JPH07100610B2 - Manufacturing method of superconducting material - Google Patents

Manufacturing method of superconducting material

Info

Publication number
JPH07100610B2
JPH07100610B2 JP63136471A JP13647188A JPH07100610B2 JP H07100610 B2 JPH07100610 B2 JP H07100610B2 JP 63136471 A JP63136471 A JP 63136471A JP 13647188 A JP13647188 A JP 13647188A JP H07100610 B2 JPH07100610 B2 JP H07100610B2
Authority
JP
Japan
Prior art keywords
superconducting
temperature
superconducting material
oxide
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63136471A
Other languages
Japanese (ja)
Other versions
JPH01305817A (en
Inventor
廣見 武井
靖子 鳥居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63136471A priority Critical patent/JPH07100610B2/en
Publication of JPH01305817A publication Critical patent/JPH01305817A/en
Publication of JPH07100610B2 publication Critical patent/JPH07100610B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超電導材料の製造方法に関する。より詳細に
は電力用線材、エレクトロニクス用素子等に用いるTl系
酸化物超電導材料の改良された製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a superconducting material. More specifically, the present invention relates to an improved method for producing a Tl-based oxide superconducting material used for power wires, electronic devices, and the like.

従来の技術 電子の相転移であるといわれる超電導現象は、特定の条
件下で導体の電気抵抗が零の状態となり完全な反磁性を
示す現象である。
2. Description of the Related Art The superconducting phenomenon, which is said to be a phase transition of electrons, is a phenomenon in which the electric resistance of a conductor becomes zero under certain conditions and shows perfect diamagnetism.

超電導現象の代表的な応用分野であるエレクトロニクス
の分野では、各種の超電導素子が提案され、また開発さ
れている。代表的なものとしては、超電導材料どうしを
弱く接合した場合に、印加電流によって量子効果が巨視
的に現れるジョセフソン効果を利用した素子が挙げられ
る。また、トンネル接合型ジョセフソン素子は、超電導
材料のエネルギーギャップが小さいことから、極めて高
速な低電力消費のスイッチング素子として期待されてい
る。さらに、電磁波や磁場に対するジョセフソン効果が
正確な量子現象として現れることから、ジョセフソン素
子を磁場、マイクロ波、放射線等の超高感度センサとし
て利用することも期待されている。
In the field of electronics, which is a typical application field of superconducting phenomena, various superconducting elements have been proposed and developed. A typical example is an element utilizing the Josephson effect in which quantum effects appear macroscopically by an applied current when superconducting materials are weakly joined. In addition, the tunnel junction type Josephson element is expected as an extremely high speed and low power consumption switching element because the energy gap of the superconducting material is small. Furthermore, since the Josephson effect with respect to electromagnetic waves and magnetic fields appears as an accurate quantum phenomenon, it is expected that the Josephson device will be used as an ultra-sensitive sensor for magnetic fields, microwaves, radiation, etc.

超高速電子計算機では、単位面積当たりの消費電力が冷
却能力の限界に達してきているため、超電導素子の開発
が要望されており、さらに、電子回路の集積度が高くな
るにつれて、電流ロスの無い超電導材料を配線材料とし
て用いることが要望されている。
In the ultra-high speed computer, the power consumption per unit area has reached the limit of the cooling capacity, so the development of superconducting elements is demanded. Furthermore, as the degree of integration of electronic circuits increases, there is no current loss. It is desired to use a superconducting material as a wiring material.

しかし、様々な努力にもかかわらず、超電導材料の超電
導臨界温度Tcは長期間に亘ってNb3Geの23Kを越えること
ができなかったが、1986年来、〔La,Ba〕2CuO4または
〔La,Ba〕2CuO4等の酸化物の焼結材が高いTcをもつ超電
導材料として発見され、非低温超電導を実現する可能性
が大きく高まっている。これらの物質では、30乃至50K
という従来に比べて飛躍的に高いTcが観測され、70K以
上のTcも観測されている。
However, despite various efforts, the superconducting critical temperature Tc of superconducting materials could not exceed 23K of Nb 3 Ge for a long time, but since 1986, [La, Ba] 2 CuO 4 or La, Ba] 2 CuO 4 and other oxide sintered materials have been discovered as superconducting materials with high Tc, and the possibility of realizing non-low temperature superconductivity is greatly increasing. 30 to 50K for these substances
A dramatically higher Tc than the conventional one was observed, and a Tc of 70K or more was also observed.

また、YBCOと称されるY1Ba2Cu3O7-xで表される複合酸化
物は、90K級の超電導体であることが発表されている。
さらに、Tl−Ba−Ca−Cu系複合酸化物は、Tcが100K以上
であるばかりでなく、化学的にも安定しており、YBCO等
のように時間を経るに従い、超電導特性が劣化すること
も少ない。
Further, it has been announced that a composite oxide represented by Y 1 Ba 2 Cu 3 O 7-x called YBCO is a 90K-class superconductor.
Furthermore, the Tl-Ba-Ca-Cu-based composite oxide not only has a Tc of 100 K or more, but is also chemically stable, and its superconducting properties deteriorate as time passes like YBCO. Also few.

これら複合酸化物超電導体の超電導特性には、結晶中の
酸素欠陥が大きな役割を果たしている。すなわち、結晶
中の酸素欠陥が適正でないと、Tcは低く、また、オンセ
ット温度と抵抗が完全に0となる温度との差も大きくな
る。
Oxygen defects in the crystal play a major role in the superconducting properties of these complex oxide superconductors. That is, if the oxygen defects in the crystal are not proper, Tc is low, and the difference between the onset temperature and the temperature at which the resistance is completely zero becomes large.

従来これらの複合酸化物超電導体を作製するには、複合
酸化物を構成する成分元素の酸化物または炭酸塩の粉末
を混合し、焼結を行っていた。また、この焼結により作
製した複合酸化物をターゲットにして、RFスパッタリン
グ等の方法で薄膜を作製していた。さらに、焼結後また
は成膜後に酸素雰囲気中で熱処理を行い、上記の酸素欠
陥を調整することもある。
Conventionally, in order to produce these complex oxide superconductors, powders of oxides or carbonates of the constituent elements constituting the complex oxide have been mixed and sintered. Further, a thin film was formed by a method such as RF sputtering, using the composite oxide produced by this sintering as a target. Further, the above oxygen defects may be adjusted by performing heat treatment in an oxygen atmosphere after sintering or film formation.

発明が解決しようとする課題 従来、上記のTl−Ba−Ca−Cu系酸化物超電導材料を作製
するには、Tl2O3、BaCO3、CaCO3およびCuO等の粉末を所
定の割合で混合し、焼結を行っていた。また、Tl−Ba−
Ca−Cu系酸化物超電導材料の薄膜を作製する場合には、
この焼結体をターゲットとしてRFスパッタリング等の物
理蒸着を行うのが一般的であった。
SUMMARY OF THE INVENTION Conventionally, in preparing the above Tl-Ba-Ca-Cu-based oxide superconducting material, mixed Tl 2 O 3, BaCO 3, CaCO 3 and a powder of CuO or the like at a predetermined ratio Then, sintering was performed. Also, Tl-Ba-
When preparing a thin film of Ca-Cu-based oxide superconducting material,
It was general to perform physical vapor deposition such as RF sputtering using this sintered body as a target.

しかしながら、上記の従来の方法で作製されるTl−Ba−
Ca−Cu系酸化物超電導材料には、超電導臨界温度が高い
相と低い相が共存するため、電気抵抗が急激に減少し始
める温度Tcoは、120K以上であるが、電気抵抗が完全に
0となる温度Tciは90〜100K程度であった。
However, the Tl-Ba- produced by the above conventional method
In the Ca-Cu-based oxide superconducting material, since a phase having a high superconducting critical temperature and a phase having a low superconducting temperature coexist, the temperature Tco at which the electric resistance starts to sharply decrease is 120 K or more, but the electric resistance is completely 0. The temperature Tci was about 90 to 100K.

従って、本発明の目的は、高Tc相の単一相からなるTl−
Ba−Ca−Cu系酸化物超電導材料を製造する方法を提供す
ることにある。
Therefore, an object of the present invention is to provide a Tl-comprising a single phase of high Tc phase.
It is to provide a method for producing a Ba-Ca-Cu based oxide superconducting material.

課題を解決するための手段 本発明に従うと、 式:Tl2±p(Ba1-xCax3±qCu2±rOz (ただし、0≦p≦0.6、0≦q≦0.9、0≦r≦0.6、
0.2≦x≦0.5である) で表される組成の酸化物と、 式:(Ba1-yCay1±aCu1±bOw (ただし、0≦a≦0.3、0≦b≦0.3であり、0≦y≦
1である) で表される組成の酸化物とを混合するか、または層状に
積層した後に、840℃から960℃の範囲の温度で熱処理す
ることを特徴とする超電導材料の製造方法が提供され
る。
Means for Solving the Problems According to the present invention, the formula: Tl 2 ± p (Ba 1-x Ca x ) 3 ± q Cu 2 ± r O z (where 0 ≦ p ≦ 0.6, 0 ≦ q ≦ 0.9, 0 ≦ r ≦ 0.6,
0.2 ≦ x ≦ 0.5), and the formula: (Ba 1-y Ca y ) 1 ± a Cu 1 ± b O w (where 0 ≦ a ≦ 0.3 and 0 ≦ b ≦ 0.3 and 0 ≦ y ≦
1) is mixed with an oxide having a composition represented by 1) or laminated in layers and then heat treated at a temperature in the range of 840 ° C. to 960 ° C. to provide a method for producing a superconducting material. It

作用 本発明の方法は、Tl−Ba−Ca−Cu系酸化物超電導材料を 式:Tl2±p(Ba1-xCax3±qCu2±rOz (ただし、0≦p≦0.6、0≦q≦0.9、0≦r≦0.6、
0.2≦x≦0.5である) で表される組成の酸化物と、 式:(Ba1-yCay1±aCu1±bOw (ただし、0≦a≦0.3、0≦b≦0.3であり、0≦y≦
1である) で表される組成の酸化物とを反応させて製造するところ
にその主要な特徴がある。
Action The method of the present invention uses a Tl-Ba-Ca-Cu-based oxide superconducting material of the formula: Tl 2 ± p (Ba 1-x Ca x ) 3 ± q Cu 2 ± r O z (where 0 ≦ p ≦ 0.6, 0 ≦ q ≦ 0.9, 0 ≦ r ≦ 0.6,
0.2 ≦ x ≦ 0.5), and the formula: (Ba 1-y Ca y ) 1 ± a Cu 1 ± b O w (where 0 ≦ a ≦ 0.3 and 0 ≦ b ≦ 0.3 and 0 ≦ y ≦
The main characteristic is that it is produced by reacting with an oxide having a composition represented by (1).

従来、上記のTl−Ba−Ca−Cu系酸化物超電導材料を作製
する場合には、Tl2O3、BaCO3、CaCO3およびCuO粉末を混
合し、焼結していた。また、これらの粉末の混合にあた
っては、焼結後の酸化物中のTl2Sr2Ca2Cu3Otなる高Tc相
が多くなるような割合としていた。
Conventionally, when manufacturing the above-mentioned Tl-Ba-Ca-Cu-based oxide superconducting material, a mixture of Tl 2 O 3, BaCO 3, CaCO 3 and CuO powders were sintered. Further, in mixing these powders, the proportion was set such that the high Tc phase of Tl 2 Sr 2 Ca 2 Cu 3 O t in the oxide after sintering was increased.

しかしながら、従来の方法で得られるTl−Ba−Ca−Cu系
酸化物超電導材料には、かならず高Tc相と低Tc相とが混
在しており、電気抵抗が急激に減少し始める温度Tcoは1
20K以上と高いが、電気抵抗が完全に0となる温度Tciは
90〜100K程度であり、高Tcの単一相からなる超電導材料
が望まれていた。
However, the Tl-Ba-Ca-Cu-based oxide superconducting material obtained by the conventional method always contains a high Tc phase and a low Tc phase, and the temperature Tco at which the electrical resistance starts to decrease sharply is 1
Although it is as high as 20K or higher, the temperature Tci at which the electric resistance becomes completely 0 is
A superconducting material consisting of a single phase having a high Tc of about 90 to 100 K has been desired.

本発明の方法によれば、 Tl2±p(Ba1-xCax3±qCu2±rOz (ただし、0≦p≦0.6、0≦q≦0.9、0≦r≦0.6、
0.2≦x≦0.5である) の組成と考えられる低Tc相と、 (Ba1-yCay1±aCu1±bOw (ただし、0≦a≦0.3、0≦b≦0.3であり、0≦y≦
1である) の組成の酸化物とを反応させて、超電導電流を担うと考
えられるCu−O面を増加させることによって、低Tc相か
ら高Tc相を形成させる。
According to the method of the present invention, Tl 2 ± p (Ba 1-x Ca x ) 3 ± q Cu 2 ± r O z (where 0 ≦ p ≦ 0.6, 0 ≦ q ≦ 0.9, 0 ≦ r ≦ 0.6,
Low Tc phase which is considered to be a composition of 0.2 ≦ x ≦ 0.5) and (Ba 1-y Ca y ) 1 ± a Cu 1 ± b O w (where 0 ≦ a ≦ 0.3 and 0 ≦ b ≦ 0.3 Yes, 0 ≦ y ≦
1)) to increase the Cu-O plane, which is considered to be responsible for superconducting current, to form a low Tc phase to a high Tc phase.

本発明の方法では、Tl2O3、BaCO3、CaCO3およびCuO粉末
を混合し、直接反応させてTl−Ba−Ca−Cu系酸化物超電
導体を生成させるではなく、予め中間原料として上記の
低Tc相と考えられる酸化物と、 (Ba1-yCay1±aCu1±bOw (ただし、0≦a≦0.3、0≦b≦0.3であり、0≦y≦
1である) なる組成の酸化物とを作製し、これらを反応させてTl−
Ba−Ca−Cu系酸化物超電導体を生成させる。従って、例
えば低温で起こる共晶反応等好ましからざる原料同士の
反応を防ぐことができ、焼結反応温度を高くすることが
可能となるため、高密度なものが得られ、特に臨界電流
密度を向上させるのに有効である。
In the method of the present invention, Tl 2 O 3, mixed BaCO 3, CaCO 3 and CuO powders, rather than causing reacted directly produce Tl-Ba-Ca-Cu-based oxide superconductor, the advance as an intermediate material , Which is considered to be a low Tc phase, and (Ba 1-y Ca y ) 1 ± a Cu 1 ± b O w (where 0 ≦ a ≦ 0.3, 0 ≦ b ≦ 0.3, and 0 ≦ y ≦
1) and an oxide having a composition of
A Ba-Ca-Cu based oxide superconductor is generated. Therefore, it is possible to prevent undesired reactions between raw materials such as eutectic reaction that occurs at a low temperature, and it becomes possible to raise the sintering reaction temperature, so that a high density can be obtained, and particularly, the critical current density is improved. It is effective to let.

また高温でも単独に存在しやすいCuOを化合物の状態か
ら反応させることができるため均質な組織が得やすい。
Further, since CuO, which tends to exist alone even at high temperature, can be reacted from the state of the compound, it is easy to obtain a homogeneous structure.

本発明の方法では、上記の中間原料が十分に反応するよ
うに混合を行う。そのため、上記の中間原料を粉砕し、
粉末として、混合するか、または層状に積層して焼結に
付すことが好ましい。
In the method of the present invention, the mixing is performed so that the above-mentioned intermediate raw materials sufficiently react. Therefore, crush the above intermediate raw material,
The powder is preferably mixed or laminated in layers and sintered.

本発明の方法において、最終結晶温度は840〜960℃が好
ましい。これは、840℃未満では上記の共晶反応等の好
ましからざる反応が起きるためである。また、960℃を
超える温度で焼結すると原料粉末の一部が融解し、高Tc
相が得られない。
In the method of the present invention, the final crystallization temperature is preferably 840 to 960 ° C. This is because undesired reactions such as the above eutectic reaction occur below 840 ° C. Also, if sintered at a temperature above 960 ° C, part of the raw material powder will melt, resulting in high Tc.
I can't get a match.

以下、本発明を実施例によりさらに詳しく説明するが、
以下の開示は、本発明の単なる実施例に過ぎず、本発明
の技術的範囲を何等制限するものではない。
Hereinafter, the present invention will be described in more detail with reference to Examples.
The following disclosure is merely an example of the present invention and does not limit the technical scope of the present invention.

実施例1 Tl2O3、BaCO3、CaCO3およびCuO粉末をTl:Ba:Ca:Cuの原
子比が2:2:1:2となるように混合し、直径10mm、厚さ3mm
に成型後880℃で3時間熱処理して、Tl2Ba2Ca1Cu2O
z(zは未定)である円板状試料1を作製した。
Example 1 Tl 2 O 3 , BaCO 3 , CaCO 3 and CuO powder were mixed so that the atomic ratio of Tl: Ba: Ca: Cu was 2: 2: 1: 2, and the diameter was 10 mm and the thickness was 3 mm.
After molding, heat-treat at 880 ℃ for 3 hours to remove Tl 2 Ba 2 Ca 1 Cu 2 O
A disc-shaped sample 1 having z (z is not determined) was prepared.

次に、CaCO3とCuOをCa:Cuの原子比が1:1となるように混
合し、直径10mm、厚さ3mmに成型後880℃で3時間熱処理
して、CaCuOw(wは未定)である円板状試料2を作製し
た。
Next, CaCO 3 and CuO are mixed so that the atomic ratio of Ca: Cu is 1: 1, molded into a diameter of 10 mm and a thickness of 3 mm, and heat-treated at 880 ° C. for 3 hours, and CaCuO w (w is undetermined). A disc-shaped sample 2 was prepared.

上記の円板状試料1、2を微粉末状に粉砕した後、Tl:B
a:Ca:Cuの原子比が2:2:2:3となるように混合し、直径10
mm、厚さ3mmに成型後、920℃で3時間の熱処理を行い超
電導体試料を作製し評価に供した。主な超電導特性を第
1表に示す。
After crushing the above disc-shaped samples 1 and 2 into fine powder, Tl: B
Mix so that the atomic ratio of a: Ca: Cu is 2: 2: 2: 3 and the diameter is 10
After molding to a thickness of 3 mm and a thickness of 3 mm, heat treatment was performed at 920 ° C. for 3 hours to prepare a superconductor sample for evaluation. Table 1 shows the main superconducting properties.

実施例2 実施例1と同様に、Tl2O3、BaCO3、CaCO3およびCuO粉末
をTl:Ba:Ca:Cuの原子比が4:3:3:4となるように混合、88
0℃で3時間熱処理を行ってTl4Ba3Ca3Cu4Oz(zは未
定)である酸化物と、BaCO3、CaCO3およびCuO粉末をBa:
Ca:Cuの原子比が1:1:2となるように混合、880℃で3時
間熱処理を行ってBaCaCu2Ow(wは未定)である酸化物
を作製した。
Example 2 As in Example 1, Tl 2 O 3 , BaCO 3 , CaCO 3 and CuO powder were mixed so that the atomic ratio of Tl: Ba: Ca: Cu was 4: 3: 3: 4, 88.
After heat treatment at 0 ° C. for 3 hours, the oxide which is Tl 4 Ba 3 Ca 3 Cu 4 O z (z is not determined) and the BaCO 3 , CaCO 3 and CuO powders are Ba:
The mixture was mixed so that the atomic ratio of Ca: Cu was 1: 1: 2, and heat-treated at 880 ° C. for 3 hours to prepare an oxide of BaCaCu 2 O w (w is undetermined).

それぞれの酸化物を粉砕し、実施例1と同様Tl:Ba:Ca:C
uの原子比が2:2:2:3となるよう混合し、920℃で3時間
の熱処理を行い超電導体試料を作製し評価に供した。主
な超電導特性を第1表に示す。
The respective oxides were pulverized and Tl: Ba: Ca: C was used as in Example 1.
They were mixed so that the atomic ratio of u was 2: 2: 2: 3, and heat-treated at 920 ° C. for 3 hours to prepare a superconductor sample for evaluation. Table 1 shows the main superconducting properties.

実施例3 実施例1と同様に、Tl2O3、BaCO3 CaCO3およびCuO粉末
をTl:Ba:Ca:Cuの原子比が2:1:2:2となるように混合、88
0℃で3時間熱処理を行ってTl4Ba3Ca3Cu4Oz(zは未
定)である酸化物と、BaCO3およびCuO粉末をBa:Cuの原
子比が1:1となるように混合、880℃で3時間熱処理を行
ってBaCuOw(wは未定)である酸化物を作製した。
Example 3 As in Example 1, Tl 2 O 3 , BaCO 3 CaCO 3 and CuO powder were mixed so that the atomic ratio of Tl: Ba: Ca: Cu was 2: 1: 2: 2, 88
Heat treatment at 0 ° C for 3 hours so that the oxide which is Tl 4 Ba 3 Ca 3 Cu 4 O z (z is not determined) and the BaCO 3 and CuO powders have a Ba: Cu atomic ratio of 1: 1. Mixing and heat treatment at 880 ° C. for 3 hours produced an oxide of BaCuO w (w is undetermined).

それぞれの酸化物を粉砕し、実施例1と同様Tl:Ba:Ca:C
uの原子比が2:2:2:3となるよう混合し、920℃で3時間
の熱処理を行い超電導体試料を作製し評価に供した。主
な超電導特性を第1表に示す。
The respective oxides were pulverized and Tl: Ba: Ca: C was used as in Example 1.
They were mixed so that the atomic ratio of u was 2: 2: 2: 3, and heat-treated at 920 ° C. for 3 hours to prepare a superconductor sample for evaluation. Table 1 shows the main superconducting properties.

比較例 Tl2O3、BaCO3、CaCO3およびCuO粉末をTl:Ba:Ca:Cuの原
子比が2:2:2:3となるように直接混合する従来の方法
で、比較試料を作製した。上記の粉末を混合した後、直
径10mm、厚さ3mmに成型し、920℃で3時間熱処理した。
Comparative Example Tl 2 O 3 , BaCO 3 , CaCO 3 and CuO powder were prepared by a conventional method in which the atomic ratio of Tl: Ba: Ca: Cu was directly mixed to be 2: 2: 2: 3. did. After mixing the above powders, the powder was molded into a diameter of 10 mm and a thickness of 3 mm and heat-treated at 920 ° C. for 3 hours.

上記の本実施例により作製された試料のTco(onset温
度)、Tci(抵抗が0となる温度)および液体窒素温度
(77K)における臨界電流密度Jc、を下記第1表に示
す。
Table 1 below shows Tco (onset temperature), Tci (temperature at which the resistance becomes 0), and the critical current density Jc at the liquid nitrogen temperature (77 K) of the sample manufactured according to the above-mentioned present example.

以上の様に、本発明ではTciおよびJcが著しく増加して
おり実用上極めて効果が大である。
As described above, in the present invention, Tci and Jc are remarkably increased, and the effect is extremely large in practical use.

発明の効果 以上、詳述のように、本発明の方法によれば、従来より
も優れた超電導特性を有するTl−Ba−Ca−Cu系酸化物超
電導材料を得ることができる。
Effects of the Invention As described above in detail, according to the method of the present invention, it is possible to obtain a Tl-Ba-Ca-Cu-based oxide superconducting material having superconducting properties superior to the conventional ones.

これは、本発明に独特な、 Tl2±p(Ba1-xCax3±qCu2±rOz (ただし、0≦p≦0.6、0≦q≦0.9、0≦r≦0.6、
0.2≦x≦0.5である) の組成と考えられる低Tc相と、 (Ba1-yCay1±aCu1±bOw (ただし、0≦a≦0.3、0≦b≦0.3であり、0≦y≦
1である) の組成の酸化物とを反応させてTl−Ba−Ca−Cu系酸化物
超電導材料を作製する方法によるものである。
This is Tl 2 ± p (Ba 1-x Ca x ) 3 ± q Cu 2 ± r O z (where 0 ≦ p ≦ 0.6, 0 ≦ q ≦ 0.9, 0 ≦ r ≦ 0.6, which is unique to the present invention. ,
Low Tc phase which is considered to be a composition of 0.2 ≦ x ≦ 0.5) and (Ba 1-y Ca y ) 1 ± a Cu 1 ± b O w (where 0 ≦ a ≦ 0.3 and 0 ≦ b ≦ 0.3 Yes, 0 ≦ y ≦
1)) to produce a Tl-Ba-Ca-Cu-based oxide superconducting material.

本発明の方法は、バルクの超電導材料の製造のみなら
ず、薄膜の超電導材料の原料ターゲットの製造に応用す
ることもできる。
The method of the present invention can be applied not only to the production of a bulk superconducting material but also to the production of a raw material target of a thin film superconducting material.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Tl2±p(Ba1-xCax3±qCu2±rOz (ただし、0≦p≦0.6、0≦q≦0.9、0≦r≦0.6、
0.2≦x≦0.5である) で表される組成の酸化物と、 式:(Ba1-yCay1±aCu1±bOw (ただし、0≦a≦0.3、0≦b≦0.3であり、0≦y≦
1である) で表される組成の酸化物とを混合するか、または層状に
積層した後に、840℃から960℃の範囲の温度で熱処理す
ることを特徴とする超電導材料の製造方法。
1. Tl 2 ± p (Ba 1-x Ca x ) 3 ± q Cu 2 ± r O z (where 0 ≦ p ≦ 0.6, 0 ≦ q ≦ 0.9, 0 ≦ r ≦ 0.6,
0.2 ≦ x ≦ 0.5), and the formula: (Ba 1-y Ca y ) 1 ± a Cu 1 ± b O w (where 0 ≦ a ≦ 0.3 and 0 ≦ b ≦ 0.3 and 0 ≦ y ≦
1) is mixed with an oxide having a composition represented by 1) or laminated in layers, and then heat-treated at a temperature in the range of 840 ° C to 960 ° C.
JP63136471A 1988-06-02 1988-06-02 Manufacturing method of superconducting material Expired - Lifetime JPH07100610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63136471A JPH07100610B2 (en) 1988-06-02 1988-06-02 Manufacturing method of superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63136471A JPH07100610B2 (en) 1988-06-02 1988-06-02 Manufacturing method of superconducting material

Publications (2)

Publication Number Publication Date
JPH01305817A JPH01305817A (en) 1989-12-11
JPH07100610B2 true JPH07100610B2 (en) 1995-11-01

Family

ID=15175896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63136471A Expired - Lifetime JPH07100610B2 (en) 1988-06-02 1988-06-02 Manufacturing method of superconducting material

Country Status (1)

Country Link
JP (1) JPH07100610B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246131A (en) * 1988-03-28 1989-10-02 Onoda Cement Co Ltd Production of oxide superconductor

Also Published As

Publication number Publication date
JPH01305817A (en) 1989-12-11

Similar Documents

Publication Publication Date Title
JP2859602B2 (en) Manufacturing method of products made of superconducting material
EP0301952B1 (en) Compound oxide superconducting material and method for preparing the same
Kırat et al. Effect of the Er-substitution on critical current density in glass-ceramic Bi2Sr2Ca2 (Cu3− xErx) O10+ δ superconducting system
JPH0643268B2 (en) Oxide high temperature superconductor
EP0356722B1 (en) Oxide superconductor and method of producing the same
JPH0515647B2 (en)
US5340796A (en) Oxide superconductor comprising Cu, Bi, Ca and Sr
EP0301958B1 (en) Superconducting material and a method for preparing the same
EP0325877A1 (en) A semiconductor substrate having a superconducting thin film
EP0800494B1 (en) LOW TEMPERATURE (T LOWER THAN 950 oC) PREPARATION OF MELT TEXTURE YBCO SUPERCONDUCTORS
JPH0780710B2 (en) Manufacturing method of oxide high temperature superconductor
US5389603A (en) Oxide superconductors, and devices and systems comprising such a superconductor
JP2664070B2 (en) Preparation method of composite oxide superconducting thin film
JP2975608B2 (en) Insulating composition
JP2501035B2 (en) Superconducting thin film
JPH07100610B2 (en) Manufacturing method of superconducting material
JP3219563B2 (en) Metal oxide and method for producing the same
JP3217905B2 (en) Metal oxide material and method for producing the same
JP2797186B2 (en) Semiconductor substrate having superconductor layer
JPH0825744B2 (en) Manufacturing method of superconducting material
JP2817170B2 (en) Manufacturing method of superconducting material
JP3284010B2 (en) Metal oxide material and superconducting device using the same
JP3247914B2 (en) Metal oxide material
JP2971504B2 (en) Method for producing Bi-based oxide superconductor
JP3287667B2 (en) Metal oxide