JPH07100487A - Method for controlling operation of intermittent aeration-type activated-sludge process - Google Patents

Method for controlling operation of intermittent aeration-type activated-sludge process

Info

Publication number
JPH07100487A
JPH07100487A JP4841393A JP4841393A JPH07100487A JP H07100487 A JPH07100487 A JP H07100487A JP 4841393 A JP4841393 A JP 4841393A JP 4841393 A JP4841393 A JP 4841393A JP H07100487 A JPH07100487 A JP H07100487A
Authority
JP
Japan
Prior art keywords
aeration
time
aeration tank
tank
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4841393A
Other languages
Japanese (ja)
Other versions
JP2960273B2 (en
Inventor
Kazuyuki Tsumura
和志 津村
Koji Yamamoto
康次 山本
Yasunari Sasaki
康成 佐々木
Yutaka Mori
豊 森
Shigeru Hatsumata
繁 初又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Unitika Ltd
Original Assignee
Fuji Electric Co Ltd
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Unitika Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4841393A priority Critical patent/JP2960273B2/en
Publication of JPH07100487A publication Critical patent/JPH07100487A/en
Application granted granted Critical
Publication of JP2960273B2 publication Critical patent/JP2960273B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To eliminate a sensor for control and to operate and control an intermittent aeration method exhibiting stable denitrification and dephosphorization efficiencies only with setting of time by a timer by performing control of aeration and stirring time of the first and the second aeration tanks wholly by means of the timer. CONSTITUTION:After nitrification and absorption of phosphorus are performed under a condition with a dissolved oxygen concn. of 2-3mg/l by setting 30min of the aeration time Ta1 of the first aeration tank 2a, and 70min of the aeration time Ta2 of the second aeration tank 2b, the process is shifted to a stirring process and denitrification and discharge of phosphorus are performed. When the time Ts of one anaerobic-aerobic cycle, 120min, passes through, control by using a timer is performed so as to return both the first and the second aeration tank 2a and 2b to the aeration condition. The aeration time ratio (r) is obtd. by an equation wherein the vol. of the first aeration tank 2a is V1 the vol. of the second aeration tank 2b is V2, the sludge retaining time is (n) days, the specific proliferation rate is mu and Ta1 and Ta2 are set to be (r)>1/(n.u) and Ta1 <=1/2 of Ts.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、下水や生活排水を生物
学的に処理し、特に排水中の窒素・リンを除去するプロ
セスの制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for biologically treating sewage and domestic wastewater, and more particularly to a method for controlling a process for removing nitrogen and phosphorus in wastewater.

【0002】[0002]

【従来の技術】下水や生活排水の処理は有機物除去が主
体であり、活性汚泥法に代表される生物学的処理法が一
般に用いられてきた。しかし近年になって、湖沼等の閉
鎖性水域では富栄養化が大きな問題となり、この原因と
なる窒素、リンの除去が重要となってきた。そのため、
有機物に加えて窒素、リンを除去できる処理法が活性汚
泥法の改良法として開発されてきており、代表的な方法
としてA2 O法、回分式活性汚泥法、間欠曝気式活性汚
泥法(以下、間欠曝気法と略称する)等が挙げられる。
これらの方法では、微生物が好気条件、嫌気条件に交互
におかれ、有機物、窒素、リンの除去がなされる。
2. Description of the Related Art Sewage and domestic wastewater are mainly treated to remove organic substances, and a biological treatment method represented by an activated sludge method has been generally used. However, in recent years, eutrophication has become a major problem in closed water areas such as lakes and marshes, and the removal of nitrogen and phosphorus, which cause this, has become important. for that reason,
A treatment method capable of removing nitrogen and phosphorus in addition to organic matter has been developed as an improved method of the activated sludge method. Typical methods are the A 2 O method, the batch activated sludge method, the intermittent aeration activated sludge method (hereinafter , Abbreviated as intermittent aeration method) and the like.
In these methods, microorganisms are alternately subjected to aerobic and anaerobic conditions to remove organic matter, nitrogen and phosphorus.

【0003】ここで、窒素、リンの除去を目的とする下
水処理について、その原理を簡単に述べておく。下水中
の有機物は、活性汚泥を構成する微生物の食物となって
分解除去される。窒素は好気性の条件下で、硝化菌の働
きによりNH4 −N(アンモニア性窒素)がNO3 −N
(硝酸性窒素)に酸化され、次いで嫌気性の条件下で、
脱窒菌の働きによりNO3 −NがN2 (窒素ガス)に還
元されて除去される。硝化・脱窒の関係を整理すると表
1のようになる。
Here, the principle of the sewage treatment for the purpose of removing nitrogen and phosphorus will be briefly described. Organic matter in the sewage is decomposed and removed as food for the microorganisms that make up the activated sludge. Under aerobic conditions, nitric acid is used to convert NH 4 -N (ammonia nitrogen) into NO 3 -N.
(Nitrate nitrogen), then under anaerobic conditions,
NO 3 -N is reduced to N 2 (nitrogen gas) and removed by the action of the denitrifying bacteria. Table 1 summarizes the relationship between nitrification and denitrification.

【0004】[0004]

【表1】 リンは曝気槽の運転条件を好気性、嫌気性に交互に変え
ることにより、細胞内にリンを多量に蓄積する性質を持
つ活性汚泥をつくり出し、この活性汚泥を利用して除去
する。即ち、この活性汚泥は嫌気性条件でリンを放出
し、好気性条件でリンを吸収する性質があるため、好気
性条件でリンの吸収を行ない、リンを多量に吸収した活
性汚泥を余剰汚泥として処理系から除くことにより脱リ
ンを行なう。この関係は表2のように整理することがで
きる。
[Table 1] By altering the operating conditions of the aeration tank between aerobic and anaerobic, phosphorus creates activated sludge that has the property of accumulating a large amount of phosphorus in the cells, and this activated sludge is used for removal. That is, since this activated sludge has the property of releasing phosphorus under anaerobic conditions and absorbing phosphorus under aerobic conditions, it absorbs phosphorus under aerobic conditions, and the activated sludge that has absorbed a large amount of phosphorus is treated as excess sludge. Dephosphorization is performed by removing it from the processing system. This relationship can be organized as shown in Table 2.

【0005】[0005]

【表2】 このように窒素、リン除去に当たって、好気性、嫌気性
の2条件が不可欠であるが、厳密には脱窒のための嫌気
性条件と脱リンのための嫌気性条件は異なっており、間
欠曝気法では脱窒が終了し、曝気槽内にNO3 −Nに起
因する酸素分子が無くなった後で、活性汚泥からのリン
の放出が起こり、これが次の曝気工程におけるリンの吸
収につながる。
[Table 2] Thus, in removing nitrogen and phosphorus, two conditions, aerobic and anaerobic, are indispensable. Strictly speaking, the anaerobic condition for denitrification and the anaerobic condition for dephosphorization are different, and intermittent aeration According to the method, after denitrification is completed and oxygen molecules due to NO 3 —N disappear in the aeration tank, phosphorus is released from the activated sludge, which leads to absorption of phosphorus in the next aeration step.

【0006】間欠曝気法は好気条件、嫌気条件の比率を
時間的に設定することができ、しかも既存の施設にも比
較的容易に適用されることから注目されている方法であ
る。しかし、間欠曝気法における窒素、リンの除去を効
率良く行うためには、負荷に対応した曝気時間(好気条
件)、攪拌時間(嫌気条件)の制御が重要であり、これ
までいくつかの制御方法が提案されてきた。その例とし
て特公昭63ー35317号公報、および特開昭64ー
70198号公報に記載記されている方法があるが、こ
れらの方法には制御の安定性及び処理水質に問題があっ
た。
[0006] The intermittent aeration method is a method that has attracted attention because it can set the ratio of aerobic conditions and anaerobic conditions in time and can be applied to existing facilities relatively easily. However, in order to efficiently remove nitrogen and phosphorus in the intermittent aeration method, it is important to control the aeration time (aerobic condition) and the agitation time (anaerobic condition) corresponding to the load, and some control has been performed so far. Methods have been proposed. Examples thereof include methods described in JP-B-63-35317 and JP-A-64-70198, but these methods have problems in control stability and treated water quality.

【0007】これに対して、本発明者らは、この問題を
大幅に改善する方法として、排水が流入する第1曝気槽
と、この第1曝気槽に直列に連結した第2曝気槽の二つ
の曝気槽を用い、その後段に最終沈澱池を設けた装置
と、その制御方法を特願平4─146054号により出
願中である。図2は上記特願平4─146054号に開
示した間欠曝気法と、制御システムの概要を説明するた
めの装置の要部構成を示す模式図であり、水および空気
の経路を実線の矢印、制御信号系統を点線の矢印で表わ
してある。
On the other hand, as a method for greatly improving this problem, the present inventors have proposed a first aeration tank into which waste water flows and a second aeration tank connected in series with the first aeration tank. An apparatus in which two aeration tanks are used and a final settling tank is provided in the subsequent stage and a control method therefor are being applied for by Japanese Patent Application No. 4-146054. FIG. 2 is a schematic diagram showing an intermittent aeration method disclosed in the above-mentioned Japanese Patent Application No. 4-146054 and a main part configuration of an apparatus for explaining an outline of a control system, in which water and air paths are shown by solid arrows, The control signal system is represented by a dotted arrow.

【0008】図2において、この装置は主として、下水
1が流入し活性汚泥によって有機物、窒素、リンが除去
される第1曝気槽2aと第2曝気槽2b、重力沈降によ
って活性汚泥が分離され処理水3が得られる最終沈澱池
4、沈降した活性汚泥を第1曝気槽2aに返送する返送
汚泥ポンプ5から構成されている。第1曝気槽2aと第
2曝気槽2bの容積比はおよそ1:1であり、処理水3
の滞留時間の合計は最終沈澱池4も含めて16〜32時
間である。制御系は第1曝気槽2a内の酸化還元電位を
測定する第1のORP計6aと、第2曝気槽2b内の酸
化還元電位を測定する第2のORP計6b、およびこれ
らORP計の値に基づいて第1曝気ブロワ7a、第2曝
気ブロワ7b、第1攪拌ポンプ8a、第2攪拌ポンプ8
bへの制御信号を出力する制御装置9からなっている。
In FIG. 2, the apparatus mainly comprises a first aeration tank 2a and a second aeration tank 2b in which sewage 1 is introduced and organic matter, nitrogen and phosphorus are removed by activated sludge, and activated sludge is separated by gravity sedimentation. It is composed of a final settling tank 4 in which water 3 is obtained, and a returning sludge pump 5 for returning the settled activated sludge to the first aeration tank 2a. The volume ratio of the first aeration tank 2a and the second aeration tank 2b is about 1: 1, and the treated water 3
The total residence time, including the final settling tank 4, is 16 to 32 hours. The control system is a first ORP meter 6a that measures the redox potential in the first aeration tank 2a, a second ORP meter 6b that measures the redox potential in the second aeration tank 2b, and the values of these ORP meters. Based on the first aeration blower 7a, the second aeration blower 7b, the first stirring pump 8a, the second stirring pump 8
It comprises a control device 9 for outputting a control signal to b.

【0009】このような装置系を運転制御するときの基
本的な考え方は、第1曝気槽2aで硝化、脱窒を一定時
間に制御することにより、リン放出時間を確保し、第2
曝気槽2bでは硝化、脱窒を行なうとともに、リンの放
出を防止しつつ制御の1周期を所定の時間に維持するこ
とにある。以下にその具体的な方法を、図3(a)、
(b)を併用参照して説明する。図3(a)、(b)
は、制御を実施中に、任意のタイミングで曝気開始時間
を零点として、時間の経過に伴うORPの変化を示し、
図3(a)は第1曝気槽のORP、図3(b)は第2曝
気槽におけるORPのそれぞれ時間経過に対する線図で
ある。
The basic idea when controlling the operation of such an apparatus system is to control the nitrification and denitrification in the first aeration tank 2a for a fixed time to secure the phosphorus release time, and
In the aeration tank 2b, nitrification and denitrification are performed, and one cycle of control is maintained at a predetermined time while preventing the release of phosphorus. The specific method will be described below with reference to FIG.
It will be described with reference to FIG. 3 (a), (b)
Shows the change of ORP with the passage of time, with the aeration start time being zero at any timing during the control.
FIG. 3A is a diagram showing ORP of the first aeration tank, and FIG. 3B is a diagram of ORP in the second aeration tank with respect to time.

【0010】はじめに、第1曝気槽2aの制御方法につ
いて述べる。硝化とリン吸収を行なう曝気時間をTe
脱窒時間をTf とし、Te とTf の和である時間Tg
あらかじめ設定した時間Tgsと一致するように、曝気時
間Te を調節する。ここで第1のORP計6aのORP
の変化を見ると、脱窒終了後に屈曲点Aが出現してお
り、屈曲点Aを検出することにより時間Tg を測定し、
gsとTg の差に基づいて曝気時間Te を調節する。そ
の結果、後述のように1周期はほぼTds 時間に維持さ
れているため、リン放出時間がTds−Tgsとして確保さ
れることになる。
First, a method of controlling the first aeration tank 2a will be described. The aeration time for nitrification and phosphorus absorption is T e ,
The denitrification time is T f, and the aeration time T e is adjusted so that the time T g, which is the sum of T e and T f , matches the preset time T gs . Here, the ORP of the first ORP total 6a
The bending point A appears after the end of denitrification, and the time T g is measured by detecting the bending point A.
The aeration time T e is adjusted based on the difference between T gs and T g . As a result, since one cycle is maintained at about T ds time as described later, the phosphorus release time is secured as T ds −T gs .

【0011】次に、第2曝気槽2bの制御方法は、硝化
とリン吸収のための曝気時間をTb、脱窒が進行する攪
拌時間をTC とし、Tb とTC の和である時間Td があ
らかじめ設定した時間Tdsと一致するように、曝気時間
b を調節し、併せてTd 時間後1周期が終了したとし
て、第1曝気槽2a、第2曝気槽2bを同時に曝気状態
に復帰させる。これは、第2のORP計6bのORPの
変化から屈曲点Bを検出して時間Td を測定し、Tds
d の差に基づき曝気時間Tb を調節することにより行
なう。この結果、脱窒が終了すると直ちに曝気状態とな
るため、第2曝気槽2bにおいてリンが放出されず、高
い窒素、リン除去率が得られる。
[0011] Next, the control method of the second aeration tank 2b is aeration time for nitrification and phosphorus absorption T b, the stirring time denitrification progresses and T C, is the sum of T b and T C The aeration time T b is adjusted so that the time T d coincides with the preset time T ds, and at the same time, assuming that one cycle is completed after the time T d , the first aeration tank 2a and the second aeration tank 2b are simultaneously operated. Return to aeration. It detects the inflection point B from the change in the ORP of the second ORP meter 6b measures a time T d, is performed by adjusting the aeration period T b on the basis of the difference between the T ds and T d. As a result, since the aeration state is established immediately after the denitrification is completed, phosphorus is not released in the second aeration tank 2b, and a high nitrogen and phosphorus removal rate is obtained.

【0012】[0012]

【発明が解決しようとする課題】以上、本発明者らが出
願中の間欠曝気法における制御方法について説明した
が、この制御方法は窒素、リンの除去率が高く安定性も
良いが、センサーを良好な状態に維持管理するために、
ORP計の洗浄を1〜4週間に1回というかなりの高頻
度で行なう必要があり、例えば、管理者が常駐していな
い処理場に適用するには問題があることが、本発明者ら
のその後の研究で判明した。
The control method in the intermittent aeration method, which the present inventors have applied for, has been described above. This control method has a high nitrogen and phosphorus removal rate and good stability, but a sensor is used. In order to maintain and maintain in good condition,
It is necessary for the ORP meter to be cleaned at a fairly high frequency of once every 1 to 4 weeks, and for example, there is a problem in applying it to a treatment plant where an administrator is not resident. Subsequent research revealed it.

【0013】本発明は上述の点に鑑みてなされたもので
あり、その目的は制御用センサーを不要とし、なおかつ
安定した脱窒、脱リン効率を示す間欠曝気法を、タイマ
ーを用いて時間設定のみで運転制御する方法を提供する
ことにある。
The present invention has been made in view of the above points, and an object thereof is to set a time by using an intermittent aeration method using a timer, which does not require a control sensor and yet exhibits stable denitrification and dephosphorization efficiency. It is to provide a method of controlling driving only.

【0014】[0014]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明による間欠曝気法の運転制御方法は、第
1、第2の二つの曝気槽を用いる間欠曝気法において、
第1曝気槽の容積をV1、第2曝気槽の容積をV2 、曝
気と攪拌からなる嫌気−好気の1周期の時間をT s 、1
周期Ts 内の第1曝気槽の曝気時間をTa1、第2曝気槽
の曝気時間をTa2、このプロセスの汚泥滞留時間(SR
T)をn日、硝化菌の比増殖速度をμとして、曝気時間
比rを、r=(V1 ・Ta1+V2 ・Ta2)/[(V1
2 )・T s ]として求め、rが1/(n・μ)よりも
大きく、かつTa1がTs の1/2以下となるように、T
a1、Ta2を設定し、、第1曝気槽ではTa1時間曝気後攪
拌を行ない、第2曝気槽ではTa2時間曝気後攪拌を行な
い、第1、第2曝気槽ともに曝気、攪拌の合計時間がT
s 時間に達した時点で、2槽同時に攪拌工程から曝気工
程へ移行するタイマー制御を行なうものである。
[Means for Solving the Problems]
Therefore, the operation control method of the intermittent aeration method according to the present invention is
In the intermittent aeration method using the first and second aeration tanks,
The volume of the first aeration tank is V1, The volume of the second aeration tank to V2, Exposure
Anaerobic-aerobic consisting of air and stirring s1
Cycle TsThe aeration time of the first aeration tank in thea1, Second aeration tank
Aeration time of Ta2, Sludge retention time of this process (SR
T) is n days, the specific growth rate of nitrifying bacteria is μ, and aeration time is
The ratio r is expressed by r = (V1・ Ta1+ V2・ Ta2) / [(V1+
V2) ・ T s], R is less than 1 / (n · μ)
Big and Ta1Is TsTo be less than 1/2 of T
a1, Ta2Is set, and T is set in the first aeration tank.a1Time after aeration
Stir and perform T in the second aeration tank.a2Stir after aeration for a period of time
The total time of aeration and stirring in both the first and second aeration tanks is T
sWhen the time is reached, aeration work from the stirring process in two tanks simultaneously
The timer control for shifting to the step is performed.

【0015】[0015]

【作用】本発明の方法は上記のように、第1、第2曝気
槽の曝気、攪拌時間の制御を全てタイマーで行なうもの
であるから、ORP計からの信号を用いる必要がない。
例えば、第1曝気槽の曝気時間Ta1を30分に設定して
硝化、リン吸収を行ない、以後攪拌工程に移行して脱
窒、リン放出を行なう。また、第2曝気槽の曝気時間T
a2を70分に設定して硝化を行ない、以後攪拌工程で脱
窒を進行させ、予め設定した嫌気−好気の1周期時間で
あるTs 120分が経過すると、第1、第2曝気槽とも
に曝気状態に復帰する。曝気時間の設定には一定の条件
があり、第1曝気槽の容積をV1 、第2曝気槽の容積を
2 、このプロセスの汚泥滞留時間(SRT)をn日、
硝化菌の比増殖速度をμとして、曝気時間比r=(V1
・Ta1+V2 ・Ta2)/[(V1 +V2 )・Ts ]とし
て求め、rが1/(n・μ)よりも大きく、かつTa1
s の1/2以下となるように、Ta1、Ta2を設定す
る。rを1/(n・μ)より大きくする理由は、活性汚
泥内に一定量の硝化菌を維持するためであり、Ta1をT
s の1/2以下に設定するのは、硝化、脱窒を早期に終
了させて、第1曝気槽において十分なリン放出時間を確
保するためである。このようなタイマー制御を行なうこ
とにより、センサーを使用することなく、しかも硝化、
脱窒、リン放出、リン吸収の時間を確保することがで
き、良好な窒素、リン除去率を得ることができる。
As described above, in the method of the present invention, the aeration and stirring times of the first and second aeration tanks are all controlled by the timer, so it is not necessary to use the signal from the ORP meter.
For example, the aeration time T a1 of the first aeration tank is set to 30 minutes to perform nitrification and phosphorus absorption, and thereafter, the process shifts to a stirring step to perform denitrification and phosphorus release. Also, the aeration time T of the second aeration tank
When a2 is set to 70 minutes, nitrification is performed, and then denitrification proceeds in the stirring step, and when the preset anaerobic-aerobic cycle time T s 120 minutes has elapsed, the first and second aeration tanks Both return to the aerated state. There are certain conditions for setting the aeration time, the volume of the first aeration tank is V 1 , the volume of the second aeration tank is V 2 , the sludge retention time (SRT) of this process is n days,
Letting the specific growth rate of nitrifying bacteria be μ, the aeration time ratio r = (V 1
・ T a1 + V 2 · T a2 ) / [(V 1 + V 2 ) · T s ] and r is larger than 1 / (n · μ) and T a1 is 1/2 or less of T s. Thus, T a1 and T a2 are set. The reason that r is made larger than 1 / (n · μ) is to maintain a certain amount of nitrifying bacteria in the activated sludge, and T a1 is set to T
The reason why it is set to ½ or less of s is to end nitrification and denitrification early and secure a sufficient phosphorus release time in the first aeration tank. By performing such timer control, without using a sensor, nitrification,
Times for denitrification, phosphorus release, and phosphorus absorption can be secured, and good nitrogen and phosphorus removal rates can be obtained.

【0016】[0016]

【実施例】はじめに、本発明の基本的な考え方について
述べる。本発明者らは、前述の特願平4─146054
号に開示した制御方法を進める過程で、水質、温度等の
条件が比較的安定している場合は、第1、第2曝気槽の
曝気時間はほぼ一定となり、この時間制御を、特にセン
サーを用いることなくタイマーで行なっても、処理水質
は良好に保たれることがわかった。そこで、微生物の増
殖速度の観点からタイマー制御の要件を考察し、後述す
るような条件の下に、タイマーによる時間設定のみで制
御することが有効であるとの結論を得た。
First, the basic idea of the present invention will be described. The inventors of the present invention have described the above-mentioned Japanese Patent Application No. 4-146054.
In the process of advancing the control method disclosed in No. 1, when the conditions such as water quality and temperature are relatively stable, the aeration time of the first and second aeration tanks becomes almost constant. It was found that the quality of the treated water was kept good even if it was carried out with a timer without using it. Therefore, the requirements for timer control were considered from the viewpoint of the growth rate of microorganisms, and it was concluded that it is effective to control only by setting the time under the conditions described below.

【0017】以下、本発明による制御方法の実施例を図
面を参照して説明する。図1は本発明の方法が適用され
る間欠曝気法の装置、および制御システムを説明するた
めの要部構成を示す模式図である。図1の図2と共通す
る部分には同一符号を用いてあり、矢印線の扱いも図2
と同じである。図1において、この装置は図2に示し
た、即ち、特願平4─146054号に開示した装置と
基本的に同じであるが、異なる点は、図2の第1のOR
P計6aと第2のORP計6bを備えていないことにあ
る。
An embodiment of the control method according to the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing a configuration of a main part for explaining an apparatus and a control system of an intermittent aeration method to which the method of the present invention is applied. 2 that are the same as those in FIG. 2 are denoted by the same reference numerals, and the arrow lines are also handled in FIG.
Is the same as. 1, this device is basically the same as the device shown in FIG. 2, that is, the device disclosed in Japanese Patent Application No. 4-160554, except that the first OR of FIG.
The P total 6a and the second ORP total 6b are not provided.

【0018】図1に示す装置系における本発明の運転制
御方法は次の通りである。例えば、第1曝気槽2aの曝
気時間Ta1を30分に設定して、溶存酸素(DO)濃度
2〜3mg/lの条件で硝化、リン吸収を行なった後、
攪拌工程に移行し、脱窒、リン放出を行なう。また、第
2曝気槽の曝気時間Ta2を70分に設定して、同様にD
O濃度2〜3mg/lの条件で硝化を行ない、以後攪拌
工程で脱窒を進行させ、予め設定した嫌気−好気の1周
期の時間Ts である120分が経過した時、第1、第2
曝気槽ともに曝気状態に復帰するようにタイマー制御を
行なう。
The operation control method of the present invention in the system shown in FIG. 1 is as follows. For example, after the aeration time T a1 of the first aeration tank 2a is set to 30 minutes and nitrification and phosphorus absorption are performed under the condition of a dissolved oxygen (DO) concentration of 2 to 3 mg / l,
Transfer to a stirring process to denitrify and release phosphorus. Further, the aeration time T a2 of the second aeration tank is set to 70 minutes, and D is similarly set.
Nitrogenation was performed under the condition of O concentration of 2 to 3 mg / l, and then denitrification was allowed to proceed in the stirring step. When 120 minutes, which was the time T s for one cycle of anaerobic-aerobic cycle set in advance, passed, first, Second
Timer control is performed so that both the aeration tank returns to the aeration state.

【0019】各曝気槽における曝気時間の設定には一定
の条件があり、第1曝気槽2aの容積をV1 、第2曝気
槽2bの容積をV2 、このプロセスの汚泥滞留時間(S
RT)をn日、硝化菌の比増殖速度をμとして、曝気時
間比rをr=(V1 ・Ta1+V2 ・Ta2)/[(V1
2 )・Ts ]として求め、rが1/(n・μ)より大
きく、かつTa1がTs の1/2以下となるようにTa1
a2を設定する。
There are certain conditions for setting the aeration time in each aeration tank, the volume of the first aeration tank 2a is V 1 , the volume of the second aeration tank 2b is V 2 , and the sludge retention time (S
RT) is n days, the specific growth rate of nitrifying bacteria is μ, and the aeration time ratio r is r = (V 1 · T a1 + V 2 · T a2 ) / [(V 1 +
V 2 ) · T s ], and set T a1 and T a2 so that r is larger than 1 / (n · μ) and T a1 is ½ or less of T s .

【0020】rを1/(n・μ)よりも大きくする理由
は、活性汚泥内に一定量の硝化菌を維持するためであ
る。一般に系内に硝化菌を維持する条件は、SRTが硝
化菌の比増殖速度μの逆数1/μより大きいことであ
り、嫌気、好気を含むプロセスでは、全体に占める好気
部分の割合または好気時間の割合をrとして、r・SR
Tが1/μより大きいことが知られている。本発明の方
法を適用する二つの曝気槽を用いた間欠曝気法の場合、
rを曝気時間比と定義すると、r=(V1 ・Ta1+V2
・Ta2)/[(V1 +V2 )・Ts ]として求めること
ができる。したがって、SRTがn日の場合、rを1/
(n・μ)よりも大きくすれば硝化菌を維持することが
できる。なお、μは水温に対応して求められており、文
献から容易に得ることができ、SRTは活性汚泥法の一
般的な管理指標として得られる。
The reason why r is made larger than 1 / (n · μ) is to maintain a certain amount of nitrifying bacteria in the activated sludge. Generally, the condition for maintaining nitrifying bacteria in the system is that the SRT is larger than the reciprocal 1 / μ of the specific growth rate μ of nitrifying bacteria, and in the process including anaerobic and aerobic, the ratio of aerobic part to the whole or R · SR, where r is the aerobic time ratio
It is known that T is larger than 1 / μ. In the case of the intermittent aeration method using two aeration tanks to which the method of the present invention is applied,
If r is defined as the aeration time ratio, r = (V 1 · T a1 + V 2
It can be calculated as T a2 ) / [(V 1 + V 2 ) · T s ]. Therefore, if the SRT is n days, r is 1 /
If it is larger than (n · μ), nitrifying bacteria can be maintained. It should be noted that μ is obtained corresponding to the water temperature, can be easily obtained from the literature, and SRT is obtained as a general management index for the activated sludge method.

【0021】Ta1をTs の1/2以下に設定するのは、
硝化、脱窒を早期に終了させて、第1曝気槽2aにおけ
る十分なリン放出時間を確保するためである。ここで、
SRT=20日、V1 =V2 、水温20℃、μ=0.2
5(1/日)、Ta1=30分、Ta2=70分、Ts =1
20分の条件で計算を行なうと、r=0.42となる。
一方、1/(n・μ)は0.2であるから、r>1/
(n・μ)となって、硝化菌は系内に維持されることと
なる。また、Ta1=30分では通常30分程度で脱窒が
終了するため、第1曝気槽2aにおいて約60分をリン
放出のために確保することができ、これが曝気工程にお
ける良好なリン吸収に役立っている。第2曝気槽2bで
は曝気時間Ta2=70分であり、脱窒に50分が確保さ
れているので、窒素除去は良好である。嫌気−好気の1
周期の時間Ts は、一般に1〜3時間程度とするのが妥
当であり、V1 とV2 の比は1:2〜2:1の範囲が望
ましい。
Setting T a1 to ½ or less of T s is
This is to end the nitrification and denitrification early so as to secure a sufficient phosphorus release time in the first aeration tank 2a. here,
SRT = 20 days, V 1 = V 2 , water temperature 20 ° C., μ = 0.2
5 (1 / day), T a1 = 30 minutes, T a2 = 70 minutes, T s = 1
When calculation is performed under the condition of 20 minutes, r = 0.42.
On the other hand, since 1 / (n · μ) is 0.2, r> 1 /
(N · μ), nitrifying bacteria will be maintained in the system. Further, when T a1 = 30 minutes, denitrification is normally completed in about 30 minutes, and therefore about 60 minutes can be secured for phosphorus release in the first aeration tank 2a, which results in good phosphorus absorption in the aeration step. It is useful. In the second aeration tank 2b, since the aeration time T a2 = 70 minutes and the denitrification of 50 minutes is secured, the nitrogen removal is good. Anaerobic-Aerobic 1
It is appropriate that the period time T s is generally about 1 to 3 hours, and the ratio of V 1 to V 2 is preferably in the range of 1: 2 to 2: 1.

【0022】引き続き、実験結果に基づきさらに具体的
な例を述べる。本発明者らは、し尿、食堂排水、石鹸
水、水道水、酢酸ナトリウム等を混合した調製下水を用
い、図1に示す装置と同等の機能を有する実験装置を使
用して、窒素、リンの同時除去を目的とする運転制御実
験を行なった。表3に実験装置の主要な仕様、および実
験条件を示す。
Next, more specific examples will be described based on the experimental results. The present inventors used the prepared sewage obtained by mixing human waste, canteen drainage, soap water, tap water, sodium acetate, etc., and used an experimental device having the same function as the device shown in FIG. An operation control experiment aimed at simultaneous removal was performed. Table 3 shows the main specifications of the experimental apparatus and the experimental conditions.

【0023】[0023]

【表3】 この実験結果の一例を表4に示す。[Table 3] Table 4 shows an example of the results of this experiment.

【0024】[0024]

【表4】 表4からわかるように、窒素濃度が42mg/lと比較的
高かったため、第2曝気槽2bで脱窒時間が少し不足
し、NO3 −N濃度が若干高めとなっているが、T−N
除去率は86.9%、T−P除去率は93.0%を示
し、処理水質は良好であった。
[Table 4] As can be seen from Table 4, since the nitrogen concentration was relatively high at 42 mg / l, the denitrification time was slightly short in the second aeration tank 2b, and the NO 3 -N concentration was slightly higher, but TN
The removal rate was 86.9%, the TP removal rate was 93.0%, and the treated water quality was good.

【0025】なお、本発明の制御方法では窒素濃度が低
い場合、第2曝気槽2bで脱窒が終了しても、攪拌が継
続することがあるが、第2曝気槽2bの溶存有機物濃度
は低く、リンの放出は僅かであるから、処理水3中のリ
ン濃度が大きく上昇することはない。また、窒素濃度が
高い場合、脱窒が終了しないこともあるが、第1曝気槽
2aでも脱窒がなされており、第2曝気槽2bの窒素濃
度は低いため、処理水3中の窒素濃度が大きく上昇する
ことはない。勿論、水質分析や可搬式のDO計、ORP
計、温度計等を用いて運転状態を検査し、必要に応じて
タイマー設定を調節することが望ましいが、これは活性
汚泥プロセスで一般に行われている管理作業と同様であ
り、本発明による制御方法を適用するに当たって、管理
作業負担が特に増大することはない。
In the control method of the present invention, when the nitrogen concentration is low, stirring may continue even after denitrification in the second aeration tank 2b is completed. However, the dissolved organic matter concentration in the second aeration tank 2b is Since it is low and the amount of phosphorus released is slight, the phosphorus concentration in the treated water 3 does not increase significantly. Further, when the nitrogen concentration is high, the denitrification may not be completed, but since the denitrification is also performed in the first aeration tank 2a and the nitrogen concentration in the second aeration tank 2b is low, the nitrogen concentration in the treated water 3 is low. Does not rise significantly. Of course, water quality analysis, portable DO meter, ORP
It is desirable to inspect the operating condition using a meter, thermometer, etc., and adjust the timer setting if necessary, but this is the same as the management work generally performed in the activated sludge process, and the control according to the present invention In applying the method, the management work load does not increase particularly.

【0026】以上のような運転制御を行うと、制御用セ
ンサーは不要となり、しかも硝化、脱窒、リン放出、リ
ン吸収の時間を確保することができ、良好な窒素、リン
除去率が得られる。本発明による制御方法と、前述した
本発明らが出願中の制御方法のいずれを適用するかにつ
いては、処理水質に関して窒素、リンの規制が非常に厳
しい場合は出願中の制御方法を用いるのがよく、水質規
制が比較的緩やかな場合は、本発明による制御方法を用
いるのが望ましい。
When the above operation control is performed, the control sensor becomes unnecessary, and moreover, the times of nitrification, denitrification, phosphorus release, and phosphorus absorption can be secured, and good nitrogen and phosphorus removal rates can be obtained. . Regarding which of the control method according to the present invention and the control method applied by the present invention described above is applied, when the control of nitrogen and phosphorus regarding the treated water quality is extremely strict, it is preferable to use the control method of the application. Well, when the water quality regulation is relatively loose, it is desirable to use the control method according to the present invention.

【0027】[0027]

【発明の効果】以上、本発明の間欠曝気式活性汚泥法の
運転制御方法に関して説明したが、本発明による方法
は、本発明者らが出願中の特願平4─146054号に
開示した方法を、実用的観点から大幅に改良したもので
ある。即ち、本発明ではセンサーとしてORP計を用い
ることなく、一定の条件を設定したタイマーによる制御
のみで、本発明者らが出願中の制御方法と類似の制御を
行なうことが可能である。特に本発明による制御方法
は、従来のORP計が不要となるため、運転管理者の負
担を大幅に軽減し、しかも硝化、脱窒、リン放出、リン
吸収時間が確保され、良好な処理水質が得られるという
大きな効果が得られる。
Although the operation control method of the intermittent aeration type activated sludge method of the present invention has been described above, the method according to the present invention is the method disclosed in Japanese Patent Application No. 4-146054 filed by the present inventors. From the practical point of view. That is, in the present invention, it is possible to perform the control similar to the control method applied by the present inventors without using an ORP meter as a sensor and only by controlling by a timer that sets a certain condition. In particular, the control method according to the present invention eliminates the need for a conventional ORP meter, thus significantly reducing the burden on the operation manager, and ensuring the nitrification, denitrification, phosphorus release, and phosphorus absorption time, thereby ensuring good treated water quality. The great effect of being obtained is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の運転制御方法が適用される下水処理装
置の要部構成を示す模式図
FIG. 1 is a schematic diagram showing a configuration of main parts of a sewage treatment apparatus to which an operation control method of the present invention is applied.

【図2】本発明者らが出願中の間欠曝気法の制御方法が
適用される下水処理装置の要部構成を示す模式図
FIG. 2 is a schematic diagram showing a main configuration of a sewage treatment apparatus to which the control method of the intermittent aeration method applied by the present inventors is applied.

【図3】本発明者らが出願中の間欠曝気法の制御方法に
おける第1曝気槽、第2曝気槽のORPの変化を示し、
(a)は第1曝気槽のORP、(b)は第2曝気槽のO
RPのそれぞれ時間経過に対する関係線図
FIG. 3 shows changes in ORP of the first aeration tank and the second aeration tank in the control method of the intermittent aeration method which the present inventors applied for,
(A) is ORP of the first aeration tank, (b) is O of the second aeration tank
Relationship diagram of RP with time

【符号の説明】[Explanation of symbols]

1 下水 2a 第1曝気槽 2b 第2曝気槽 3 処理水 4 最終沈殿池 5 返送汚泥ポンプ 7a 第1曝気ブロワ 7b 第2曝気ブロワ 8a 第1攪拌ポンプ 8b 第2攪拌ポンプ 9 制御装置 1 Sewage 2a 1st aeration tank 2b 2nd aeration tank 3 Treated water 4 Final settling tank 5 Return sludge pump 7a 1st aeration blower 7b 2nd aeration blower 8a 1st stirring pump 8b 2nd stirring pump 9 Control device

フロントページの続き (72)発明者 佐々木 康成 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 森 豊 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 初又 繁 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内Front page continued (72) Inventor Yasunari Sasaki 1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd. (72) Inventor Yutaka Mori 1-1 Tanabe Nitta, Kawasaki-ku, Kanagawa-ken Fuji Electric Machinery Co., Ltd. (72) Inventor Shigeru Hatsumata 1-1, Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】第1曝気槽とこの第1曝気槽に直列に連結
した第2曝気槽を備え、これら二つの曝気槽で排水の曝
気を行なう好気状態と、曝気を停止して攪拌を行なう嫌
気状態とを繰り返すことにより、排水中の窒素およびリ
ンを除去する間欠曝気式活性汚泥法の運転制御方法であ
って、第1曝気槽の容積をV1 、第2曝気槽の容積をV
2 、曝気と攪拌からなる嫌気−好気の1周期の時間をT
s 、1周期Ts 内の第1曝気槽の曝気時間をTa1、第2
曝気槽の曝気時間をTa2、このプロセスの汚泥滞留時間
をn日、硝化菌の比増殖速度をμとし、曝気時間比r
を、r=(V1 ・Ta1+V2 ・Ta2)/[(V1
2 )・Ts ]として求め、rが1/(n・μ)より大
きく、かつTa1時間がTs 時間の1/2以下となるよう
にTa1、Ta2を設定し、第1曝気槽ではTa1時間曝気後
攪拌を行ない、第2曝気槽ではTa2時間曝気後攪拌を行
ない、いずれも曝気、攪拌の合計時間がTs に達した時
点で、第1曝気槽、第2曝気槽とも同時に攪拌工程から
曝気工程へ移行させることを特徴とする間欠曝気式活性
汚泥法の運転制御方法。
1. A first aeration tank and a second aeration tank connected in series to the first aeration tank, the aeration state in which waste water is aerated in these two aeration tanks, and aeration is stopped to perform agitation. This is an operation control method of an intermittent aeration type activated sludge method for removing nitrogen and phosphorus in wastewater by repeating the anaerobic state performed, wherein the volume of the first aeration tank is V 1 and the volume of the second aeration tank is V 1 .
2 , T for the time of one cycle of anaerobic-aerobic consisting of aeration and stirring
s , the aeration time of the first aeration tank within one cycle T s is T a1 , the second
The aeration time of the aeration tank is T a2 , the sludge retention time of this process is n days, and the specific growth rate of nitrifying bacteria is μ.
R = (V 1 · T a1 + V 2 · T a2 ) / [(V 1 +
Calculated as V 2) · T s], r is 1 / (n · μ) greater than, and sets the T a1, T a2 as T a1 hours is less than half of T s time, first The aeration tank performs agitation after aeration for T a1 hours and the second aeration tank performs agitation after aeration for T a2 hours, and when the total time of aeration and agitation reaches T s , the first aeration tank and the second aeration tank An operation control method for an intermittent aeration type activated sludge method, characterized in that the aeration tank and the aeration process are simultaneously transferred from the stirring process to the aeration process.
【請求項2】請求項1記載の方法において、第1曝気槽
および第2曝気槽の制御時間の設定をすべてタイマーを
用いて行なうことを特徴とする間欠曝気式活性汚泥法の
運転制御方法。
2. The method according to claim 1, wherein the control time of the first aeration tank and the second aeration tank are all set by using a timer.
JP4841393A 1993-03-10 1993-03-10 Operation control method of intermittent aeration type activated sludge method Expired - Lifetime JP2960273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4841393A JP2960273B2 (en) 1993-03-10 1993-03-10 Operation control method of intermittent aeration type activated sludge method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4841393A JP2960273B2 (en) 1993-03-10 1993-03-10 Operation control method of intermittent aeration type activated sludge method

Publications (2)

Publication Number Publication Date
JPH07100487A true JPH07100487A (en) 1995-04-18
JP2960273B2 JP2960273B2 (en) 1999-10-06

Family

ID=12802625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4841393A Expired - Lifetime JP2960273B2 (en) 1993-03-10 1993-03-10 Operation control method of intermittent aeration type activated sludge method

Country Status (1)

Country Link
JP (1) JP2960273B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036514A (en) * 2006-08-04 2008-02-21 Fuji Electric Systems Co Ltd Wastewater treating method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036514A (en) * 2006-08-04 2008-02-21 Fuji Electric Systems Co Ltd Wastewater treating method

Also Published As

Publication number Publication date
JP2960273B2 (en) 1999-10-06

Similar Documents

Publication Publication Date Title
CN105753156B (en) A kind of town sewage high standard dephosphorization denitrification method
US11820688B2 (en) Water treatment method for simultaneous abatement of carbon, nitrogen and phosphorus, implemented in a sequencing batch moving bed biofilm reactor
JP3150506B2 (en) Wastewater treatment method
CN109879422B (en) Method for realizing short-cut nitrification and denitrification by utilizing high light intensity
JPH0768294A (en) Wastewater treatment method
JP2960273B2 (en) Operation control method of intermittent aeration type activated sludge method
JPS6154295A (en) Denitrifying and dephosphorizing method of sewage
JP3388963B2 (en) Control method of intermittent aeration type activated sludge method
JP3100441B2 (en) Treatment of nitrogen and phosphorus in sewage
KR20020085282A (en) High intergated Biological Nutrient Removal System
CN211712879U (en) Wastewater treatment system based on sequencing batch membrane bioreaction
JPH05192687A (en) Batch type sewage treatment
JPH0312958B2 (en)
JPH09141294A (en) Biological nitrogen removing method
JP2000107786A (en) Control method for intermittent aeration activated sludge process
Karlsson et al. Use of internal carbon from sludge hydrolysis in biological wastewater treatment
JPH0722756B2 (en) Biological denitrification and dephosphorization methods for wastewater
JPH1177079A (en) Control of intermittent aeration type activated sludge
KR0178670B1 (en) Nitrogen removal method of organic wastewater in the water phase corrosion method
JP3257943B2 (en) Wastewater treatment method
JPH10263580A (en) Treatment of waste water
JPH07246395A (en) Treatment of sewage
JPH1015578A (en) Control of batchwise activated sludge method
JP3250934B2 (en) How to control the sewage treatment process
JP2002059191A (en) Method of treating sewage and sludge

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 14

EXPY Cancellation because of completion of term