JPH07100596A - Method and apparatus for continuously casting thin cast slab - Google Patents

Method and apparatus for continuously casting thin cast slab

Info

Publication number
JPH07100596A
JPH07100596A JP24693393A JP24693393A JPH07100596A JP H07100596 A JPH07100596 A JP H07100596A JP 24693393 A JP24693393 A JP 24693393A JP 24693393 A JP24693393 A JP 24693393A JP H07100596 A JPH07100596 A JP H07100596A
Authority
JP
Japan
Prior art keywords
mold
block
molten steel
shaped solid
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24693393A
Other languages
Japanese (ja)
Other versions
JP3100498B2 (en
Inventor
Noriyuki Kanai
則之 金井
Toshiya Komori
俊也 小森
Shiyuuji Nakamura
州児 中村
Toshiyuki Kajitani
敏之 梶谷
Shinji Matsuo
慎二 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP05246933A priority Critical patent/JP3100498B2/en
Publication of JPH07100596A publication Critical patent/JPH07100596A/en
Application granted granted Critical
Publication of JP3100498B2 publication Critical patent/JP3100498B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To restrain the turnover flow of a spouting flow in a mold, to improve the uniform growth of solidified shell and to prevent the surface defect by dipping a blockish solid material into gap between a flat nozzle and mold wall surface. CONSTITUTION:Molten steel in a tundish is controlled by a sliding nozzle device and poured from the nozzles 4 for supplying the molten steel. The blockish solid materials 7 are dipped into the position near a meniscus 5 between respective short sides 8 and nozzles 4 for supplying the molten steel. This dipping depth is set by a positional adjusting device 6 of the blockish solid material 7 to restrain the molten steel flow and the uniformity of the shell at the position having <=10mm the shell thickness is obtd. The blockish solid material may be made of a material having the refractoriness to the molten steel and a refractory brick material or a ceramic is desirable for the material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は薄鋳片の連続鋳造方法に
関し、特に鋳型内にて発生する溶鋼吐出流の反転流の発
生を抑止して、凝固シェルの均一化をはかり鋳片表面割
れを防止する方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously casting thin slabs, and more particularly, to suppress the generation of a reverse flow of molten steel discharge flow generated in a mold to homogenize a solidified shell and to crack a slab surface. And method for preventing

【0002】[0002]

【従来の技術】従来より薄鋳片の連続鋳造方法は省エネ
ルギーおよび省コストの面から注目され、開発が活発に
進められ実機化の検討もなされている。これは薄鋳片が
従来の熱間圧延の簡省略を可能として、連続鋳造工程が
圧延工程と直結され、これまでにない最も理想的な薄鋼
板製造プロセスが実現されることになるためである。
2. Description of the Related Art Conventionally, a continuous casting method for thin slabs has been attracting attention from the viewpoint of energy saving and cost saving, and the development thereof has been actively promoted and the practical application has been studied. This is because the thin slab enables the conventional hot rolling to be omitted, the continuous casting process is directly connected to the rolling process, and the most ideal thin steel plate manufacturing process ever achieved is realized. .

【0003】通常、この薄鋳片の連続鋳造方法において
は、溶鋼を製鋼炉より取鍋に収容して連続鋳造機まで搬
送して、中間容器であるタンデッシュに一時貯留して、
ここから連続鋳造鋳型に注湯される。この鋳型への注湯
ノズルとして従来より浸漬型ノズルが使用されている。
この浸漬型ノズルの外観形状は、円筒形または矩形であ
るが、薄鋳片の場合には偏平鋳型であるために矩形ノズ
ル(フラットノズル)が一般的である。
Usually, in this continuous casting method for thin cast pieces, molten steel is stored in a ladle from a steelmaking furnace, conveyed to a continuous casting machine, and temporarily stored in a tundish which is an intermediate container.
From here, it is poured into a continuous casting mold. An immersion type nozzle has been conventionally used as a pouring nozzle for this mold.
The appearance shape of this immersion type nozzle is cylindrical or rectangular, but in the case of a thin cast piece, a rectangular nozzle (flat nozzle) is generally used because it is a flat mold.

【0004】この浸漬型ノズルにおいては、鋳造中に一
定の吐出流速を維持して鋳型に溶鋼を供給することが重
要であり、このためノズルの形状の開発が活発に行われ
てきた。しかし、最近の鋳造速度の高速化のニーズとと
もに、凝固シェルの安定化のため吐出流によるシェルア
タックに注目した技術開発も必要になっている。たとえ
ば、この分野の公知技術として特開平1−293942
号公報に、フラットノズルの配置によって幅中央部の溶
鋼供給を改善する方法の開示がある。また、特開昭63
−177945号公報には薄鋳片の幅方向に遮蔽板を設
ける方法の開示がある。前者は鋳片の二重肌を防止する
ものであって、吐出流による反転流を制御して鋳片縦割
れを改善するものではない。後者のものでは、薄鋳片の
厚みが極薄い場合は挿入できないことになる。
In this immersion type nozzle, it is important to supply a molten steel to the mold while maintaining a constant discharge flow rate during casting, and therefore the nozzle shape has been actively developed. However, along with the recent demand for higher casting speed, it is also necessary to develop technology that pays attention to shell attack by the discharge flow in order to stabilize the solidified shell. For example, as a publicly known technique in this field, Japanese Patent Laid-Open No. 1-293942
Japanese Patent Publication discloses a method of improving the molten steel supply in the center of the width by disposing a flat nozzle. In addition, JP-A-63
No. 177945 discloses a method of providing a shielding plate in the width direction of a thin cast piece. The former is to prevent the double surface of the slab, and is not to control the reversal flow due to the discharge flow to improve the vertical crack of the slab. In the latter case, if the thin cast piece is extremely thin, it cannot be inserted.

【0005】通常の浸漬型ノズルから供給される溶鋼
は、鋳型内で吐出流となり鋳型壁面との空間において反
転流を形成する。この反転流によって速い溶鋼主流が曲
げられて凝固シェルをアタックしていき、そこでのシェ
ルの成長が阻害され不均一が助長されることになる。最
近、これが原因となって鋳片での縦割れが発生すること
が知見され、この解明が進められるにつれて、鋳片での
縦割れ改善にはこの反転流の制御が大きく影響すること
が分かってきた。また、製品での高品質化の要求と相ま
って鋳片品質の向上、特に鋳片縦割れの対策が望まれて
いた。
Molten steel supplied from a normal immersion type nozzle becomes a discharge flow in the mold and forms a reverse flow in the space with the wall surface of the mold. This inversion flow bends the fast molten steel main stream to attack the solidified shell, which hinders the growth of the shell and promotes nonuniformity. Recently, it has been discovered that this causes vertical cracks in the cast slabs, and as this has been clarified, it has become clear that the control of this reversal flow greatly affects the improvement of the vertical cracks in the cast slabs. It was In addition to the demand for higher quality in products, there has been a demand for improvement of slab quality, and in particular, measures against slab vertical cracking.

【0006】[0006]

【発明が解決しようとする課題】本発明者等は上記従来
の問題を解決することを目的として、薄鋳片の連続鋳造
方法における矩形ノズルの吐出流による反転流の発生機
構を解明して、シェルへのアタックを生ずることなく均
一な吐出流を維持する注湯方法を検討した。すなわち、
通常の注湯においては鋳型壁面とノズルとの間隙空間に
溶鋼の渦流を生ずることにより、これが溶鋼吐出流と逆
方向ベクトルを有する反転流となる。一度これが発生す
ると、この反転流自体および下向きの吐出流が反転流の
モーメントによって、曲げられ鋳型壁面のシェルに衝突
して、その結果シェルの成長の不均一を生じ、これが鋳
片の縦割れの原因となる。
SUMMARY OF THE INVENTION The present inventors have clarified the mechanism of generation of reversal flow due to the discharge flow of a rectangular nozzle in a continuous casting method for thin cast pieces, for the purpose of solving the above conventional problems, A pouring method that maintains a uniform discharge flow without attacking the shell was investigated. That is,
In normal pouring, a swirling flow of molten steel is generated in the space between the mold wall surface and the nozzle, and this becomes a reverse flow having a vector opposite to that of the molten steel discharge flow. Once this occurs, the reversal flow itself and the downward discharge flow are bent by the moment of the reversal flow and collide with the shell of the mold wall, resulting in uneven growth of the shell, which causes longitudinal cracking of the slab. Cause.

【0007】本発明はこの反転流の発生を防止して、下
向きの速度の速い主流の吐出流への影響を無くすことを
達成しシェルの均一化をはかり、鋳片の縦割れを防止を
可能とする薄鋳片の連続鋳造方法および装置を提供す
る。
According to the present invention, it is possible to prevent the generation of this reverse flow, to eliminate the influence of the downward main flow having a high velocity on the discharge flow, to make the shell uniform, and to prevent the vertical crack of the slab. The present invention provides a continuous casting method and apparatus for thin cast pieces.

【0008】[0008]

【課題を解決するための手段】本発明は上記課題を解決
するものであって、その要旨とするところは、 (1)鋳型壁面との間で空間を形成して浸漬するフラッ
トノズルによって溶鋼を注湯する薄鋳片の連続鋳造方法
において、メニスカス近傍の該フラットノズルおよび該
鋳型壁面間で形成する空間に、ブロック状固形物を浸漬
することによって、溶鋼流動を抑止してシェル厚みが1
0mm以下の部位でのシェルの均一化をはかることを特
徴とする薄鋳片の連続鋳造方法であり、
Means for Solving the Problems The present invention is to solve the above-mentioned problems, and the gist thereof is as follows: (1) Molten steel is melted by a flat nozzle which forms a space between a wall surface of a mold and a mold. In the continuous casting method for pouring thin slabs, a block-shaped solid material is immersed in a space formed between the flat nozzle near the meniscus and the wall surface of the mold to suppress molten steel flow and reduce the shell thickness to 1
A continuous casting method for thin slabs, characterized in that the shell is made uniform in a portion of 0 mm or less,

【0009】(2)前記ブロック状固形物の浸漬深さ
が、ノズル〜短辺間距離A−50≦浸漬深さL≦(10
/k)1/n V(mm)、ここでkは凝固係数、Vは鋳造
速度、nは定数、なる関係を満足し、かつブロック状固
形物の厚み≦鋳型厚み−20(mm)である(1)記載
の薄鋳片の連続鋳造方法である。 (3)鋳型壁面との間で空間を形成して浸漬するフラッ
トノズルによって溶鋼を注湯する薄鋳片の連続鋳造装置
において、タンデッシュ下部に浸漬量を調整する位置調
整装置を設け、該位置調整装置の先端部にロッドを介し
てブロック状固形物を取り付け、メニスカス近傍の該フ
ラットノズルおよび該鋳型壁面間の距離に比例して浸漬
量を調整しながら、鋳造開始後所定の時期に該ブロック
状固形物を、メニスカス近傍の該フラットノズルおよび
該鋳型壁面間で形成する空間に浸漬することを特徴とす
る薄鋳片の連続鋳造装置であり、
(2) Immersion depth of the block-shaped solid material is a distance between the nozzle and the short side A-50 ≦ immersion depth L ≦ (10
/ K) 1 / n V (mm), where k is the solidification coefficient, V is the casting speed, and n is a constant, and the relationship of block solid thickness ≦ mold thickness −20 (mm) is satisfied. (1) The method for continuously casting thin cast pieces. (3) In a continuous casting apparatus for thin cast slabs in which molten steel is poured by a flat nozzle that forms a space between the wall surface of the mold and the immersion, a position adjusting device for adjusting the immersion amount is provided under the tundish, and the position adjustment is performed. A solid block is attached to the tip of the device via a rod, and while adjusting the immersion amount in proportion to the distance between the flat nozzle near the meniscus and the wall surface of the mold, the solid block is formed at a predetermined time after the start of casting. Solid material is a continuous casting device for thin slabs, characterized in that it is immersed in a space formed between the flat nozzle near the meniscus and the mold wall surface,

【0010】(4)前記ブロック状固形物の厚み≦鋳型
厚み−20(mm)である(3)記載の薄鋳片の連続鋳
造装置であり、 (5)前記ブロック状固形物が加熱装置を具える(3)
または(4)記載の薄鋳片の連続鋳造装置であり、 (6)前記ブロック状固形物が保熱または断熱特性を有
する(3)〜(5)のいずれかに記載の薄鋳片の連続鋳
造装置である。
(4) The thickness of the block-shaped solid ≤ the thickness of the mold -20 (mm) is the continuous casting apparatus for thin slabs according to (3), (5) the block-shaped solid is a heating device. Provide (3)
Or a continuous casting apparatus for thin cast pieces according to (4), (6) continuous thin cast piece according to any one of (3) to (5), wherein the block-shaped solid has heat retaining or heat insulating properties It is a casting machine.

【0011】[0011]

【作用】本発明の作用について以下に説明する。本発明
は浸漬型ノズルから供給される溶鋼の鋳型内での吐出流
に注目して、鋳型壁面とノズルとの空間において反転流
を形成することを知見し、これをコントロールする手段
を実現したものである。この反転流はメニスカスに近く
発生するほど鋳片性状に大きく影響する。また、速い溶
鋼主流が曲げられ凝固シェルをアタックする傾向も、シ
ェルが薄い領域ほど影響が大きいことになる。本発明者
等はこのような直接的に反転流が原因となる鋳片の縦割
れを防止するには、ノズルの浸漬深さと鋳型壁面との空
間大きさを制御すれば達成可能であることを突き止め
た。すなわち、反転流がこの空間に入り込むことが最大
の要件であることが分かってきた。
The operation of the present invention will be described below. The present invention pays attention to a discharge flow of molten steel supplied from an immersion type nozzle in a mold, finds that a reverse flow is formed in a space between a mold wall surface and a nozzle, and realizes a means for controlling this. Is. As the reversal flow is generated closer to the meniscus, the properties of the slab are greatly affected. Further, the tendency of the fast main stream of molten steel to be bent and attack the solidified shell also has a greater effect in the region where the shell is thinner. The inventors of the present invention can prevent vertical cracking of the slab caused by such a direct reversal flow by controlling the space size between the immersion depth of the nozzle and the mold wall surface. I found it. In other words, it has been found that it is the greatest requirement that the reverse flow enters this space.

【0012】すなわち、通常の浸漬深さでは鋳型壁面と
ノズルとの間隙空間に溶鋼の渦流を生ずることにより、
これが溶鋼吐出流と逆方向ベクトルを有する反転流とな
り、下向きの主流である吐出流が反転流のモーメントに
よって、曲げられ鋳型壁面のシェルに衝突する。これを
防止するには、ノズルと鋳型壁面間の空間にブロック状
固形物を浸漬してこの空間を無くすことが必須となる。
本発明はこの反転流の発生位置の空間をブロック状固形
物で置き換えることによって、反転流および下向き吐出
流への影響を無くすことを達成したものである。
That is, at a normal immersion depth, a swirl of molten steel is generated in the gap space between the mold wall surface and the nozzle,
This becomes a reverse flow having a vector opposite to that of the molten steel discharge flow, and the downward main discharge flow is bent by the moment of the reverse flow and collides with the shell on the mold wall surface. In order to prevent this, it is essential to immerse the block-shaped solid matter in the space between the nozzle and the wall surface of the mold to eliminate this space.
The present invention achieves elimination of the influence on the reverse flow and the downward discharge flow by replacing the space at the generation position of the reverse flow with a solid block.

【0013】図8は従来の反転流の状況を示すものであ
る。この図では反転流12が発生して吐出流の主流13
に影響を与え、この反転流および曲げられた主流による
シェルアタック発生することになる。一方、本発明で
は、ブロック状固形物をこの反転流の発生位置に浸漬し
てこの空間を置き換え、発生を抑えるものである。ブロ
ック状固形物の浸漬深さは、浸漬深さL≧ノズル〜短片
間距離A−50(mm)を満足するように、メニスカス
よりの最低浸漬深さを規定する。この限定理由は、浸漬
深さがノズル〜短片間距離A−50(mm)未満の場合
は、反転流が発生して、また吐出流の主流は反転流によ
って狭められシェルアタックが発生する。
FIG. 8 shows a conventional reverse flow situation. In this figure, the reverse flow 12 is generated and the main flow 13 of the discharge flow is generated.
And the shell attack is generated by the reverse flow and the bent main flow. On the other hand, in the present invention, the block-shaped solid matter is immersed in the generation position of this reversal flow to replace this space, and the generation is suppressed. The immersion depth of the block-shaped solid material defines the minimum immersion depth from the meniscus so that the immersion depth L ≧ nozzle to short piece distance A-50 (mm) is satisfied. The reason for this limitation is that when the immersion depth is less than the distance between the nozzle and the short piece A-50 (mm), a reverse flow occurs, and the main flow of the discharge flow is narrowed by the reverse flow to cause shell attack.

【0014】また、本発明の要件について、ここではノ
ズルが一本の場合について説明するが、ノズルがN本の
場合についても同様の要件にすることによって、同一の
効果を得ることができ、特にノズルの本数を限定するも
のではない。図1に本発明の一本のフラットノズル(矩
形ノズル)の場合の吐出流の状況を示す。すなわち、浸
漬深さL≧ノズル〜短辺間距離A−50(mm)を満足
する時は、反転流の発生はなく、そのため主流10への
影響もない。その結果、吐出流の主流10は拡がった流
速分布を呈しシェルアタックは発生しなくなる。
Regarding the requirements of the present invention, the case where the number of nozzles is one will be described here, but the same effect can be obtained even when the number of nozzles is N, and the same effect can be obtained. The number of nozzles is not limited. FIG. 1 shows the situation of the discharge flow in the case of one flat nozzle (rectangular nozzle) of the present invention. That is, when the immersion depth L ≧ nozzle to short side distance A−50 (mm) is satisfied, no reversal flow is generated and therefore the main flow 10 is not affected. As a result, the main flow 10 of the discharge flow exhibits a wide flow velocity distribution, and the shell attack does not occur.

【0015】さらに、本発明では浸漬深さL≦(10/
k)1/n V(mm)、ここでkは凝固係数、Vは鋳造速
度、nは定数、なる関係を満足するが、これはシェル厚
みが10mm以上の深さではシェルアタックの影響はな
くなることに基づくものである。以下に本発明の実施例
の図を参照して、本発明の方法および装置についてさら
に詳述する。
Further, in the present invention, the immersion depth L≤ (10 /
k) 1 / n V (mm), where k is the solidification coefficient, V is the casting speed, and n is a constant, the following relationships are satisfied, but this does not affect the shell attack when the shell thickness is 10 mm or more. It is based on that. The method and apparatus of the present invention are described in further detail below with reference to the figures of an embodiment of the present invention.

【0016】[0016]

【実施例】本発明の装置の概略構成を実機において適用
した図2〜図6によって説明する。図2は矩形ノズル1
本を使用した場合であり、タンデッシュ1の溶鋼2はス
ライディングノズル装置3によって制御され溶鋼供給用
ノズル4から注湯される。ブロック状固形物7は短辺8
と溶鋼供給用ノズル4間にメニスカス5の近傍に浸漬さ
れる。この浸漬深さはブロック状固形物の位置調節装置
6によって、本発明の浸漬深さの要件を満足するよう設
定される。なお、本発明のブロック状固形物は溶鋼に対
して耐火度を有する物質であればよく、例えば耐火レン
ガ質またはセラミックスが好ましい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The schematic construction of the apparatus of the present invention will be described with reference to FIGS. 2 shows a rectangular nozzle 1
In the case of using a book, the molten steel 2 of the tundish 1 is controlled by the sliding nozzle device 3 and is poured from the molten steel supply nozzle 4. Block-shaped solid 7 is short side 8
And the molten steel supply nozzle 4 are immersed in the vicinity of the meniscus 5. The immersion depth is set by the position adjusting device 6 for the block-shaped solid so as to satisfy the immersion depth requirement of the present invention. The block-shaped solid material of the present invention may be a substance having a refractory degree to molten steel, and for example, refractory brick or ceramics is preferable.

【0017】図3は2本のノズルによって鋳造するもの
である。図4は本発明装置の側面図である。ブロック状
固形物7はロッド16の先端に取り付けられており、さ
らにロッド16はアーム15に係着され、上下および左
右に回動自在となっている。なお、ブロック状固形物7
は非稼働時は連続鋳造機の近傍にアーム15およびシリ
ンダー14によって回動し逃げた状態で待機可能とする
ことが好ましい。本発明においては、ノズル1本と2本
の効果はほぼ同一であり、ノズルをさらに増加しても基
本的には同一の効果であると言える。次に、本発明装置
の作業手順の一例を説明する。最初連続鋳造のスタート
時には待機しているが、この間で必要に応じて加熱され
て所定の温度とされている。鋳造の開始とともに、その
適当なる時に、前記シリンダーによって降下させ、所定
の位置をストッパー装置等によって決定してブロック状
固形物の鋳型内でのセットが終わる。このストッパー装
置は必要に応じてアームおよびシリンダーの複数箇所に
設置してもよい。
In FIG. 3, casting is performed by using two nozzles. FIG. 4 is a side view of the device of the present invention. The block-shaped solid 7 is attached to the tip of a rod 16, and the rod 16 is attached to an arm 15 so as to be rotatable up and down and left and right. The block-shaped solid 7
When not in operation, it is preferable that the arm 15 and the cylinder 14 can rotate near the continuous casting machine and can stand by in a state of escape. In the present invention, the effects of one nozzle and two nozzles are almost the same, and it can be said that the effects are basically the same even if the number of nozzles is increased. Next, an example of the work procedure of the device of the present invention will be described. Although it is waiting at the start of the first continuous casting, it is heated to a predetermined temperature during this period as needed. With the start of casting, at the appropriate time, the cylinder is lowered and the predetermined position is determined by a stopper device or the like to complete the setting of the block-shaped solid in the mold. This stopper device may be installed at a plurality of positions on the arm and the cylinder, if necessary.

【0018】本発明装置の別の実施例として、図5およ
び図6に示す。図5は1本ノズルの場合であり、図6は
2本ノズルの場合で、ともにブロック状固形物7が固定
支持されているロッドが直接タンデッシュ1に係着懸架
されているタイプであって、この場合には、常にタンデ
ッシュと一体になって移動することになる。また、本発
明装置のブロック状固形物は浸漬するために、メニスカ
ス近傍での溶鋼温度下降に及ぼす影響が危惧されこの温
度降下がもし発生すると、通常カワ張りといわれる現象
が起こり、これによる別の欠陥の原因が生ずる恐れがあ
る。この防止のために本発明ではブロック状固形物の内
部または外表面部に加熱および/または保熱・断熱機能
を有する装置を設け、ブロック状固形物の挿入による溶
鋼の温度低下を極力防止することが可能である。
Another embodiment of the device of the present invention is shown in FIGS. FIG. 5 shows the case of a single nozzle, and FIG. 6 shows the case of a double nozzle, both of which are types in which the rod on which the block-shaped solid material 7 is fixedly supported is directly suspended and attached to the tundish 1. In this case, it will always move together with the tundish. Further, since the block-shaped solid matter of the device of the present invention is soaked, there is a concern that the effect on the molten steel temperature drop in the vicinity of the meniscus may occur, and if this temperature drop occurs, a phenomenon commonly referred to as Kawai tension occurs, which causes another phenomenon. The cause of defects may occur. In order to prevent this, in the present invention, a device having a heating and / or heat retaining / insulating function is provided inside or on the outer surface of the block-shaped solid material to prevent the temperature drop of molten steel due to the insertion of the block-shaped solid material as much as possible. Is possible.

【0019】図7に本発明の実施例でのノズル1本の場
合の実施において、薄鋳片の表面欠陥の発生状況の調査
結果を示す。鋳造条件として、鋼種(中炭素鋼、低炭素
鋼)、サイズ(600 〜1800mm W x 30 〜120mm t)、ノズ
ル(300 〜800 mm W x 10 〜100mm t)、ブロック状固形
物として、深さ(50〜300 mm) 、大きさ(100 〜400mm
W x 10 〜100 mm t) を使用した。この図より、本発明
の実施例では、従来法の反転流が発生していた鋳片の表
面欠陥指数に比較して、顕著な効果を示し良好な表面欠
陥レベルであることを示している。以上に説明したごと
く、本発明によれば従来法の鋳型内での反転流を消失し
て、その結果従来の反転流の発生に比較して薄鋳片の表
面欠陥は極端に改善されることがわかる。
FIG. 7 shows the results of investigations on the occurrence of surface defects on thin cast pieces in the case of using one nozzle in the embodiment of the present invention. As casting conditions, steel type (medium carbon steel, low carbon steel), size (600 to 1800 mm W x 30 to 120 mm t), nozzle (300 to 800 mm W x 10 to 100 mm t), depth as block solid matter (50 to 300 mm), size (100 to 400 mm
W x 10 to 100 mm t) was used. From this figure, it is shown that the embodiment of the present invention shows a remarkable effect and has a good surface defect level as compared with the surface defect index of the cast piece in which the reverse flow of the conventional method is generated. As described above, according to the present invention, the reverse flow in the mold of the conventional method is eliminated, and as a result, the surface defects of the thin cast piece are extremely improved as compared with the generation of the conventional reverse flow. I understand.

【0020】[0020]

【発明の効果】以上説明したとおり、本発明は鋳型内で
の吐出流による反転流を抑止して、またはそれを皆無と
することを可能として、凝固シェルの均一成長を改善し
て、従来、薄鋳片に発生していた表面欠陥を防止せしめ
た薄鋳片を得ることを可能とする連続鋳造方法および装
置を提供することを可能とした。
As described above, according to the present invention, it is possible to suppress the reverse flow due to the discharge flow in the mold or to eliminate the reverse flow, thereby improving the uniform growth of the solidified shell, (EN) It is possible to provide a continuous casting method and apparatus capable of obtaining a thin cast piece in which surface defects that have occurred in the thin cast piece are prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る鋳型内での吐出流と反転流の状況
を示す概略図である。
FIG. 1 is a schematic view showing a situation of a discharge flow and a reverse flow in a mold according to the present invention.

【図2】本発明の実施例に係る1本の矩形ノズルを使用
した場合の浸漬状況を示す概略図である。
FIG. 2 is a schematic view showing the immersion state when using one rectangular nozzle according to the embodiment of the present invention.

【図3】本発明の実施例に係る2本の矩形ノズルを使用
した場合の浸漬状況を示す概略図である。
FIG. 3 is a schematic view showing the immersion state when using two rectangular nozzles according to an embodiment of the present invention.

【図4】本発明のブロック状固形物の固定状況を示す概
略図である。
FIG. 4 is a schematic view showing a fixed state of the block-shaped solid matter of the present invention.

【図5】本発明の別の実施例に係る、1本ノズルの浸漬
状況を示す概略図である。
FIG. 5 is a schematic view showing the immersion state of a single nozzle according to another embodiment of the present invention.

【図6】本発明の別の実施例に係る、2本ノズルの浸漬
状況を示す概略図である。
FIG. 6 is a schematic view showing the immersion state of two nozzles according to another embodiment of the present invention.

【図7】本発明の実施例と従来法の薄鋳片における、表
面欠陥の測定結果のグラフである。
FIG. 7 is a graph showing measurement results of surface defects in thin cast pieces of the example of the present invention and a conventional method.

【図8】従来法の鋳型内での吐出流と反転流の状況を示
す概略図である。
FIG. 8 is a schematic view showing a state of a discharge flow and a reverse flow in a mold of a conventional method.

【符号の説明】[Explanation of symbols]

1…タンデッシュ 2…溶鋼 3…スライディングノズル装置(流量制御装置) 4…溶鋼供給用ノズル 5…メニスカス 6…位置調節装置 7…ブロック状固形物 8…短辺 9…薄鋳片 10…吐出流の主流 11…制御された反転流 12…反転流 13…吐出流の主流 14…シリンダー 15…アーム 16…ロッド DESCRIPTION OF SYMBOLS 1 ... Tundish 2 ... Molten steel 3 ... Sliding nozzle device (flow rate control device) 4 ... Molten steel supply nozzle 5 ... Meniscus 6 ... Position adjusting device 7 ... Block-shaped solid matter 8 ... Short side 9 ... Thin cast piece 10 ... Discharge flow Main flow 11 ... Controlled reverse flow 12 ... Reverse flow 13 ... Discharge flow main flow 14 ... Cylinder 15 ... Arm 16 ... Rod

───────────────────────────────────────────────────── フロントページの続き (72)発明者 梶谷 敏之 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 松尾 慎二 大分県大分市大字西ノ洲1番地 新日本製 鐵株式会社大分製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshiyuki Kajitani 20-1 Shintomi, Futtsu City, Chiba Shin Nippon Steel Co., Ltd. Technology Development Headquarters (72) Inventor Shinji Matsuo Oita-shi, Oita 1 Nishinosu, Shin-Nihon Oita Steel Works, Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 鋳型壁面との間で空間を形成して浸漬す
るフラットノズルによって溶鋼を注湯する薄鋳片の連続
鋳造方法において、メニスカス近傍の該フラットノズル
および該鋳型壁面間で形成する空間に、ブロック状固形
物を浸漬することによって、溶鋼流動を抑止してシェル
厚みが10mm以下の部位でのシェルの均一化をはかる
ことを特徴とする薄鋳片の連続鋳造方法。
1. A method for continuously casting a thin slab, in which molten steel is poured by a flat nozzle which forms a space between a wall surface of a mold and a mold, and a space formed between the flat nozzle near the meniscus and the wall surface of the mold. A continuous casting method for a thin slab, characterized in that the block solid material is dipped in the above to suppress the flow of molten steel so as to make the shell uniform in a region where the shell thickness is 10 mm or less.
【請求項2】 前記ブロック状固形物の浸漬深さが、ノ
ズル〜短辺間距離A−50≦浸漬深さL≦(10/k)
1/n V(mm)、ここでkは凝固係数、Vは鋳造速度、
nは定数、なる関係を満足し、かつブロック状固形物の
厚み≦鋳型厚み−20(mm)である請求項1記載の薄
鋳片の連続鋳造方法。
2. The immersion depth of the block-shaped solid is such that the distance between the nozzle and the short side is A-50 ≦ immersion depth L ≦ (10 / k).
1 / n V (mm), where k is the solidification coefficient, V is the casting speed,
The method for continuous casting of thin cast pieces according to claim 1, wherein n is a constant, and the following relationship is satisfied, and the thickness of the block-shaped solid ≤ mold thickness -20 (mm).
【請求項3】 鋳型壁面との間で空間を形成して浸漬す
るフラットノズルによって溶鋼を注湯する薄鋳片の連続
鋳造装置において、タンデッシュ下部に浸漬量を調整す
る位置調整装置を設け、該位置調整装置の先端部にロッ
ドを介してブロック状固形物を取り付け、メニスカス近
傍の該フラットノズルおよび該鋳型壁面間の距離に比例
して浸漬量を調整しながら、鋳造開始後所定の時期に該
ブロック状固形物を、メニスカス近傍の該フラットノズ
ルおよび該鋳型壁面間で形成する空間に浸漬することを
特徴とする薄鋳片の連続鋳造装置。
3. A continuous casting apparatus for casting a thin slab in which molten steel is poured by a flat nozzle which forms a space between a wall surface of a mold and a basin, and a position adjusting device for adjusting the immersing amount is provided below the tundish, A block-shaped solid material is attached to the tip of the position adjusting device via a rod, and the immersion amount is adjusted in proportion to the distance between the flat nozzle near the meniscus and the mold wall surface while the casting is performed at a predetermined time after the start of casting. A continuous casting apparatus for thin cast pieces, wherein a block-shaped solid material is immersed in a space formed between the flat nozzle near the meniscus and the wall surface of the mold.
【請求項4】 前記ブロック状固形物の厚み≦鋳型厚み
−20(mm)である請求項3記載の薄鋳片の連続鋳造
装置。
4. The continuous casting device for thin cast pieces according to claim 3, wherein the thickness of the block-shaped solid matter ≦ the mold thickness−20 (mm).
【請求項5】 前記ブロック状固形物が加熱装置を具え
る請求項3または4記載の薄鋳片の連続鋳造装置。
5. The continuous casting apparatus for thin cast pieces according to claim 3, wherein the block-shaped solid material comprises a heating device.
【請求項6】 前記ブロック状固形物が保熱または断熱
特性を有する請求項3〜5のいずれかに記載の薄鋳片の
連続鋳造装置。
6. The continuous casting apparatus for a thin slab according to claim 3, wherein the block-shaped solid has heat retaining or heat insulating properties.
JP05246933A 1993-10-01 1993-10-01 Continuous casting method and apparatus for thin slab Expired - Fee Related JP3100498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05246933A JP3100498B2 (en) 1993-10-01 1993-10-01 Continuous casting method and apparatus for thin slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05246933A JP3100498B2 (en) 1993-10-01 1993-10-01 Continuous casting method and apparatus for thin slab

Publications (2)

Publication Number Publication Date
JPH07100596A true JPH07100596A (en) 1995-04-18
JP3100498B2 JP3100498B2 (en) 2000-10-16

Family

ID=17155913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05246933A Expired - Fee Related JP3100498B2 (en) 1993-10-01 1993-10-01 Continuous casting method and apparatus for thin slab

Country Status (1)

Country Link
JP (1) JP3100498B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2656945A1 (en) * 2012-04-26 2013-10-30 SMS Concast AG Fire-proof cast pipe for a mould for strand casting metal melt

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111021673B (en) * 2019-12-24 2021-06-08 广东博智林机器人有限公司 Soaking device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2656945A1 (en) * 2012-04-26 2013-10-30 SMS Concast AG Fire-proof cast pipe for a mould for strand casting metal melt

Also Published As

Publication number Publication date
JP3100498B2 (en) 2000-10-16

Similar Documents

Publication Publication Date Title
CN101472693B (en) Mold flux and continuous casting method using the same
US4715428A (en) Method and apparatus for direct casting of crystalline strip by radiant cooling
JPH07100596A (en) Method and apparatus for continuously casting thin cast slab
US4220191A (en) Method of continuously casting steel
EP0174765B1 (en) Method and apparatus for continuous casting of crystalline strip
EP0174767B1 (en) Method and apparatus for direct casting of crystalline strip by radiantly cooling
JPH07100595A (en) Method for continuously casting thin cast slab
JPH0819842A (en) Method and device for continuous casting
JP2962644B2 (en) Continuous casting of thin slabs
EP0174766B1 (en) Method and apparatus for direct casting of crystalline strip in non-oxidizing atmosphere
JP3387706B2 (en) Method and apparatus for controlling small amount supply of molten metal and alloy
JPH067907A (en) Production of continuously cast slab excellent in surface characteristic
JPH09262644A (en) Method for controlling supply of a little quantity of molten metal and alloy and apparatus therefor
JP2003170259A (en) High speed casting method for medium carbon steel slab
JPH08117938A (en) Method for pouring molten steel in continuous casting of thin slab
JP3726692B2 (en) Continuous casting method
JP2002239696A (en) Secondary cooling method for continuous casting
JPH11170011A (en) Continuous casting tundish
JPS63235054A (en) Method for preventing longitudinal crack in continuously cast slab at high speed casting
JPH11267802A (en) Electromagnetic agitating method in continuous casting
JP2003290888A (en) Mold powder for continuously casting steel and continuous casting method
JP2001025847A (en) Continuous casting method
JPH0857585A (en) Production of stainless steel cast slab having little edge seam flaw
JPH11179498A (en) Continuous casting method
JPH08257694A (en) Mold for continuous casting

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000711

LAPS Cancellation because of no payment of annual fees