JPH0699336B2 - Method for producing methacrolein and / or methacrylic acid - Google Patents

Method for producing methacrolein and / or methacrylic acid

Info

Publication number
JPH0699336B2
JPH0699336B2 JP62048701A JP4870187A JPH0699336B2 JP H0699336 B2 JPH0699336 B2 JP H0699336B2 JP 62048701 A JP62048701 A JP 62048701A JP 4870187 A JP4870187 A JP 4870187A JP H0699336 B2 JPH0699336 B2 JP H0699336B2
Authority
JP
Japan
Prior art keywords
butanol
catalyst
reaction
temperature
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62048701A
Other languages
Japanese (ja)
Other versions
JPS63216835A (en
Inventor
範和 吉田
進 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP62048701A priority Critical patent/JPH0699336B2/en
Publication of JPS63216835A publication Critical patent/JPS63216835A/en
Publication of JPH0699336B2 publication Critical patent/JPH0699336B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、t−ブタノールを出発原料とし触媒の存在下
気相接触酸化によって、メタクロレイン及び/又はメタ
クリル酸を得、更には第二段気相接触酸化によりメタク
リル酸を得る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention uses t-butanol as a starting material to obtain methacrolein and / or methacrylic acid by gas phase catalytic oxidation in the presence of a catalyst. The present invention relates to a method for obtaining methacrylic acid by vapor-phase catalytic oxidation.

(従来の技術) イソブテンあるいはt−ブタノールを原料に固定床接触
酸化反応によりメタクロレイン等を製造する方法は既に
よく知られており、そのための優れた触媒も多数提案さ
れている。
(Prior Art) A method of producing methacrolein or the like by a fixed bed catalytic oxidation reaction using isobutene or t-butanol as a raw material is already well known, and many excellent catalysts therefor have been proposed.

例えば、特開昭56−12331、同56−46832、同60−16383
0、同58−59934、同55−36000、特公昭59−35897等が挙
げられる。
For example, JP-A-56-12331, JP-A-56-46832, and JP-A-60-16383.
0, 58-59934, 55-36000, and JP-B-59-35897.

イソブテン等を原料にメタクロレインを生成する反応は
発熱反応であり、上記の触媒を使用しても、ある程度の
一酸化炭素、二酸化炭素等の副生物を生成する。
The reaction of producing methacrolein from isobutene or the like is an exothermic reaction, and by-products such as carbon monoxide and carbon dioxide are produced to some extent even when the above catalyst is used.

特に一酸化炭素や二酸化炭素の反応熱は非常に大きく、
全体としての酸化反応工程は大きな発熱を伴うことにな
り、この反応熱を効果的に除去しないと、触媒床の温度
が過度に上昇してしまい(通常の最適な反応温度より数
10〜100℃以上)目的生成物であるメタクロレイン等の
収率の低下をまねく、またこのように反応温度が上昇す
れば、更に一酸化炭素、二酸化炭素の副生量が増大し、
ますます反応温度が上昇してついには暴走反応状態とな
ってしまう。あるいは暴走反応状態とならないまでも、
このように通常の反応温度より高い温度で操作すれば、
触媒の劣化を早め、充分な触媒寿命を維持できなくな
る。このため上記のような大きな発熱を伴う接触酸化反
応においては、多管式の熱交換器型反応器を採用し、管
内に接触を充填、反応管の外側には反応温度より低い温
度の冷媒体を流して効果的に反応熱を除去することが広
く行われている。
Especially the heat of reaction of carbon monoxide and carbon dioxide is very large,
The overall oxidation reaction process involves a large amount of heat generation, and if this reaction heat is not effectively removed, the temperature of the catalyst bed will rise excessively (less than the normal optimum reaction temperature).
(10 to 100 ° C. or higher) leads to a decrease in the yield of methacrolein, which is the target product, and when the reaction temperature rises in this way, the amount of carbon monoxide and carbon dioxide by-products increases,
The reaction temperature rises more and more and the runaway reaction state is finally reached. Or even if it does not become a runaway reaction state,
If you operate at a higher temperature than the normal reaction temperature,
It will accelerate the deterioration of the catalyst and make it impossible to maintain a sufficient catalyst life. Therefore, in the catalytic oxidation reaction with large heat generation as described above, a multi-tube heat exchanger type reactor is adopted, the contact is filled in the tube, and the refrigerant body having a temperature lower than the reaction temperature is provided outside the reaction tube. It is widely practiced to effectively remove the heat of reaction by flowing.

酸化反応の制御はこのように主に冷媒体の温度を制御す
ることによって行われているのが通常であり、又冷媒体
が除去した反応熱は、更に別に熱交換器を設置しておい
て、この熱交換器を用いてスチームを発生させるなど効
果的に回収され、利用されているのが一般的である。
The control of the oxidation reaction is usually performed by mainly controlling the temperature of the refrigerant body in this way, and the heat of reaction removed by the refrigerant body has a heat exchanger installed separately. Generally, it is effectively recovered and used by generating steam using this heat exchanger.

(発明が解決しようとしている問題点) 従来の方法によれば、酸化反応工程において使用する触
媒はt−ブタノール、イソブテンのいずれにも使用で
き、転化率あるいは選択率などの反応成績にはほとんど
差がないとされている。またt−ブタノールのみを対象
にした触媒もいくつか報告されているが、たとえば特公
昭59−10332はその例である。
(Problems to be Solved by the Invention) According to the conventional method, the catalyst used in the oxidation reaction step can be used for both t-butanol and isobutene, and there is almost no difference in the reaction results such as conversion or selectivity. There is no. Also, some catalysts targeting only t-butanol have been reported, for example, JP-B-59-10332.

しかしながら、t−ブタノールを対象にした触媒はそれ
らの報告によると転化率が低いかあるいは触媒寿命に関
する反応時間データの記述がない。したがって、イソブ
テンあるいはt−ブタノールいずれもイタクロレイン製
造の原料とし得る触媒が工業的に採用されている例が多
いが、しかしながら、これらについても報告されている
原料はほとんどがイソブテンであり、t−ブタノールに
ついての報告は少ない。
However, the catalysts targeted for t-butanol have low conversion or no description of reaction time data on catalyst life according to their reports. Therefore, there are many examples in which a catalyst that can be used as a raw material for the production of itacrolein is isobutene or t-butanol. However, most of the raw materials reported for these are isobutene and t-butanol. There are few reports about.

メタクロレイン製造の酸化反応工程においてt−ブタノ
ールを原料とする場合とイソブテンを原料とする場合を
比較すると、供給方法はほとんど同じで、特別に配慮さ
れていることは、t−ブタノールが常温常圧の状態では
液体状態であるため、t−ブタノールを原料とするとき
は、酸化反応器に供給する前に、気化させるための気化
器が設置されているということぐらいである。
Comparing the case of using t-butanol as a raw material and the case of using isobutene as a raw material in the oxidation reaction step of methacrolein production, the supply methods are almost the same, and the fact that t-butanol is at room temperature and atmospheric pressure is specially considered. Since the state is a liquid state, when t-butanol is used as a raw material, it is only that a vaporizer for vaporizing is installed before supplying it to the oxidation reactor.

このように気化したt−ブタノールはイソブテンとなん
ら区別されることなく、酸素あるいは酸素を含むガスと
混合されて、酸化反応器に供給される。又通常は上記提
案された触媒を用いてもいずれの触媒も250℃以上、多
くは300℃以上でその性能を発揮するために反応原料ガ
スを適当な温度(最高は冷媒体の温度)まで加熱、昇温
するための予熱層が反応管の触媒床の前に設けられてい
る。
The t-butanol thus vaporized is mixed with oxygen or a gas containing oxygen and supplied to the oxidation reactor without any distinction from isobutene. Normally, even if the above-mentioned catalysts are used, the reaction raw material gas is heated to an appropriate temperature (the maximum temperature of the refrigerant body) in order to exert its performance at 250 ° C or higher, and most at 300 ° C or higher. A preheating layer for raising the temperature is provided in front of the catalyst bed of the reaction tube.

この予熱層に使用される充填物としては、通常不活性な
粒体を選択し、その充填長を変えることで目的の適当な
温度まで原料ガスの加熱、昇温をおこなっている(予熱
層の長さは、原料ガスの昇温目的温度、触媒床に対する
空間速度その他圧力など操作条件で決まる)。
As the packing used in this preheating layer, normally, an inactive granular material is selected, and the charging length is changed to heat and raise the temperature of the raw material gas to an appropriate temperature (the preheating layer is heated). The length is determined by operating conditions such as the target temperature for raising the raw material gas, the space velocity with respect to the catalyst bed, and other pressures).

本発明者らは、t−ブタノールを原料として研究をすす
めてきたが、イソブテンを原料とするときと同様になる
べく不活性な、例えばα−アルミナ96%−シリカ4%か
ら成る粒対(比表面積0.01m2/g以下)を予熱層に充填し
て酸化反応の研究にとりくんでいた。
The inventors of the present invention have conducted research using t-butanol as a raw material. However, as in the case of using isobutene as a raw material, a particle pair (specific surface area) composed of, for example, α-alumina 96% -4% silica is used. (0.01 m 2 / g or less) was filled in the preheating layer to study the oxidation reaction.

しかしながらt−ブタノールを供給原料とした場合とイ
ソブテンを原料とした場合とを比較すると、いずれの場
合も同一時に調製された性能的には同一の触媒を使用
し、なおかつ同一操作条件で供給原料ガスは同一温度ま
で予熱層で加熱昇温して触媒床に接触させていたにもか
かわらず、両者の触媒寿命に差があることが判明した。
However, when comparing the case where t-butanol is used as the feedstock and the case where isobutene is used as the feedstock, in both cases, the same catalysts used in terms of performance prepared at the same time are used, and the feedstock gas is used under the same operating conditions. Although it was heated to the same temperature in the preheating layer and contacted with the catalyst bed, it was found that there is a difference in the catalyst life between the two.

(問題点を解決するための手段) 本発明者らはこれらの触媒寿命の差がいずれに起因して
いるのか、鋭意研究をかさねた結果、t−ブタノールが
接触脱水分解を受けてイソブテンと水に分解する現象が
触媒寿命に大きく関わっていることをつきとめた。すな
わち、予めt−ブタノールをイソブテンと水に脱水分解
して酸化反応器に供給すればイソブテンを原料としたと
きとメタクロレイン等の収率も触媒の寿命も全く同じで
あるのに対し、t−ブタノールを分解することなく酸化
反応器に供給した場合は、明らかに触媒活性の経時的変
化が認められ、活性の低下が著しく速いことがわかっ
た。すなわち、予めt−ブタノールをイソブテンと水に
脱水分解して酸化反応触媒に供給したほうが、t−ブタ
ノールを分解することなく酸化反応触媒に供給するより
も触媒寿命が長くなることを見出し、本発明を完成する
に至った。
(Means for Solving the Problems) The inventors of the present invention have conducted extensive studies as to which of the differences in the catalyst lifespan is caused, and as a result, t-butanol undergoes catalytic dehydration decomposition to give isobutene and water. We have found that the phenomenon of decomposition into a large amount is greatly related to the life of the catalyst. That is, if t-butanol is dehydrated and decomposed into isobutene and water in advance and supplied to the oxidation reactor, the yield of methacrolein and the like and the life of the catalyst are exactly the same as when isobutene is used as a raw material. When butanol was supplied to the oxidation reactor without being decomposed, a change in the catalytic activity with time was clearly observed, and it was found that the decrease in the activity was extremely fast. That is, it has been found that the catalyst life is longer when t-butanol is dehydrated and decomposed into isobutene and water and is supplied to the oxidation reaction catalyst than when t-butanol is supplied to the oxidation reaction catalyst without being decomposed. Has been completed.

即ち、本発明は、固定床多管式反応器を用い、t−ブタ
ノールを触媒の存在下、酸素又は酸素を含むガスと接触
反応させてメタクロレイン及び/又はメタクリル酸を製
造するにあたり、触媒床に導入する上記t−ブタノール
又はt−ブタノールを含む原料混合ガスが触媒床と接触
する前に、予めt−ブタノールをイソブテンと水に脱水
分解して供給することを特徴とするメタクロレイン及び
/又はメタクリル酸の製造方法に関する。
That is, the present invention uses a fixed bed multitubular reactor to produce methacrolein and / or methacrylic acid by catalytically reacting t-butanol with oxygen or a gas containing oxygen in the presence of a catalyst. Before the t-butanol or the raw material mixed gas containing t-butanol to be introduced into the catalyst is brought into contact with the catalyst bed, t-butanol is dehydrated and decomposed into isobutene and water and then fed, and / or methacrolein and / or The present invention relates to a method for producing methacrylic acid.

一般にt−ブタノールの触媒脱水分解性はよく知られて
おり吸熱の反応となるが、メタクロレイン等の製造の
際、触媒に対してt−ブタノールのこのような吸熱分解
の性質がどのような影響を与えるかはあまり知られてい
ないし、メタクロレイン等の収率や選択率に関してはt
−ブタノールを原料としたときもイソブテンを原料とし
たときもいずれも同じであるとしている報告が多い。し
かしながら触媒の寿命に関する比較はまったく報告がな
い。
Generally, the catalytic dehydration decomposition property of t-butanol is well known and becomes an endothermic reaction. However, in the production of methacrolein and the like, what influence of the endothermic decomposition property of t-butanol on the catalyst is affected. It is not well known whether to give methacrolein, etc.
-There are many reports that it is the same when using butanol as a raw material and isobutene as a raw material. However, there is no report on the life of catalysts.

すなわち本発明は、t−ブタノールを出発原料として多
管式熱交換器型反応器を用い触媒の存在下、酸素を含む
ガスにより酸化してメタクロレインを製造するにあた
り、触媒床に導入する原料混合ガス中のt−ブタノール
を、予めその少なくとも50%以上をイソブテンと水に分
解して供給するメタクロレイン等の製造方法に関する。
本発明において使用される触媒は特に制限はなく、いず
れの触媒でも本発明の効果を期待することができるが、
本発明は上記提案に示されたようなMo−Bi−Fe系、Mo−
Bi−Fe−Co/Ni−アルカリ金属系やMo−P.−アルカリ金
属系に適用することができる。
That is, the present invention uses t-butanol as a starting material in a shell-and-tube heat exchanger type reactor to oxidize a gas containing oxygen in the presence of a catalyst to produce methacrolein, and mix the raw materials to be introduced into a catalyst bed. The present invention relates to a method for producing methacrolein or the like in which at least 50% or more of t-butanol in a gas is previously decomposed into isobutene and water and supplied.
The catalyst used in the present invention is not particularly limited, and the effect of the present invention can be expected with any catalyst,
The present invention is a Mo-Bi-Fe system, Mo-
It can be applied to Bi-Fe-Co / Ni-alkali metal system and Mo-P.-alkali metal system.

反応に使用されるt−ブタノールは特に高純度のもので
ある必要はなく、一般の工業的に入手し得るものでよ
く、又水が多量に含まれていても差し支えない。
The t-butanol used in the reaction does not have to be highly pure, and may be one that is commercially available in general, and may contain a large amount of water.

原料混合ガスはt−ブタノール、酸素のほかに希釈ガス
が含まれていてもよく、希釈ガスとして窒素、二酸化炭
素、水等が好ましく用いられる。冷媒側温度は用いられ
る触媒、空間速度、原料混合ガス組成、反応圧力等によ
り変化するが、原料混合ガス組成、反応圧力等により変
化するが、通常250〜500℃が用いられる。
The raw material mixed gas may contain a diluent gas in addition to t-butanol and oxygen, and nitrogen, carbon dioxide, water or the like is preferably used as the diluent gas. The temperature on the refrigerant side varies depending on the catalyst used, the space velocity, the raw material mixed gas composition, the reaction pressure, etc., but it varies depending on the raw material mixed gas composition, the reaction pressure, etc., but is usually 250 to 500 ° C.

本発明の目的を達成するためには、原料混合ガス中のt
−ブタノールを触媒床と接触するまでに、その少なくと
も50%以上をイソブテンと水に分解して供給すればよ
く、本発明の効果はt−ブタノールを脱水分解する方法
には左右されない。したがって、t−ブタノールを脱水
分解する方法は特に限定されず液相法、気相法等により
無触媒あるいは脱水活性を有する触媒の存在化で行なう
ことができる。工業的に好ましい方法としては脱水触媒
を用いる方法であり、脱水触媒としては、例えば触媒学
会編触媒講座第8巻工業触媒反応I(講談社1985年刊)
275頁以降に示されている通り硫酸、リン酸、ポリリン
酸、ほう酸、スルホン酸、シリカ、アルミナ、シリカ−
アルミナ、固体リン酸、ヘテロポリ酸、イオン交換樹
脂、活性炭その他、数多くの触媒が知られている。
In order to achieve the object of the present invention, t in the raw material mixed gas is
By the time the butanol is brought into contact with the catalyst bed, at least 50% or more thereof should be decomposed into isobutene and water and supplied, and the effect of the present invention is not affected by the method of dehydrating and decomposing t-butanol. Therefore, the method of dehydrating and decomposing t-butanol is not particularly limited, and it can be carried out by a liquid phase method, a gas phase method or the like without catalyst or in the presence of a catalyst having a dehydrating activity. An industrially preferable method is a method using a dehydration catalyst, and examples of the dehydration catalyst include, for example, Catalyst Society, Volume 8, Catalyst Course, Industrial Catalyst Reaction I (published by Kodansha 1985).
As shown on page 275 onwards, sulfuric acid, phosphoric acid, polyphosphoric acid, boric acid, sulfonic acid, silica, alumina, silica-
A large number of catalysts such as alumina, solid phosphoric acid, heteropolyacid, ion exchange resins, activated carbon and the like are known.

また本発明者らは、後の実施例に示す通り、通常不活性
と考えられる炭化けい素、ある種のα−アルミナ上でも
反応条件を選べば、脱水反応がよく進行することを見出
しており、これらを用いることも可能である。
Further, the present inventors have found that the dehydration reaction proceeds well if the reaction conditions are selected even on silicon carbide, which is generally considered to be inactive, and some α-alumina, as shown in the Examples below. It is also possible to use these.

また、t−ブタノールを分解する場所についても特に指
定はなく(1)酸化反応器の内部、反応管の触媒床に原
料混合ガスが接触するまでの予熱層、あるいは(2)酸
化反応器と別途に設置した分解器(槽)にてt−ブタノ
ールを分解してもよい。
Also, there is no particular designation as to the location where t-butanol is decomposed (1) inside the oxidation reactor, a preheating layer until the raw material mixed gas comes into contact with the catalyst bed of the reaction tube, or (2) separately from the oxidation reactor. The t-butanol may be decomposed in the decomposer (tank) installed at.

次に工業的に可能な例を挙げると(1)予熱層にシリカ
−アルミナあるいは炭化けい素を充填し予熱層でt−ブ
タノールを50%以上、好ましくは70%以上脱水分解して
酸化反応器に原料混合ガスを供給する方法。(2)酸化
反応器と別途にt−ブタノール分解器(槽)を設置し、
高活性な粒体(例えば活性アルミナ)を用いて比較的低
い温度(100〜250℃)で接触させ、50%以上、好ましく
は70%以上脱水分解して酸化反応器に原料混合ガスを供
給する方法。但し接触温度が高いと、一酸化炭素や二酸
化炭素等をわずかではあるが生成するため、適当な分解
温度を選択するのが好ましい。
The following are industrially possible examples: (1) Silica-alumina or silicon carbide is filled in the preheating layer, and 50% or more, preferably 70% or more, of t-butanol is dehydrated and decomposed in the preheating layer to oxidize and react. Method of supplying raw material mixed gas to the. (2) A t-butanol decomposer (tank) is installed separately from the oxidation reactor,
Using highly active granules (eg activated alumina), contact them at a relatively low temperature (100-250 ° C), dehydrate and decompose 50% or more, preferably 70% or more, and supply the raw material mixed gas to the oxidation reactor. Method. However, when the contact temperature is high, carbon monoxide, carbon dioxide, etc. are slightly generated, so it is preferable to select an appropriate decomposition temperature.

尚この場合は、比較的低い温度でt−ブタノールを分解
できるため、酸化反応器の250℃を超える高い温度域で
の熱エネルギーをt−ブタノールの分解による吸熱エネ
ルギーで消費させることなく、酸化による発熱エネルギ
ーを殆どすべて熱回収の対象とでき、より効果的に酸化
反応器から利用度の高い高温の熱エネルギーを利用する
ことが可能である。(3)更には、(1)と(2)を組
み合わせてt−ブタノールを原料とする混合ガスを先ず
(2)のt−ブタノール分解器(槽)である程度分解し
て、例えば30%〜80%好ましくは50〜80%をt−ブタノ
ールの分解器(槽)で分解し、酸化反応器に供給する
が、更に未分解のt−ブタノールを酸化反応器内の触媒
床に至るまでの予熱層で70%以上、好ましくは90%以上
脱水分解し、触媒床と接触させる方法等が提案できる。
In this case, since t-butanol can be decomposed at a relatively low temperature, the thermal energy in the high temperature range of 250 ° C. or higher in the oxidation reactor is not consumed by the endothermic energy due to the decomposition of t-butanol, but is caused by the oxidation. Almost all exothermic energy can be the target of heat recovery, and it is possible to more effectively use high-temperature heat energy with high utilization from the oxidation reactor. (3) Furthermore, the mixed gas obtained by combining (1) and (2) and using t-butanol as a raw material is first decomposed to some extent in the t-butanol decomposer (tank) of (2), for example, 30% to 80%. %, Preferably 50 to 80% is decomposed in a t-butanol decomposer (tank) and supplied to the oxidation reactor, and undecomposed t-butanol is further preheated to reach the catalyst bed in the oxidation reactor. 70% or more, preferably 90% or more of dehydration decomposition and contact with the catalyst bed can be proposed.

(実施例) 次に実施例を挙げて具体的に説明する。(Example) Next, an example is given and it demonstrates concretely.

実施例1、比較例1 第1図に示した工程によって運転した。内径21mm、長さ
2mのステンレス製反応器に、特開昭58−59934に従い調
製した触媒(組成Mo12Bi1Fe1Co6Cs0.14)を360ml(充填
長さ1.0m)充填し、反応管に外接した溶融塩浴は撹拌器
にて撹拌を行いながら投げ込みヒーターにて加熱、温度
制御を行った。反応管中の予熱層は80cmの長さで、不活
性なアルミナ(α−アルミナ96%、径4mmφ、参考例1
参照)を充填し、充分に溶融塩浴の温度と同じ温度まで
原料混合ガスを昇温した。
Example 1 and Comparative Example 1 Operation was carried out by the steps shown in FIG. Inner diameter 21 mm, length
A 2 m stainless steel reactor was filled with 360 ml of catalyst (composition Mo 12 Bi 1 Fe 1 Co 6 Cs 0.14 ) prepared according to JP-A-58-59934 (filling length 1.0 m), and a molten salt circumscribing the reaction tube. The bath was heated with a throw-in heater while stirring with a stirrer, and the temperature was controlled. The preheating layer in the reaction tube has a length of 80 cm and is made of inert alumina (α-alumina 96%, diameter 4 mmφ, reference example 1).
(See reference), and the temperature of the raw material mixed gas was sufficiently raised to the same temperature as the temperature of the molten salt bath.

一方、原料はt−ブタノール(12wt%含水)85.0g/Hrを
気化器に通じ気化したのち、空気246Nl/Hr、窒素116Nl/
Hrと混合して酸化反応器に供給した。なお反応器内の圧
力は反応ガス出口部分において0.5Kg/cm2・Gとなるよ
うに弁で調整した。
On the other hand, as a raw material, 85.0 g / Hr of t-butanol (containing 12 wt% water) was passed through a vaporizer to be vaporized, and then air 246 Nl / Hr and nitrogen 116 Nl /
It was mixed with Hr and fed to the oxidation reactor. The pressure inside the reactor was adjusted by a valve so that the pressure was 0.5 kg / cm 2 · G at the reaction gas outlet.

実施例1は第1図の混合器内にγ−アルミナ90%および
シリカ10%からなる粒体(径4mmφ、参考例7参照)を1
70ml充填し、180℃に保つよう電気ヒーターで制御を行
った。
In Example 1, a granular material (diameter 4 mmφ, see Reference Example 7) consisting of 90% γ-alumina and 10% silica was placed in the mixer shown in FIG.
It was filled with 70 ml and controlled by an electric heater so as to keep it at 180 ° C.

運転開始から700時間までの反応データを第1表に、触
媒床の温度分布を第2図に記載した。更に比較例1とし
て1図の混合器内にステンレス製のラシヒリング(6mm
φ径×6mmL、参考例8参照)を170ml充填し実施例1と
同様に180℃に保っていた。
Table 1 shows the reaction data from the start of operation to 700 hours, and Fig. 2 shows the temperature distribution of the catalyst bed. Further, as Comparative Example 1, a stainless steel Raschig ring (6 mm
170 ml of φ diameter × 6 mmL, refer to Reference Example 8) was filled and kept at 180 ° C. as in Example 1.

一方、触媒は実施例1に使用した触媒を同じく360ml反
応管に充填して実施例1と他の条件を全く同じにして運
転を行った。運転開始から700時間までの反応データを
第1表に、触媒床の温度分布を第3図に記載した。第2
図と第3図を比較すれば、いずれも触媒床の最高温度は
反応経過時間と共に低くなる傾向にあるが、最高温度を
示す触媒床の位置が比較例1では後方に移動してきたこ
とがわかる。すなわち触媒床の原料ガス入口部分の活性
が低くなってきたために比較例1の最高温度の位置が後
方に移動してきたと考えられる。又、反応データを比較
しても同一条件下、比較例1の方がイソブテンの転化率
は、反応時間とともに低くなってきたのがわかるが、実
施例1ではそのような傾向は認められなかった。
On the other hand, as the catalyst, the same catalyst as used in Example 1 was filled in the same 360 ml reaction tube, and the operation was performed under the same conditions as in Example 1 except for the above. Table 1 shows the reaction data from the start of operation to 700 hours, and Fig. 3 shows the temperature distribution of the catalyst bed. Second
Comparing FIG. 3 and FIG. 3, it can be seen that the maximum temperature of the catalyst bed tends to decrease with the reaction time, but the position of the catalyst bed showing the maximum temperature has moved backward in Comparative Example 1. . That is, it is considered that the maximum temperature position of Comparative Example 1 moved to the rear because the activity of the raw material gas inlet portion of the catalyst bed became low. Also, comparing the reaction data, it can be seen that the conversion of isobutene in Comparative Example 1 decreased with the reaction time under the same conditions, but no such tendency was observed in Example 1. .

実施例2、比較例2 上記、比較例1の条件で、運転を開始してから2700時間
以上経過した反応データを第2表、および触媒床の温度
分布図を第4図に示し、比較例2とする。すなわち比較
例2の実験は比較例1の実験を更に経過時間2700時間ま
で継続した実験である。
Example 2, Comparative Example 2 Under the conditions of Comparative Example 1 described above, Table 2 shows reaction data after 2700 hours have passed from the start of operation, and FIG. 4 shows a temperature distribution diagram of the catalyst bed, and Comparative Example Set to 2. That is, the experiment of Comparative Example 2 is an experiment in which the experiment of Comparative Example 1 was further continued until the elapsed time of 2700 hours.

比較例1と比べると、更に触媒活性が低下し、浴温が高
くなっているにもかかわらずイソブテンの転化率が低く
なっていることがわかる。
As compared with Comparative Example 1, it can be seen that the catalytic activity is further reduced, and the conversion of isobutene is low even though the bath temperature is high.

このような状態で運転していた反応器の運転を一旦停止
し、第1図中、混合器内のステンレス製ラシヒリングを
抜き出し、実施例1で使用したと同じ、γ−アルミナ90
%およびシリカ10%からなる粒体(4mmφ径、参考例7
参照)を170ml充填して、温度180℃に保ちながらさらに
運転を継続したのが実施例2である。反応管に入る直前
で原料混合ガスを一部採取し、分析したところt−ブタ
ノールが98%イソブテンに脱水分解していた。反応デー
タならびに触媒床の温度分布図は比較例2と同じく第2
表、第4図に示す。第2表を見ると比較例2から実施例
2と反応時間が経過しているにもかかわらずイソブテン
の転化率が明らかに上がっており触媒活性が賦活したか
のような現象を呈した。さらに触媒床の温度分布図を見
ると触媒床の最高温度位置が実施例1と同じ位置にまで
戻ってきた。
The reactor which had been operating in such a state was temporarily stopped, the stainless Raschig ring in the mixer in FIG. 1 was extracted, and the same γ-alumina 90 as used in Example 1 was used.
% And silica 10% (4 mmφ diameter, Reference Example 7
It is Example 2 in which 170 ml of the reference) was charged and the operation was further continued while maintaining the temperature at 180 ° C. Just before entering the reaction tube, a part of the raw material mixed gas was sampled and analyzed. As a result, t-butanol was dehydrated and decomposed into 98% isobutene. The reaction data and the temperature distribution diagram of the catalyst bed are the same as those in Comparative Example 2
The table is shown in FIG. As shown in Table 2, the conversion rate of isobutene was clearly increased and the catalytic activity was exhibited as if the catalytic activity had been activated, even though the reaction time from Comparative Example 2 to Example 2 had elapsed. Further, looking at the temperature distribution map of the catalyst bed, the maximum temperature position of the catalyst bed returned to the same position as in Example 1.

参考例1〜8 実施例と比較例で反応管予熱層および混合器内充填物に
使用した粒体によるt−ブタノールの分解性について実
験した結果を第3表に示す。
Reference Examples 1 to 8 Table 3 shows the results of experiments conducted on the decomposability of t-butanol by the granules used for the preheating layer for the reaction tube and the packing in the mixer in Examples and Comparative Examples.

本実験では反応管の長さを80cmと短くしたほかは第1図
とほぼ同じ装置を用い原料ガスの組成も実施例とまった
く同じにし、t−ブタノールの分解率を求めた。
In this experiment, the decomposition rate of t-butanol was determined by using the same apparatus as in FIG. 1 except that the length of the reaction tube was shortened to 80 cm and the composition of the raw material gas was made exactly the same as that of the example.

実施例1および実施例2で使用したγ−アルミナ90%お
よびシリカ10%からなる粒体(径4mmφ、比表面積650m2
/g、参考例6,7)は実施例1および実施例2の条件下で
t−ブタノールを効率的にイソブテンに分解することを
確認した。一方、参考例のα−アルミナ(純度96%、径
4mmφ、比表面積0.01m2/g)を、比較例1、2および実
施例2の反応管熱層部分に使用していたが、20%程度し
かt−ブタノールを分解せず、t−ブタノールの分解性
が低いことを確認した。
Granules composed of 90% γ-alumina and 10% silica used in Examples 1 and 2 (diameter 4 mmφ, specific surface area 650 m 2
/ g, Reference Examples 6 and 7) was confirmed to efficiently decompose t-butanol into isobutene under the conditions of Example 1 and Example 2. On the other hand, reference example α-alumina (purity 96%, diameter
4 mmφ, specific surface area 0.01 m 2 / g) was used for the reaction tube heat layer portion of Comparative Examples 1 and 2 and Example 2, but only about 20% decomposes t-butanol, and t-butanol It was confirmed that the degradability was low.

(発明の効果) すでにいくつか述べてきたがまとめてみると次のように
なる。
(Effects of the Invention) Some of the above have been described, but the summary is as follows.

(1) t−ブタノールを予め脱水分解して酸化触媒に
接触させるため、触媒床がt−ブタノールの脱水分解に
作用せず、本来のメタクロレイン等を得る酸化反応に触
媒床の全ての部分が供与される。このためイソブテンを
原料としたときと同等の触媒寿命ならびに活性が得られ
る。
(1) Since t-butanol is dehydrated and decomposed in advance and brought into contact with an oxidation catalyst, the catalyst bed does not act on the dehydration decomposition of t-butanol, and all parts of the catalyst bed are involved in the original oxidation reaction for obtaining methacrolein and the like. Will be donated. Therefore, the same catalyst life and activity as when isobutene is used as a raw material can be obtained.

(2) t−ブタノールを未分解のまま、触媒床と接触
させた場合に比べ、実質上、酸化反応に供与される部分
が長くなるため見掛け上の空間速度は同じであっても、
予めt−ブタノールを分解した方が、実質上の空間速度
は小さくなり、触媒には好ましい反応の条件となる。
(2) Compared with the case where t-butanol is not decomposed and is contacted with the catalyst bed, the portion that is donated to the oxidation reaction is substantially longer, so that the apparent space velocity is the same,
When t-butanol is decomposed in advance, the substantial space velocity becomes smaller, which is a preferable reaction condition for the catalyst.

一般に、空間速度が大きくなると同一転化率を得るため
には反応温度を上げる必要があり、ひいては触媒の劣化
を早め寿命を短くしてしまう。
Generally, when the space velocity becomes large, it is necessary to raise the reaction temperature in order to obtain the same conversion rate, which in turn accelerates the deterioration of the catalyst and shortens its life.

(3) t−ブタノールの脱水分解に必要なエネルギー
はt−ブタノールをどこで分解させても同じであるが、
前述のγ−アルミナのような活性の強い粒体を用いれ
ば、比較的低温(150〜250℃)で分解でき、反応器の冷
媒体のような高い温度(250〜500℃)を必要としない。
したがって酸化反応器の外部で分解することによりt−
ブタノールの分解に要するエネルギー源を、比較的得や
すい、例えば10Kg/cm2G程度のスチームを熱源とするこ
とが可能である。そして酸化反応器の利用度の高い、高
温度(250〜500℃)のエネルギーをt−ブタノールの分
解エネルギーで相殺することなく、有効に酸化反応の熱
を回収でき熱エネルギーの有効利用をはかることができ
る。
(3) The energy required for the dehydration decomposition of t-butanol is the same regardless of where t-butanol is decomposed.
If a highly active granular material such as γ-alumina is used, it can be decomposed at a relatively low temperature (150 to 250 ° C) and does not require a high temperature (250 to 500 ° C) like the refrigerant body of a reactor. .
Therefore, by decomposing outside the oxidation reactor, t-
The energy source required for the decomposition of butanol can be relatively easily obtained, for example, steam of about 10 kg / cm 2 G can be used as the heat source. And the heat of the oxidation reaction can be effectively recovered without offsetting the energy of high temperature (250 to 500 ° C), which is highly utilized in the oxidation reactor, by the decomposition energy of t-butanol, and the effective use of the heat energy can be achieved. You can

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施態様の一例を示したフローシート
である。 2……原料ガス混合器 3……反応管 第2図及び第3図は実施例1及び比較例1における触媒
床の温度分布を示す。 第4図は実施例2及び比較例2における触媒床の温度分
布を示す。
FIG. 1 is a flow sheet showing an example of an embodiment of the present invention. 2 ... Raw material gas mixer 3 ... Reaction tube FIGS. 2 and 3 show the temperature distribution of the catalyst bed in Example 1 and Comparative Example 1. FIG. 4 shows the temperature distribution of the catalyst bed in Example 2 and Comparative Example 2.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C07C 57/05 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display area C07C 57/05

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】固定床多管式反応器を用い、t−ブタノー
ルを触媒の存在下、酸素又は酸素を含むガスと接触反応
させてメタクロレイン及び/又はメタクリル酸を製造す
るにあたり、触媒床に導入する上記t−ブタノール又は
t−ブタノールを含む原料混合ガスが触媒床と接触する
前に、予めt−ブタノールをイソブテンと水に脱水分解
して供給することを特徴とするメタクロレイン及び/又
はメタクリル酸の製造方法。
1. A catalyst bed for producing methacrolein and / or methacrylic acid by catalytically reacting t-butanol with oxygen or a gas containing oxygen in the presence of a catalyst using a fixed bed multitubular reactor. Methacrolein and / or methacryl- yl, which is characterized in that, before the t-butanol or the raw material mixed gas containing t-butanol to be introduced is brought into contact with the catalyst bed, t-butanol is dehydrated and decomposed into isobutene and water in advance. Method for producing acid.
JP62048701A 1987-03-05 1987-03-05 Method for producing methacrolein and / or methacrylic acid Expired - Lifetime JPH0699336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62048701A JPH0699336B2 (en) 1987-03-05 1987-03-05 Method for producing methacrolein and / or methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62048701A JPH0699336B2 (en) 1987-03-05 1987-03-05 Method for producing methacrolein and / or methacrylic acid

Publications (2)

Publication Number Publication Date
JPS63216835A JPS63216835A (en) 1988-09-09
JPH0699336B2 true JPH0699336B2 (en) 1994-12-07

Family

ID=12810613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62048701A Expired - Lifetime JPH0699336B2 (en) 1987-03-05 1987-03-05 Method for producing methacrolein and / or methacrylic acid

Country Status (1)

Country Link
JP (1) JPH0699336B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2659839B2 (en) * 1990-01-26 1997-09-30 株式会社日本触媒 Method for producing methacrolein and methacrylic acid
JP2934267B2 (en) * 1989-12-06 1999-08-16 株式会社日本触媒 Method for producing methacrolein and methacrylic acid
JP2638241B2 (en) * 1990-01-18 1997-08-06 株式会社日本触媒 Method for producing methacrolein and methacrylic acid
JP2756160B2 (en) * 1989-12-28 1998-05-25 株式会社日本触媒 Method for producing methacrolein and methacrylic acid
US8088947B2 (en) 2006-04-03 2012-01-03 Nippon Kayaku Kabushiki Kaisha Method for producing methacrolein and/or methacrylic acid
WO2008041325A1 (en) * 2006-10-03 2008-04-10 Mitsubishi Rayon Co., Ltd. METHOD OF PRODUCING α,β-UNSATURATED ALDEHYDE AND/OR α,β-UNSATURATED CARBOXYLIC ACID
US7951978B2 (en) 2006-12-01 2011-05-31 Nippon Shokubai Co., Ltd. Process for producing acrolein and glycerin-containing composition
JP2013121946A (en) * 2011-11-07 2013-06-20 Mitsubishi Rayon Co Ltd Method and apparatus for producing methacrolein and methacrylic acid from isobutanol
KR20160141704A (en) 2014-04-30 2016-12-09 미쯔비시 레이온 가부시끼가이샤 Method for producing (meth)acrylic acid
JP6522213B1 (en) * 2018-08-03 2019-05-29 住友化学株式会社 Process for producing methacrolein and / or methacrylic acid

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112605A (en) * 1974-07-22 1976-01-31 Canon Kk MOOTAA

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112605A (en) * 1974-07-22 1976-01-31 Canon Kk MOOTAA

Also Published As

Publication number Publication date
JPS63216835A (en) 1988-09-09

Similar Documents

Publication Publication Date Title
KR100280249B1 (en) How to remove solid organics
KR100539573B1 (en) Two stage process for the production of unsaturated carboxylic acids by oxidation of lower unsaturated hydrocarbons
JPH0699336B2 (en) Method for producing methacrolein and / or methacrylic acid
JPS6214945A (en) Manufacture of catalyst and usage thereof
US2881213A (en) Process for the conversion of acrolein and methacrolein to the corresponding unsaturated acids
US5510553A (en) Catalytic dehydrogenation of alkylaromatic hydrocarbons
JPH0788318B2 (en) Method for producing isobutylene
JP2003146920A (en) Method for producing acrolein and acrylic acid
JP2005200415A (en) Improved method for selectively (amm)oxidizing low-molecular weight alkane and alkene
US4374270A (en) Oxydehydrogenation process for preparing methacrylic acid and its lower alkyl esters
JP5262710B2 (en) Method for producing 5-phenylisophthalic acid
EP0084706B1 (en) Activation process for fluid bed oxidation catalysts useful in the preparation of maleic anhydride
US4328365A (en) Hydrocarbon oxidation via carbon monoxide reduced catalyst
JPH07107016B2 (en) Method for producing acrylic acid
EP0422235B1 (en) PRODUCTION OF alpha-(3-BENZOYLPHENYL)PROPIONIC ACID DERIVATIVE
US4195188A (en) Steam assisted hydrocarbon oxidation process
JP3759847B2 (en) Method for activating vanadium-phosphorus catalyst
JPS6160061B2 (en)
US4355176A (en) Oxydehydrogenation process for preparing methacrylic acid and its lower alkyl esters
JPH0812606A (en) Production of oxygen-containing compound by using c4-lpg
US3989747A (en) Production of propionic acid
JP2001055355A (en) Vapor phase catalytic oxidation reaction of hydrocarbon
US4434298A (en) Oxydehydrogenation of isobutyric acid and its lower alkyl esters
JPH06329567A (en) Production of 1,6-hexanediol
JP2748821B2 (en) Method for producing phenol

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term