているのである。
Various methods have been conventionally proposed as a method for manufacturing the PMN sintered body, but in such a conventional manufacturing process, a lead-niobate-based pyrochlore phase (Pb 2 Nb 2 O 7 , Pb 3 Nb 4 O 13 , Pb 3 Nb 2 O 8 ) coexisted, and it was difficult to obtain a single-phase PMN perovskite phase. Further, the dielectric constant of this pyrochlore phase is about 200, which is significantly smaller than 15000 to 20000 of PMN single crystal, which significantly reduces the dielectric properties and electrostriction effect, which is a practical obstacle. Therefore, it is desired to develop a method for producing a sintered body composed of a PMN single phase that does not contain such a pyrochlore phase.

因みに、従来から知られているPMN焼結体の製造法の中
で最も安価な方法は、成分酸化物の混合法であるが、こ
の酸化物混合法による製造手法では、MgOの拡散速度が
遅いために、MgOの反応がPbOとNb2O3の反応に比して遅
れ、また混合の際のMgOの分散性が不良であるために、M
gOがPMN粒内に残留してパイロクロア相と隔離された状
態になり、更に仮焼及び焼成中にPbOが揮発し、化学量
論組成からずれることになり、それ故に、この方法でペ
ロブスカイト単相のPMNを合成することは、殆ど不可能
であったのである。
By the way, the most inexpensive method of manufacturing PMN sintered bodies known in the past is the method of mixing the component oxides. However, in the manufacturing method using this oxide mixing method, the diffusion rate of MgO is slow. Therefore, the reaction of MgO is delayed as compared with the reaction of PbO and Nb 2 O 3 , and the dispersibility of MgO during mixing is poor.
The gO remains in the PMN grains and becomes isolated from the pyrochlore phase, and PbO volatilizes during the calcination and firing, deviating from the stoichiometric composition. It was almost impossible to synthesize the PMN of.

また、その対策として、過剰のPbO及びMgOを添加する方
法が考えられている。この方法によれば、Pb2Nb2O7やPb
3Nb2O8の如きPbOリッチの不安定なパイロクロア相を生
成して、安定なPb3Nb4O13パイロクロア相の残留を防止
するようになり、それによって液相を生成して低温焼結
が可能となるのであり、また仮焼及び焼成中に揮発する
PbOを補うことが出来、更に過剰のMgOは粒成長を促し
て、粒界からパイロクロア相を消滅させる効果がある。
しかしながら、PbOやMgOの過剰量を再現性良く制御する
ことは困難なばかりでなく、それらの過剰量は生成物の
機械的特性やエージングに対して有害なものであった。
As a countermeasure, a method of adding excess PbO and MgO is considered. According to this method, Pb 2 Nb 2 O 7 and Pb
It forms unstable PbO-rich pyrochlore phase such as 3 Nb 2 O 8 and prevents the stable Pb 3 Nb 4 O 13 pyrochlore phase from remaining, thereby forming a liquid phase and low temperature sintering. Is possible, and volatilizes during calcination and firing.
PbO can be supplemented, and excess MgO has the effect of promoting grain growth and eliminating the pyrochlore phase from grain boundaries.
However, it is not only difficult to reproducibly control the excess amount of PbO and MgO, but the excess amount is detrimental to the mechanical properties and aging of the product.

また、PMN焼結体を得る一つの方法であるコランバイト
前駆体法は、MgOとNb2O3からMgNb2O6(コランバイト)
を予め作製し、これとPbOの反応でPMNを製造しようとす
るものであるが、この方法は2回の仮焼操作を行なう必
要があり、またMgO粒子の残留が避けられないという問
題を内在している。
In addition, the corumbite precursor method, which is one method for obtaining a PMN sintered body, is MgO and Nb 2 O 3 to MgNb 2 O 6 (corumbite).
PMN is produced in advance, and PMN is produced by the reaction of this with PbO. However, this method has the inherent problem that it requires two calcination steps and that MgO particles remain unavoidably. are doing.

さらに、金属アルコキシド法乃至はゾル・ゲル法として
知られている方法によれば、高均質、高純度で微細な粉
末を低温で合成し得るために、MgOの拡散速度と分散性
及びPbOの揮発の問題は解消され、775℃の低温で高純
度、高均質のPMN粉末の合成が可能であるが、この方法
は原料が高価であり、またゲルの乾燥に長時間を要し、
過剰のPbOを添加しなければ、焼成温度は1200℃以下と
はならない問題を内在している。
Furthermore, according to the method known as the metal alkoxide method or the sol-gel method, it is possible to synthesize a fine powder with high homogeneity and high purity at a low temperature. Therefore, the diffusion rate and dispersibility of MgO and the volatilization of PbO are The problem of is solved, and it is possible to synthesize high-purity, high-homogeneous PMN powder at a low temperature of 775 ° C, but this method requires expensive raw materials, and it takes a long time to dry the gel.
There is an inherent problem that the firing temperature does not fall below 1200 ° C unless an excessive amount of PbO is added.

(解決課題) ここにおいて、本発明は、かかる事情を背景にして為さ
れたものであって、その課題とするところは、バイロク
ロア相の生成を抑制し、誘電特性及び電歪特性を制御す
ることの出来るPMN単相焼結体の巧みな製造手法を提供
することにあり、またそのようなPMN単相の強誘電体の
焼結体を有利に製造しようとするものである。
(Problem to be Solved) Here, the present invention has been made in view of such circumstances, and its object is to suppress the production of a bilochlor phase and control the dielectric characteristic and the electrostrictive characteristic. It is intended to provide a skillful manufacturing method of a PMN single-phase sintered body capable of producing the PMN single-phase sintered body, and also to advantageously manufacture such a PMN single-phase ferroelectric sintered body.

(解決手段) そして、本発明は、かかる課題解決のために、Pb(Mg
1/3Nb2/3)O3:40〜80モル%、BaTiO3:30モル%以下、Pb
TiO3:20〜50モル%なる組成を与える原料配合物を調製
し、これを所望の形状に成形して焼成することを特徴と
するPMN系強誘電体の製造法を、その要旨とするもので
ある。
(Solution Means) In order to solve the above problems, the present invention provides Pb (Mg
1/3 Nb 2/3 ) O 3 : 40-80 mol%, BaTiO 3 : 30 mol% or less, Pb
TiO 3: The raw material blend to give 20 to 50 mol% having a composition was prepared, the preparation of the PMN-based ferroelectric, characterized by firing the molded to the desired shape, which as its gist Is.

(具体的構成・作用) ところで、かかる本発明は、以下のような検討により、
そしてそれによって得られた知見に基づいて、完成され
たものである。
(Specific Configuration / Operation) By the way, the present invention is
And it was completed based on the knowledge obtained by it.

先ず、本発明者は、PMNにBaTiO3(以下、BTと略称す
る)を固溶した系について詳細に研究した結果、その固
溶はバイロクロア相の生成抑制効果が大きいことを見い
出し、またキュリー温度はBT固溶量に比例して変化せ
ず、第1図に示されるように最小値を持つことが明らか
となったのである。また、PbTiO3(以下、PTと略称す
る)を固溶した系については、PMN単味に比較して、誘
電率及び電歪定数の温度特性が非常にフラットとなり、
また電歪ヒステリシスが極めて小さい等の優れた電歪特
性を示すのであり、更にそのキュリー温度は、第2図に
示されるように、PTの固溶量に対して略直線的に変化す
ることとなる。
First, the present inventor conducted a detailed study on a system in which BaTiO 3 (hereinafter abbreviated as BT) was solid-solved in PMN, and as a result, found that the solid solution had a large effect of suppressing the formation of the bilochlor phase, and also the Curie temperature It has been clarified that does not change in proportion to the solid solution amount of BT and has the minimum value as shown in FIG. In addition, for the system in which PbTiO 3 (hereinafter, abbreviated as PT) is formed as a solid solution, the temperature characteristics of the dielectric constant and the electrostriction constant are extremely flat compared to PMN alone,
It also exhibits excellent electrostrictive characteristics such as extremely small electrostrictive hysteresis, and its Curie temperature changes linearly with the solid solution amount of PT, as shown in FIG. Become.

そこで、本発明者は、更に、PMNに対してパイロクロア
構造抑制効果の大きいBTと誘電及び電歪特性を改善し得
るPTの2種類の強誘電体を固溶させた系について、その
誘電特性と結晶構造に関し、PMN主体の40モル%以上の
組成について詳細に研究し、その結果、第3図に示され
るような各組成の結晶構造と誘電特性の関係を、また後
述の実施例の示されるようなキュリー温度、強誘電体の
誘電特性の関係を得たのである。
Therefore, the inventor of the present invention further relates to a system in which BT, which has a large effect of suppressing the pyrochlore structure with respect to PMN, and two types of ferroelectrics, PT, which can improve the dielectric and electrostrictive properties, are solid-solved. With regard to the crystal structure, the composition of PMN-based 40 mol% or more was studied in detail, and as a result, the relation between the crystal structure and the dielectric property of each composition as shown in FIG. 3 and the examples described later are shown. The relationship between the Curie temperature and the dielectric characteristics of the ferroelectric substance was obtained.

本発明は、かかる結果より、PMN:40〜80モル%、BT:30
モル%以下、PT:20〜50モル%の組成範囲においてPMN系
の強誘電体を実現したものであり、中でもPMN:50〜70モ
ル%、PT:20〜30モル%、BT:10〜30モル%の組成が有利
に採用され、例えばPMN:60モル%、PT:20モル%、BT:20
モル%の組成において、キュリー温度が約30℃、その時
の誘電率が約7000(1KHz)のPMN単相の強誘電体が得ら
れ、またその製造に際しては、1100℃程度の低温度での
焼成が可能である。
The present invention shows that PMN: 40 to 80 mol% and BT: 30
In the composition range of mol% or less, PT: 20 to 50 mol%, a PMN-based ferroelectric material is realized. Among them, PMN: 50 to 70 mol%, PT: 20 to 30 mol%, BT: 10 to 30 A composition of mol% is advantageously adopted, for example PMN: 60 mol%, PT: 20 mol%, BT: 20.
A PMN single-phase ferroelectric substance with a Curie temperature of about 30 ° C and a dielectric constant of about 7,000 (1 KHz) is obtained at a mol% composition, and at the time of its production, firing at a low temperature of about 1100 ° C Is possible.

なお、本発明に従ってPMN系強誘電体を製造するに際し
ては、上記組成を与えるように、従来と同様にして原料
配合物が調製されることとなる。例えば、かかる原料配
合物は、一般に、それぞれ、酸化物、炭酸塩等の形態に
ある、PbO源原料、MgO源原料、Nb2O5源原料、TiO2源原
料、BaO源原料を、目的とする割合となるように混合せ
しめることによって調製される他、PMNやBT、PTを直接
に配合せしめたりする等の手法も適宜に採用され得るも
のである。
When manufacturing a PMN-based ferroelectric according to the present invention, a raw material mixture is prepared in the same manner as in the conventional method so as to give the above composition. For example, such raw material blends are generally in the form of oxides, carbonates, etc., respectively, for the purposes of PbO source raw material, MgO source raw material, Nb 2 O 5 source raw material, TiO 2 source raw material, and BaO source raw material. It can be prepared by mixing so as to achieve the above ratio, and methods such as directly mixing PMN, BT, and PT can also be appropriately adopted.

また、このようにして得られたPMN、BT、PTの所定組成
を与える原料配合物は、目的とする焼結体(PMN系強誘
電体)に要請される形状に従って、所望の形状に成形さ
れた後、従来と同様にして焼成されることとなるが、そ
の焼成は低温度で行なわれ得て、例えば1100℃程度の温
度で焼成することにより、目的とする焼結体を得ること
が出来るのである。
Further, the raw material mixture which gives the predetermined composition of PMN, BT, and PT thus obtained is molded into a desired shape according to the shape required for the target sintered body (PMN-based ferroelectric). After that, it will be fired in the same manner as in the past, but the firing can be performed at a low temperature, for example, by firing at a temperature of about 1100 ° C., the desired sintered body can be obtained. Of.

(実施例) 以下に、本発明の幾つかの実施例を示し、本発明を更に
具体的に明らかにすることとするが、本発明が、そのよ
うな実施例の記載によって、何等の制約をも受けるもの
でないことは、言うまでもないところである。
(Examples) Hereinafter, several examples of the present invention will be shown to clarify the present invention more specifically, but the present invention does not impose any restrictions due to the description of such examples. Needless to say, it is not something to receive.

また、本発明には、以下の実施例の他にも、更には上記
の具体的記述以外にも、本発明の趣旨を逸脱しない限り
において、当業者の知識に基づいて種々なる変更、修
正、改良等を加え得るものであることが、理解されるべ
きである。
In addition to the following embodiments, the present invention further includes various changes and modifications based on the knowledge of those skilled in the art, in addition to the above specific description, without departing from the spirit of the present invention. It should be understood that improvements and the like can be added.

先ず、乾燥した原料:PbO、MgO、Nb2O5、TiO2、BaCO3
体を、下記第1表に示される化学量論組成になるように
秤取し、エチルアルコール中でボールミル混合を24時間
行なった。そして、この得られたスラリーを100℃の温
度で24時間乾燥した後、粉砕することにより、各種混合
粉体(原料配合物)を得た。次いで、この混合粉体を30
0MPaの1軸加圧により成形した後、大気中で900℃、4
時間仮焼を行ない、更にこの仮焼体を約30分粉砕した
後、2重量%のメチルセルロース水溶液をバインダーと
して添加し、30MPaで1軸加圧成形し、更に冷間等方圧
プレスにて200MPaの圧力にて成形を行ない、所定の成形
体を得た。更に、この成形体を大気圧中において300℃/
Hrの昇温速度で500℃まで昇温し、1時間保持すること
によりバインダーを飛散させた後、300℃/Hrの昇温速度
で1100℃まで昇温し、同温度で2時間保持することによ
り焼成を行ない、目的とする焼結体を得た。
First, dried raw materials: PbO, MgO, Nb 2 O 5 , TiO 2 , and BaCO 3 powders were weighed so as to have a stoichiometric composition shown in Table 1 below, and ball-milled in ethyl alcohol. It was done for 24 hours. Then, the obtained slurry was dried at a temperature of 100 ° C. for 24 hours and then pulverized to obtain various mixed powders (raw material mixture). Then, mix this powder with 30
After molding by uniaxial pressure of 0MPa, 900 ℃ in the air, 4
After calcination for a certain time, the calcinated body is crushed for about 30 minutes, 2% by weight aqueous solution of methylcellulose is added as a binder, uniaxial pressure molding is performed at 30 MPa, and further 200 MPa is applied by a cold isostatic press. Molding was performed under the pressure of 1 to obtain a predetermined molded body. Furthermore, this molded body is heated to 300 ° C / atmospheric pressure.
After raising the binder to 500 ° C at a heating rate of Hr and holding it for 1 hour to scatter the binder, raise the temperature to 1100 ° C at a heating rate of 300 ° C / Hr and hold at the same temperature for 2 hours. Was fired to obtain a desired sintered body.

かくして得られた各種組成の焼結体について、そのキュ
リー温度(Tc)、結晶構造、誘電率(ε)及び誘電損失
(tanδ)を調べ、その結果を下記第1表に併わせ示し
た。なお、第1表中の結晶構造、誘電特性についての記
号は、以下の通りの意味を有するものである。
Curie temperature (Tc), crystal structure, dielectric constant (ε) and dielectric loss (tan δ) of the thus obtained sintered bodies of various compositions were examined, and the results are also shown in Table 1 below. The symbols for crystal structure and dielectric properties in Table 1 have the following meanings.

結晶構造 c:立方晶、pc:疑似立方晶、t:正方晶 誘電特性 P:常磁性体、F:強磁性体 第1表の結果から明らかなように、本発明に従ってPMN
に他のプロブスカイト構造を持つ化合物(PT,BT)を固
溶せしめることにより、パイロクロア相の生成が抑制さ
れ、誘電特性や電歪特性が効果的に制御され得て、PMN
系強誘電体を有利に得ることが出来るのである。
Crystal structure c: cubic crystal, pc: pseudo-cubic crystal, t: tetragonal crystal Dielectric property P: paramagnetic material, F: ferromagnetic material As is clear from the results shown in Table 1, PMN according to the present invention.
By dissolving other compounds having a perovskite structure (PT, BT) in solid solution, the generation of pyrochlore phase is suppressed, and the dielectric and electrostrictive properties can be effectively controlled, and PMN
It is possible to advantageously obtain a system ferroelectric.

(発明の効果) 以上の説明から明らかなように、本発明によれば、従来
PMN単相のペロブスカイト相の強誘電体の焼結体を得る
ことが困難であったのに対し、ペロブスカイト構造を持
つBTをPMN相に固溶させることによりパイロクロア相の
生成を抑制し、同時にPTを固溶させることにより誘電特
性及び電歪特性を制御して、PMN系単相の強誘電体を製
造することが可能となったのであり、そこに本発明の大
きな技術的意義が存するものである。
(Effects of the Invention) As is apparent from the above description, according to the present invention,
While it was difficult to obtain a PMN single-phase perovskite-phase ferroelectric sintered body, by dissolving BT having a perovskite structure in the PMN phase, the formation of the pyrochlore phase is suppressed, and at the same time PT It has become possible to manufacture PMN-based single-phase ferroelectrics by controlling the dielectric properties and electrostrictive properties by making solid solution, and there is a significant technical significance of the present invention there. is there.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は、それぞれ、PMN−BT系キュリー温
度、及びPMN系−PT系キュリー温度を示すグラフであ
り、また第3図は、PMN、BT、PTの各組成の結晶構造と
誘電特性を示す図である。
1 and 2 are graphs showing the Curie temperature of PMN-BT system and Curie temperature of PMN system-PT system, respectively, and FIG. 3 is the crystal structure of each composition of PMN, BT, and PT. It is a figure which shows a dielectric characteristic.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Pb(Mg1/3Nb2/3)O3:40〜80モル%、BaTiO
3:30モル%以下、PbTiO3:20〜50モル%なる組成を与え
る原料配合物を調製し、これを所望の形状に成形して焼
成することを特徴とするPMN系強誘電体の製造法。
1. Pb (Mg 1/3 Nb 2/3 ) O 3 : 40-80 mol%, BaTiO 3
3. A method for producing a PMN-based ferroelectric material, which comprises preparing a raw material mixture which gives a composition of 30 mol% or less and PbTiO 3 : 20 to 50 mol%, molding the mixture into a desired shape and firing the mixture. .
JP1279386A 1989-10-26 1989-10-26 Method for manufacturing PMN-based ferroelectric Expired - Lifetime JPH07100624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1279386A JPH07100624B2 (en) 1989-10-26 1989-10-26 Method for manufacturing PMN-based ferroelectric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1279386A JPH07100624B2 (en) 1989-10-26 1989-10-26 Method for manufacturing PMN-based ferroelectric

Publications (2)

Publication Number Publication Date
JPH03141146A JPH03141146A (en) 1991-06-17
JPH07100624B2 true JPH07100624B2 (en) 1995-11-01

Family

ID=17610418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1279386A Expired - Lifetime JPH07100624B2 (en) 1989-10-26 1989-10-26 Method for manufacturing PMN-based ferroelectric

Country Status (1)

Country Link
JP (1) JPH07100624B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19521187C2 (en) * 1995-06-10 1997-08-07 Fraunhofer Ges Forschung Use of a ferroelectric ceramic material for information storage in electrostatic printing processes

Also Published As

Publication number Publication date
JPH03141146A (en) 1991-06-17

Similar Documents

Publication Publication Date Title
US6620752B2 (en) Method for fabrication of lead-based perovskite materials
Guiffard et al. Low temperature synthesis of stoichiometric and homogeneous lead zirconate titanate powder by oxalate and hydroxide coprecipitation
CN110128126B (en) Bismuth ferrite-barium titanate-zinc bismuth titanate-bismuth aluminate high-temperature lead-free piezoelectric ceramic and preparation method thereof
US4506026A (en) Low firing ceramic dielectric for temperature compensating capacitors
EP2266933A1 (en) Sintered material for dielectric substance and process for preparing the same
US4785375A (en) Temperature stable dielectric composition at high and low frequencies
US20030022784A1 (en) Barium titanate semiconductive ceramic
JPS6329408A (en) Dielectric ceramic body and making thereof
CN116854472A (en) Microwave dielectric material and preparation method thereof
CN109485416B (en) Barium titanate calcium-based lead-free piezoelectric ceramic and preparation method thereof
JPH07100624B2 (en) Method for manufacturing PMN-based ferroelectric
US5607632A (en) Method of fabricating PLZT piezoelectric ceramics
JPS63236713A (en) Production of inorganic fine powder of perovskite-type compound
JP2000313662A (en) Ceramic composition
JP2000178068A (en) Piezoelectric porcelain composition
JP3710100B2 (en) Manufacturing method of oxide piezoelectric material
KR101261445B1 (en) Bismuth-based Lead-free Piezoelectric Ceramics and Manufacturing Method therefor
CN117326866B (en) Cerium-manganese co-doped lead zirconate titanate-based piezoelectric ceramic material and preparation method thereof
CN102503410A (en) Barium strontium titanate-lead titanate pyroelectric ceramic and preparation method thereof
KR100403302B1 (en) A method for preparing Pb-based peizoelectric ceramic powder containing the carbonate
JPH0433383A (en) Manufacture of piezoelectric ceramics
JP2002187771A (en) Dielectric porcelain and dielectric resonator using the same
JPH04295051A (en) Pzt ceramic composition
KR950014355B1 (en) Complex and process
JPS63236760A (en) Titanate sintered body