JPH07100452B2 - Steering force control device for power steering device - Google Patents
Steering force control device for power steering deviceInfo
- Publication number
- JPH07100452B2 JPH07100452B2 JP60129148A JP12914885A JPH07100452B2 JP H07100452 B2 JPH07100452 B2 JP H07100452B2 JP 60129148 A JP60129148 A JP 60129148A JP 12914885 A JP12914885 A JP 12914885A JP H07100452 B2 JPH07100452 B2 JP H07100452B2
- Authority
- JP
- Japan
- Prior art keywords
- flow rate
- valve
- pressure
- steering
- reaction force
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Power Steering Mechanism (AREA)
Description
【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、車速等に応じた制御圧を供給し、ハンドルト
ルクを車速等に応じて変化させる反力機構を備えた動力
舵取装置の操舵力制御装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a power steering system including a reaction force mechanism that supplies a control pressure according to a vehicle speed or the like and changes a steering wheel torque according to the vehicle speed or the like. The present invention relates to a steering force control device.
〈従来の技術〉 車速等に比例した制御圧を反力機構に導入し、動力舵取
装置の操舵力を車速等に応じて制御するものは公知であ
る。この種の装置においては、反力機構に導入する油圧
力を、動力舵取装置と供給ポンプとを結ぶ高圧ラインの
圧油を利用して制御するものである。<Prior Art> It is known that a control pressure proportional to a vehicle speed or the like is introduced into a reaction force mechanism to control the steering force of a power steering device according to the vehicle speed or the like. In this type of device, the oil pressure introduced into the reaction force mechanism is controlled by using the pressure oil in the high pressure line connecting the power steering device and the supply pump.
〈発明が解決しようとする問題点〉 一般にこの種の制御装置は、操舵圧を必要とする低速走
行時には反力機構に加える油圧力を低くし、逆に操舵圧
をほとんど必要としない高速時には高くする必要があ
る。<Problems to be Solved by the Invention> Generally, this type of control device lowers the oil pressure applied to the reaction force mechanism during low-speed traveling that requires steering pressure, and conversely increases it at high speed where steering pressure is almost unnecessary. There is a need to.
従来ではこの反力機構に加える油圧力の制御は、操舵圧
とは関係なく車速等の信号に基づいて電磁圧力制御弁に
て制御している。これによりマニアルトルク−ギヤ発生
圧力特性は高速走行時の特性が低速走行時の特性に対し
て平行移動するのみであり、高速走行時の特性の傾きが
自由に変えられない。そのため、反力油圧が高い状態で
ハンドルを切り込んでいっても操舵力の変化に乏しい問
題がある。理想としては高速走行時の傾きを大きくした
特性とすることである。Conventionally, control of the hydraulic pressure applied to this reaction force mechanism is controlled by an electromagnetic pressure control valve based on a signal such as vehicle speed, regardless of the steering pressure. As a result, the characteristic of the manual torque-gear generated pressure is that the characteristic during high-speed traveling only moves in parallel to the characteristic during low-speed traveling, and the inclination of the characteristic during high-speed traveling cannot be changed freely. Therefore, there is a problem that the steering force does not change much even if the steering wheel is turned while the reaction force hydraulic pressure is high. Ideally, the characteristics should be such that the inclination during high-speed traveling is large.
本発明は、上記従来の問題点に鑑み、高速走行時におけ
るマニアルトルク−ギャ発生圧力特性を、理想とする大
きな傾きとし、操舵力の変化を明確にしたものである。In view of the above conventional problems, the present invention clarifies the change in the steering force by setting the ideal torque-gain generated pressure characteristic during high-speed traveling to an ideally large inclination.
〈問題点を解決するための手段〉 本発明は、入力軸と出力軸との相対回転に基づいて作動
されパワーシリンダへの圧油の給排を制御するサーボ弁
と、車速に応じてハンドルトルクを変化させる反力機構
を備えた動力舵取装置の操舵力制御装置において、供給
ポンプより吐出された一定流量の圧油を前記サーボ弁と
反力機構へ流量制御して分流する分流制御弁と、車速に
応じて前記分流制御弁の分流割合を制御し車速が高くな
るに従って反力機構側への流量を増加させるとともにサ
ーボ弁側への流量を減少させる電磁絞り弁と、前記反力
機構に分流された圧油を絞って低圧側へ逃すための第1
固定絞りと、前記サーボ弁側と反力機構とを連通する通
路中に設けられた第2固定絞りとを備えたものである。<Means for Solving Problems> The present invention is directed to a servo valve that is operated based on relative rotation between an input shaft and an output shaft to control supply and discharge of pressure oil to and from a power cylinder, and a handle torque according to a vehicle speed. In a steering force control device for a power steering apparatus having a reaction force mechanism that changes the flow rate of a constant flow rate of pressure oil discharged from a supply pump to the servo valve and the reaction force mechanism. , An electromagnetic throttle valve that controls the diversion ratio of the diversion control valve according to the vehicle speed to increase the flow rate to the reaction force mechanism side and decreases the flow rate to the servo valve side as the vehicle speed increases, and to the reaction force mechanism. The first for squeezing the shunted pressure oil and releasing it to the low pressure side
A fixed throttle and a second fixed throttle provided in a passage that communicates the servo valve side and the reaction mechanism are provided.
〈作用〉 本発明は、供給ポンプから吐出された一定流量の圧油を
分流制御弁と電磁絞り弁とによって車速に応じた流量割
合で分流する。すなわち、車速が高くなるに従って反力
機構への流量を増加させるとともにサーボ弁側への流量
を減少させるようにサーボ弁と反力機構へ流量制御して
分流し、反力機構側に分流した圧油を第1固定絞りによ
って絞り制御することにより、反力室に車速に応じた圧
力を発生させる。同時にサーボ弁側へ分流される圧油の
流量が車速の上昇に応じて減少されるため、サーボ弁の
感度が鈍くなり、前記車速の上昇に応じて増大する反力
圧力と相まって高速走行時の安定性を向上できる。ま
た、ギヤ発生圧力の上昇に応じてサーボ弁側の圧油を第
2固定絞りを介して反力機構側に導き、反力油圧をギヤ
発生圧力に応じて制御するものである。<Operation> According to the present invention, the pressure oil having a constant flow rate discharged from the supply pump is diverted by the shunt control valve and the electromagnetic throttle valve at a flow rate ratio according to the vehicle speed. That is, as the vehicle speed increases, the flow rate to the reaction mechanism is increased and the flow rate is controlled to the servo valve and the reaction mechanism so as to decrease the flow rate to the servo valve side. By controlling the oil with the first fixed throttle, a pressure corresponding to the vehicle speed is generated in the reaction force chamber. At the same time, the flow rate of the pressure oil shunted to the servo valve side is reduced as the vehicle speed increases, so the sensitivity of the servo valve becomes dull, and in combination with the reaction force pressure that increases with the increase of the vehicle speed, The stability can be improved. Further, the pressure oil on the servo valve side is guided to the reaction force mechanism side via the second fixed throttle according to the increase in the gear generation pressure, and the reaction force hydraulic pressure is controlled according to the gear generation pressure.
〈実施例〉 以下本発明の実施例を図面に基づいて説明する。第1図
において、11は動力舵取装置の本体をなすハウジング本
体、12はハウジング本体11に固着されている弁ハウジン
グである。このハウジング本体11及び弁ハウジング12内
には一対の軸受13,14を介してピニオン軸(出力軸)21
が回転自在に軸承されており、このピニオン軸21にはこ
れと交差する方向に摺動可能なラック軸22のラック歯22
aが噛合している。このラック軸22は、図示しないパワ
ーシリンダのピストンと連結され、その両端は所要の操
縦リンク機構を介して操向車輪に連結されている。<Example> An example of the present invention will be described below with reference to the drawings. In FIG. 1, 11 is a housing main body which is the main body of the power steering apparatus, and 12 is a valve housing fixed to the housing main body 11. A pinion shaft (output shaft) 21 is provided in the housing body 11 and the valve housing 12 via a pair of bearings 13 and 14.
Is rotatably supported, and the pinion shaft 21 has rack teeth 22 of a rack shaft 22 slidable in a direction intersecting with the pinion shaft 21.
a is in mesh. The rack shaft 22 is connected to a piston of a power cylinder (not shown), and both ends of the rack shaft 22 are connected to steering wheels via a required steering link mechanism.
弁ハウジング12の穴内には、制御弁機構30が収納されて
いる。制御弁機構(サーボ弁)30は、操舵軸としての入
力軸23と一体的に形成したロータリ弁部材31と、このロ
ータリ弁部材31の外周に同心的かつ相対的回転可能に嵌
合したスリーブ弁部材32を主要構成部材としている。ロ
ータリ弁部材31は、これと一体の入力軸23に一端を連結
したトーションバー24を介してピニオン軸21に可撓的に
連結されている。また、ロータリ弁部材31の外周には、
図示しないが、その軸方向に伸びる複数のランド部と溝
部とが等間隔にて形成されており、これの溝底部より内
周部に連通する連通路37が穿設されている。入力軸23に
前記内周部と弁ハウジング12内の低圧室38とを連通する
通路39が設けられている。一方スリーブ弁部材32の内周
にも、その軸方向に延びる複数のランド部と溝部が等間
隔にて形成され、各溝部よりスリーブ弁部材32の外周に
開口する分配穴40,41が設けられている。供給ポート35
より供給される圧力流体は、制御弁が中立状態であれば
ランド部両側の溝部に均等に流れ、連通路37及び通路39
を経て低圧室38より排出ポート36に流出する。この場
合、両分配ポート33,34は低圧で等しい圧力となってい
るためパワーシリンダは作動されない。制御弁が中立状
態から偏位すれば、一方の分配穴40又は41には供給ポー
ト35より圧油が供給され、他方の分配穴41又は40にパワ
ーシリンダから排出された流体が流入し、連通路37,通
路39、低圧室38を経て排出ポート36に放出されるように
なっている。A control valve mechanism 30 is housed in the hole of the valve housing 12. The control valve mechanism (servo valve) 30 includes a rotary valve member 31 integrally formed with the input shaft 23 as a steering shaft, and a sleeve valve concentrically and relatively rotatably fitted to the outer periphery of the rotary valve member 31. The member 32 is the main constituent member. The rotary valve member 31 is flexibly connected to the pinion shaft 21 via a torsion bar 24, one end of which is connected to an input shaft 23 which is integral with the rotary valve member 31. Further, on the outer periphery of the rotary valve member 31,
Although not shown, a plurality of lands extending in the axial direction thereof and a groove are formed at equal intervals, and a communication passage 37 communicating from the groove bottom to the inner peripheral portion is formed. The input shaft 23 is provided with a passage 39 that connects the inner peripheral portion and the low pressure chamber 38 in the valve housing 12. On the other hand, on the inner circumference of the sleeve valve member 32, a plurality of lands extending in the axial direction and grooves are formed at equal intervals, and distribution holes 40, 41 are provided which open from the grooves to the outer circumference of the sleeve valve member 32. ing. Supply port 35
When the control valve is in the neutral state, the pressure fluid supplied from the flow passages evenly flows into the grooves on both sides of the land portion, and the communication passage 37 and the passage 39
Through the low pressure chamber 38 to the discharge port 36. In this case, the power cylinders are not operated because both distribution ports 33, 34 have low pressure and equal pressure. When the control valve is deviated from the neutral state, pressure oil is supplied to one of the distribution holes 40 or 41 through the supply port 35, and the fluid discharged from the power cylinder flows into the other distribution hole 41 or 40, and the communication is continued. The gas is discharged to the discharge port 36 via the passage 37, the passage 39, and the low pressure chamber 38.
反力機構は次の通りである。第2図でも示すように、ロ
ータリ弁部材31のピニオン軸21側の端部に半径方向に両
側に突起した突起部50が形成されており、この突起部50
と対応するピニオン軸21には突起部50を入力軸23の軸線
回りに数角度旋回可能に遊嵌する嵌合溝51が形成されて
いる。突起部50の外周面にはテーパ状の係合溝52が形成
されており、制御弁の中立状態で、ピニオン軸21には係
合溝52と対応する位置で半径方向に挿通穴53が形成され
ている。挿通穴53にプランジャ54が半径方向に摺動可能
に挿入され、プランジャ54の後部へ作動油を導くべく環
状溝55が形成されている。この挿通穴53と環状溝55とで
反力室56が構成されている。58は車速等に応じて制御さ
れたポンプからの圧力流体を導入するポート、57は前記
ポート58と環状溝55を連通する通路である。The reaction force mechanism is as follows. As shown also in FIG. 2, the rotary valve member 31 has a protrusion 50 that is formed at the end on the pinion shaft 21 side and protrudes radially to both sides.
The pinion shaft 21 corresponding to the above is formed with a fitting groove 51 into which the protrusion 50 is loosely fitted so as to be rotatable about the axis of the input shaft 23 by several angles. A tapered engagement groove 52 is formed on the outer peripheral surface of the protrusion 50, and in a neutral state of the control valve, an insertion hole 53 is formed in the pinion shaft 21 at a position corresponding to the engagement groove 52 in the radial direction. Has been done. A plunger 54 is inserted into the insertion hole 53 so as to be slidable in the radial direction, and an annular groove 55 is formed to guide the working oil to the rear portion of the plunger 54. The insertion hole 53 and the annular groove 55 form a reaction force chamber 56. Reference numeral 58 is a port for introducing pressure fluid from a pump controlled according to vehicle speed and the like, and 57 is a passage for connecting the port 58 and the annular groove 55.
上記構成の反力機構は、いわゆるラジアル方式であるが
軸線方向に反力を作用させる構成のスラスト方式でもよ
い。The reaction mechanism having the above structure is a so-called radial system, but may be a thrust system having a structure in which a reaction force is applied in the axial direction.
60は自動車エンジンによって駆動される供給ポンプを示
し、61は前記供給ポンプ60から吐出される圧油を一定流
量Qに制御する流量制御弁である。この流量制御弁61
は、メータリングオリフィス62と、このメータリングオ
リフィス62の前後圧に応じて作動され、この前後圧を常
に一定に保持するように低圧側に通じたバイパス通路63
を開口制御するバイパス弁64によって構成されている。
尚、供給ポンプ60が定速モータ駆動式の一定流量を吐出
するものである場合には前記流量制御弁61は不要であ
る。Reference numeral 60 denotes a supply pump driven by an automobile engine, and 61 is a flow rate control valve for controlling the pressure oil discharged from the supply pump 60 to a constant flow rate Q. This flow control valve 61
Is operated according to the front-rear pressure of the metering orifice 62 and the front-rear pressure of the metering orifice 62, and the bypass passage 63 communicating with the low-pressure side so as to always maintain the front-rear pressure constant.
The bypass valve 64 controls the opening of the valve.
The flow rate control valve 61 is not necessary when the supply pump 60 discharges a constant flow rate of a constant speed motor drive type.
80は前記流量制御弁61の高圧側と接続する分流制御弁で
ある。この分流制御弁80は、サーボ弁の供給ポート35に
通路45を介して流量QGの圧油を導入するポート80aと、
反力機構の導入ポート58に流量QGの圧油を通路46を介し
て導入するポート80bとを有し、この流量QG,QRを車速等
に応じて分流制御するために、前記一定流量Qの圧油を
車速等に応じて制御される電磁絞り弁90にて車速に応じ
た流量QRに制御し、この流量QRを分流制御弁80に導き、
前記電磁絞り弁90の前後差圧によって軸動するスプール
81を備えたものである。従って、車速によって電磁絞り
弁90の開度をかえることによって、反力機構に加える流
量QRを、第4図に示すように車速が上昇するに従って増
加するように、逆にサーボ弁に供給される流量QGを車速
が上昇するに従って減少するように、その分流割合を制
御する。Reference numeral 80 is a diversion control valve connected to the high pressure side of the flow control valve 61. This diversion control valve 80 has a port 80a for introducing pressure oil of a flow rate QG into the supply port 35 of the servo valve via the passage 45,
The reaction force mechanism has an introduction port 58 having a port 80b for introducing pressure oil having a flow rate QG through the passage 46, and the constant flow rate QG and QR are controlled to divide the flow rate QG, QR according to the vehicle speed or the like. The pressure oil is controlled to a flow rate QR according to the vehicle speed by an electromagnetic throttle valve 90 that is controlled according to the vehicle speed and the like, and this flow rate QR is guided to the flow dividing control valve 80,
A spool that is axially moved by the differential pressure across the electromagnetic throttle valve 90.
It is equipped with 81. Therefore, by changing the opening degree of the electromagnetic throttle valve 90 according to the vehicle speed, the flow rate QR applied to the reaction mechanism is supplied to the servo valve in reverse so as to increase as the vehicle speed increases as shown in FIG. The diversion rate is controlled so that the flow rate QG decreases as the vehicle speed increases.
前記電磁絞り弁90は、第3図に示すように、絞り通路91
と、この絞り通路91の開度を調節する絞り弁棒93と、こ
の絞り弁棒93を車速等の信号によって変化する電流値が
供給されて軸方向に変位させるソレノイド92とにより構
成されている。この電磁絞り弁90は、車速あるいはハン
ドル操舵角等に応じた電流値Vがソレノイド92に供給さ
れ、この電流値Vに応じて電磁絞り弁90の開度を変化
し、流量QRを制御するものである。As shown in FIG. 3, the electromagnetic throttle valve 90 has a throttle passage 91.
And a throttle valve rod 93 for adjusting the opening degree of the throttle passage 91, and a solenoid 92 for axially displacing the throttle valve rod 93 in the axial direction by supplying a current value that changes according to a signal such as a vehicle speed. . The solenoid throttle valve 90 is supplied with a current value V corresponding to the vehicle speed or the steering angle of the steering wheel to the solenoid 92, changes the opening of the solenoid throttle valve 90 according to the current value V, and controls the flow rate QR. Is.
さらに、前記分流制御弁80のポート80bと反力機構の導
入ポート58とに通じている通路46に、低圧側に通じてい
る第1固定絞り70を接続する。Further, the first fixed throttle 70 communicating with the low pressure side is connected to the passage 46 communicating with the port 80b of the diversion control valve 80 and the introduction port 58 of the reaction force mechanism.
また、前記分流制御弁80のポート80aとサーボ弁の供給
ポート35とに通じている通路45と前記反力機構側の通路
46との間にバイパス通路47を設け、このバイパス通路47
に第2固定絞り71を設けたものである。Further, the passage 45 communicating with the port 80a of the flow dividing control valve 80 and the supply port 35 of the servo valve and the passage on the reaction force mechanism side.
A bypass passage 47 is provided between the bypass passage 47 and
The second fixed diaphragm 71 is provided in the.
次に上記構成の動作について説明する。供給ポンプ60に
より吐出された圧油を流量制御弁61にて一定流量Qに制
御する。この一定流量Qに制御された圧油を分流制御弁
80によってサーボ弁側への流量QGと反力機構への流量QR
とに分流制御する。Next, the operation of the above configuration will be described. The flow rate control valve 61 controls the pressure oil discharged from the supply pump 60 to a constant flow rate Q. The pressure oil controlled to this constant flow rate Q is a diversion control valve.
Flow rate QG to servo valve side and flow rate QR to reaction force mechanism by 80
And shunt control.
前記反力機構への分流流量QRは電磁絞り弁90により第4
図で示すように車速VがV1〜V4と増大するに従ってQR1
〜AR4と比例的に増量する。この分流流量QR1〜QR4の変
化に伴い、サーボ弁側の流量QGは逆比例的に分流制御さ
れる。また、反力機構側に分流された流量QRは第1固定
絞り70を介して低圧側へドレンする。The divided flow rate QR to the reaction force mechanism is controlled by the electromagnetic throttle valve 90
As the vehicle speed V increases from V1 to V4, QR1
~ Increase in proportion to AR4. The flow rate QG on the servo valve side is inversely proportionally divided according to the change in the divided flow rates QR1 to QR4. Further, the flow rate QR diverted to the reaction force mechanism side is drained to the low pressure side via the first fixed throttle 70.
これにより、車速が低い状態では電磁絞り弁90により制
御された流量QRが第1固定絞り70よりほとんど抵抗なく
ドレンされるので、反力油圧PRが低くなり、ハンドル操
作により操舵軸24が回転すると、プランジャ54は容易に
押し上げられ、スリーブ弁部材32とロータリ弁部材31と
が相対回転し、マニアルトルクTMに対するギヤ発生圧力
PGの変化は第7図の実線で示す特性となり、据切り並び
に低速時におけるハンドル操作は軽快となる。As a result, when the vehicle speed is low, the flow rate QR controlled by the electromagnetic throttle valve 90 is drained with almost no resistance from the first fixed throttle 70, so that the reaction force hydraulic pressure PR becomes low and the steering shaft 24 rotates when the steering wheel is operated. , The plunger 54 is easily pushed up, the sleeve valve member 32 and the rotary valve member 31 rotate relative to each other, and the gear generation pressure against the manual torque TM is increased.
The change in PG has the characteristics shown by the solid line in Fig. 7, and steering wheel operation at stationary and low speed becomes light.
車速が高速になると、車速に応じて制御される電磁絞り
弁90により反力機構側への分流流量QRはQR1〜QR4と増加
する。この流量QRの増加により第1固定絞り70の作用で
反力油圧PRが高められ、これによりプランジャ54は反力
油圧PRに応じた力で係合溝52に押し付けられ、スリーブ
弁部材32とロータリ弁部材31とを相対回転させるマニア
ルトルクは車速に応じて増大し、ハンドル操作は重くな
る。When the vehicle speed becomes high, the shunt flow rate QR to the reaction mechanism side increases to QR1 to QR4 by the electromagnetic throttle valve 90 controlled according to the vehicle speed. Due to the increase in the flow rate QR, the reaction force hydraulic pressure PR is increased by the action of the first fixed throttle 70, whereby the plunger 54 is pressed against the engagement groove 52 with a force corresponding to the reaction force hydraulic pressure PR, and the sleeve valve member 32 and the rotary The manual torque for relatively rotating the valve member 31 increases in accordance with the vehicle speed, and the steering wheel operation becomes heavy.
一方、サーボ弁に供給される分流流量QGは、車速が高速
になると、前記反力機構側への分流流量QRと逆比例的に
減少するため、高速時にはサーボ弁の感度が鈍くなり、
ハンドル操作は重くなる。On the other hand, the shunt flow rate QG supplied to the servo valve decreases in inverse proportion to the shunt flow rate QR to the reaction force mechanism side when the vehicle speed becomes high, so the sensitivity of the servo valve becomes dull at high speeds,
Handle operation becomes heavy.
また、ある車速において、ハンドル操作に伴ってギヤ発
生圧力PGが上昇すると、サーボ弁側の通路45より第2固
定絞り71を介して反力機構側の通路46にギヤ発生圧力に
応じた流量gの圧油がバイパス通路47より流れる。従っ
て、反力機構側の流量QR+バイパス流量g=制御流量QC
は電磁絞り弁90の制御による反力油圧PRに応じ、かつギ
ヤ発生圧力PGに応じて第5図のように制御される。従っ
て、高速時にハンドルを操作した場合には、反力油圧PR
は上記制御流量QC=QR+gで第6図に示すように制御さ
れ、マニアルトルク−ギヤ発生圧力の特性は第7図の点
線で示すように大きく傾き、操舵時の手ごたえ感を明確
にする。Further, at a certain vehicle speed, when the gear generation pressure PG rises in accordance with the steering wheel operation, the flow rate g corresponding to the gear generation pressure from the servo valve side passage 45 to the reaction force mechanism side passage 46 via the second fixed throttle 71. Pressure oil flows from the bypass passage 47. Therefore, the flow rate QR on the reaction mechanism side + bypass flow rate g = control flow rate QC
Is controlled as shown in FIG. 5 according to the reaction force hydraulic pressure PR controlled by the electromagnetic throttle valve 90 and according to the gear generation pressure PG. Therefore, when the handle is operated at high speed, the reaction force hydraulic pressure PR
Is controlled by the above-mentioned control flow rate QC = QR + g as shown in FIG. 6, and the characteristic of the manual torque-gear generated pressure is greatly inclined as shown by the dotted line in FIG. 7 to make the feeling of steering feel clear.
〈発明の効果〉 以上のように本発明によると、供給ポンプからの一定流
量の圧油を分流制御弁と電磁絞り弁とによって、車速が
高くなるに従って反力機構側への流量を増加させるとと
もにサーボ弁側への流量を減少させるようにサーボ弁と
反力機構とに分流し、反力機構に分流した圧油を低圧側
に通じた第1固定絞りによって絞り制御するとともに、
ギヤ発生圧力の上昇に応じ第2固定絞りを介してサーボ
弁側より反力機構側に圧油を導入するようにした構成で
あるので、高速走行時には、反力機構の反力圧力の増大
とサーボ弁への流量の減少による感度の低下とが相まっ
て高速安定性を従来のものに比して著しく向上できると
ともに、反力圧力は操舵圧に影響されることなく車速に
応じた最適な圧力に制御できるようになり、しかも第2
固定絞りの作用によって高速走行での操舵時の手ごたえ
感を増し、操縦安定性を向上できる効果がある。<Effects of the Invention> As described above, according to the present invention, the flow rate of pressure oil from the supply pump to the reaction force mechanism side is increased as the vehicle speed increases by the flow dividing control valve and the electromagnetic throttle valve. The flow is divided into the servo valve and the reaction force mechanism so as to reduce the flow rate to the servo valve side, and the pressure oil divided in the reaction force mechanism is throttle-controlled by the first fixed throttle communicating with the low pressure side.
Since the pressure oil is introduced from the servo valve side to the reaction force mechanism side via the second fixed throttle in response to the increase in the gear generation pressure, the reaction force pressure of the reaction force mechanism is increased during high speed traveling. Higher-speed stability can be significantly improved compared to the conventional one in combination with the decrease in sensitivity due to the decrease in the flow rate to the servo valve, and the reaction force pressure can be adjusted to the optimum pressure according to the vehicle speed without being affected by the steering pressure. Control, and second
By the action of the fixed throttle, there is an effect that the feeling of handling when steering at high speed is increased and the steering stability is improved.
第1図は本発明の一実施例を示す動力舵取装置の断面図
に圧油系統図を併図した図、第2図は第1図II−II線断
面図、第3図は電磁絞り弁の要部断面図、第4図は車速
によって制御される分流流量QRの流量変化を示すグラ
フ、第5図はギヤ発生圧力による制御流量QCの変化を示
すグラフ、第6図はギヤ発生圧力による反力油圧の変化
を示すグラフ、第7図は操舵特性の曲線図である。 21……ピニオン軸、23……入力軸、47……バイパス通
路、56……反力室、80……分流制御弁、90……電磁絞り
弁、70……第1固定絞り、71……第2固定絞り。FIG. 1 is a sectional view of a power steering apparatus showing an embodiment of the present invention with a hydraulic oil system diagram, FIG. 2 is a sectional view taken along line II-II of FIG. 1, and FIG. 3 is an electromagnetic throttle. Fig. 4 is a cross-sectional view of the main part of the valve, Fig. 4 is a graph showing the change in the divided flow rate QR controlled by the vehicle speed, Fig. 5 is a graph showing the change in the control flow rate QC due to gear generation pressure, and Fig. 6 is the gear generation pressure FIG. 7 is a curve diagram of the steering characteristic, showing a change in the reaction force hydraulic pressure due to. 21 …… Pinion shaft, 23 …… Input shaft, 47 …… Bypass passage, 56 …… Reaction chamber, 80 …… Diversion control valve, 90 …… Electromagnetic throttle valve, 70 …… First fixed throttle, 71 …… Second fixed aperture.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭51−132541(JP,A) 特開 昭52−106528(JP,A) 特開 昭52−109230(JP,A) 特開 昭53−87433(JP,A) 特開 昭53−4928(JP,A) 実開 昭61−44365(JP,U) 実開 昭52−116837(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-51-132541 (JP, A) JP-A-52-106528 (JP, A) JP-A-52-109230 (JP, A) JP-A-53- 87433 (JP, A) JP 53-4928 (JP, A) Actually opened 61-44365 (JP, U) Actually opened 52-116837 (JP, U)
Claims (1)
動されパワーシリンダへの圧油の給排を制御するサーボ
弁と、車速に応じてハンドルトルクを変化させる反力機
構を備えた動力舵取装置の操舵力制御装置において、供
給ポンプより吐出された一定流量の圧油を前記サーボ弁
と反力機構へ流量制御して分流する分流制御弁と、車速
に応じて前記分流制御弁の分流割合を制御し車速が高く
なるに従って反力機構側への流量を増加させるとともに
サーボ弁側への流量を減少させる電磁絞り弁と、前記反
力機構に分流された圧油を絞って低圧側へ逃すための第
1固定絞りと、前記サーボ弁側と反力機構とを連通する
通路中に設けられた第2固定絞りとを備えた動力舵取装
置の操舵力制御装置。1. A servo valve which is operated based on relative rotation between an input shaft and an output shaft to control supply and discharge of pressure oil to and from a power cylinder, and a reaction force mechanism which changes a steering wheel torque according to a vehicle speed. In a steering force control device of a power steering device, a diversion control valve that diverts a constant flow rate of pressure oil discharged from a supply pump to the servo valve and a reaction mechanism, and diverts the diversion control valve according to a vehicle speed. The electromagnetic throttle valve that controls the flow shunt ratio to increase the flow rate to the reaction force mechanism side and decreases the flow rate to the servo valve side as the vehicle speed increases, and the pressure oil shunted to the reaction force mechanism is throttled to reduce the low pressure. A steering force control device for a power steering system, comprising: a first fixed throttle for releasing to the side; and a second fixed throttle provided in a passage that communicates the servo valve side with a reaction mechanism.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60129148A JPH07100452B2 (en) | 1985-06-15 | 1985-06-15 | Steering force control device for power steering device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60129148A JPH07100452B2 (en) | 1985-06-15 | 1985-06-15 | Steering force control device for power steering device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61287863A JPS61287863A (en) | 1986-12-18 |
JPH07100452B2 true JPH07100452B2 (en) | 1995-11-01 |
Family
ID=15002321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60129148A Expired - Lifetime JPH07100452B2 (en) | 1985-06-15 | 1985-06-15 | Steering force control device for power steering device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07100452B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014047874A1 (en) * | 2012-09-28 | 2014-04-03 | 中联重科股份有限公司 | Proportional steering valve, proportional steering hydraulic circuit, proportional steering system and vehicle |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51132541A (en) * | 1974-08-13 | 1976-11-17 | Honda Motor Co Ltd | Power steering device for car |
JPS6144365U (en) * | 1984-08-27 | 1986-03-24 | トヨタ自動車株式会社 | Vehicle power steering device |
-
1985
- 1985-06-15 JP JP60129148A patent/JPH07100452B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS61287863A (en) | 1986-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61247575A (en) | Steering force control device in power steering device | |
JPH0645343B2 (en) | Steering force control device for power steering device | |
JPH0784180B2 (en) | Steering force control device for power steering device | |
JPH07100452B2 (en) | Steering force control device for power steering device | |
JPH0624301Y2 (en) | Steering force control device for power steering device | |
JPS61275062A (en) | Steerability control device for power steering device | |
JPH0619426Y2 (en) | Steering force control device for power steering device | |
JPH0624955B2 (en) | Steering force control device for power steering device | |
JPS638073A (en) | Steering force controlling unit of power steering device | |
JPH0624302Y2 (en) | Steering force control device for power steering device | |
JPH036546Y2 (en) | ||
JPH0624959B2 (en) | Steering force control device for power steering device | |
JPH0628378Y2 (en) | Steering force control device for power steering device | |
JPS62279170A (en) | Steering force control device for power steering device | |
JPS61155063A (en) | Steering power control unit for power steering device | |
JPS6299262A (en) | Steering force control device of power steering device | |
JPS61191470A (en) | Steering force control device of power steering gear | |
JPH0624957B2 (en) | Steering force control device for power steering device | |
JPH0624960B2 (en) | Steering force control device for power steering device | |
JP2606718B2 (en) | Variable solenoid throttle valve | |
JPH07121703B2 (en) | Steering force control device for power steering device | |
JPS6325175A (en) | Steering force control device for power steering device | |
JPS61218481A (en) | Steering force controller for power steering | |
JPH0619420Y2 (en) | Steering force control device for power steering device | |
JPS62139755A (en) | Steering force control device for power steering apparatus |