JPH0698890A - Optical ct apparatus - Google Patents

Optical ct apparatus

Info

Publication number
JPH0698890A
JPH0698890A JP4275468A JP27546892A JPH0698890A JP H0698890 A JPH0698890 A JP H0698890A JP 4275468 A JP4275468 A JP 4275468A JP 27546892 A JP27546892 A JP 27546892A JP H0698890 A JPH0698890 A JP H0698890A
Authority
JP
Japan
Prior art keywords
light
time
wavelength
sample
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4275468A
Other languages
Japanese (ja)
Inventor
Tatsuya Nakai
達也 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4275468A priority Critical patent/JPH0698890A/en
Publication of JPH0698890A publication Critical patent/JPH0698890A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the learning of the position of an object within a scattering/ absorbing object, a density distribution of a chemical substance and the like by admitting a pulse light with a multiple wavelength to analyze a hourly difference of an output waveform. CONSTITUTION:A relationship between the elapsed time from the incidence of light and a quantity of light emitted is determined to be converted to a time solving intensity waveform. The existence of substances 3 different in absorption coefficient affects a quantity of light greatly in a scatting/absorbing object 2. Hence, when DELTAt represents time to the moment at which an absorption difference appears from the shortest arrival time, a distance L' can be learned between a straight line aligning the incident position and a detection position and the object 3. An optical CT image of a sample 2, namely, a tomographic image is obtained when a measurement is performed varying the incident direction with detectors 1 arranged on the entire circumference of the sample 2. A curve 7 of values obtained by dividing a difference between a detection waveform 5 with a wavelength of 803nm and the detection waveform 6 with the wavelength of 810nm by an output of 803nm indicates a certain fixed value, namely, a ratio of absorption values in the 803nm and 810nm (existence ratio in object between Hb and HbO2) when the elapsed time is large enough.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は医療分野及び工業分野に
おける不透明な散乱・吸収物体内部にある周囲の物体と
異なる性質を持った物体の形状、位置、化学物質の濃度
分布などを、該異なる物体の光学的性質に基づいて計測
する光CT装置に関するものである。
The present invention relates to the shape, position, concentration distribution of chemical substances, etc. of an object having different properties from the surrounding object inside an opaque scattering / absorbing object in the medical and industrial fields. The present invention relates to an optical CT device that measures based on the optical properties of an object.

【0002】[0002]

【従来の技術】従来、光を用いて生体組織等の散乱・吸
収物体内部の構造或は状態を計測する方法としては、超
音波診断装置やX線CT装置などが知られている。この
中で最近注目を集めているものに、物質の光学的な性質
を利用して内部計測を行う光CT装置がある。X線に比
べ分解能が悪いにもかかわらず光CTが注目を集めてい
る理由は、従来のX線CTなどでは組織の構造しか分か
らないのに対し、光CTだと組織の活動状況に関する新
しい情報が得られることにある。
2. Description of the Related Art Conventionally, an ultrasonic diagnostic apparatus, an X-ray CT apparatus, and the like are known as methods for measuring the internal structure or state of a scattering / absorbing object such as living tissue using light. Among these, an optical CT device that has recently been attracting attention is an optical CT device that performs internal measurement by utilizing the optical properties of a substance. The reason why optical CT is attracting attention in spite of poor resolution compared to X-rays is that conventional CT such as X-ray CT can only understand the structure of tissue, but optical CT provides new information on the activity status of tissue. Is obtained.

【0003】物体の光学的性質の利用は、特に検査を行
う物質特有の光吸収特性に着目して行われる。光CTの
場合、通常、生体組織中で適度な透過率を持ち、散乱と
水による吸収の少ない700〜1300nmの近赤外域
の波長が計測に使用される。この波長域を用いると、生
体の機能と密接に関係する酸素の量を知ることができ
る。生体計測の場合の問題は、対象となる物体が単純に
光を透過・吸収するだけでなく、散乱特性を持ってお
り、検出信号にそれらの光が混在してSNを劣化させる
ことである。
Utilization of the optical properties of an object is made by paying particular attention to the light absorption characteristic of the substance to be inspected. In the case of optical CT, a wavelength in the near-infrared region of 700 to 1300 nm, which has appropriate transmittance in living tissue and has little scattering and absorption by water, is usually used for measurement. By using this wavelength range, it is possible to know the amount of oxygen that is closely related to the function of the living body. The problem in the case of biometrics is that the target object not only simply transmits and absorbs light, but also has a scattering characteristic, and the light is mixed in the detection signal to deteriorate the SN.

【0004】これまで提案されている手法には例えば特
開平2−290534号公報、あるいは特開平3−11
1737号公報のような対象物である散乱・吸収体に連
続もしくはパルス状の平行光を入射させ、最短時間また
は最短距離で検出器に到達した光を検出する方式があ
る。即ち、内部で散乱を受けず直進してきた光のみをタ
イムゲ−ト方式や、へテロダイン方式などが提案されて
いる。
The methods proposed so far are, for example, Japanese Patent Laid-Open No. 2-290534 or Japanese Patent Laid-Open No. 3-11.
There is a method such as Japanese Patent No. 1737 in which continuous or pulsed parallel light is made incident on a scattering / absorbing body which is an object, and the light which reaches a detector in the shortest time or the shortest distance is detected. That is, a time gate method, a heterodyne method, etc. have been proposed for only the light that has gone straight without being scattered internally.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記従来
例では散乱体の厚みが増したり濃度が高くなるにつれ、
内部で散乱されずに直進する光が急激に減少するという
問題点がある。減少が指数関数的に生じるため光量の落
ちは深刻で、検出不能となる場合も多く、実用化への大
きな障害となっていた。実験的な小動物への適用はとも
かく、人体計測などに本格的に導入するには光量の問題
の解決が必須用件である。本発明は上記の問題点に鑑み
てなされたもので、高濃度で厚い散乱物体に対しても適
用できる光CT装置を提供することを目的とする。
However, in the above-mentioned conventional example, as the thickness and the concentration of the scatterer increase,
There is a problem in that the light that travels straight without being scattered inside is sharply reduced. Since the decrease occurs exponentially, the drop of the light amount is serious and often becomes undetectable, which is a major obstacle to practical use. Apart from being applied to experimental small animals, solving the problem of light quantity is an essential requirement for full-scale introduction to human body measurement. The present invention has been made in view of the above problems, and an object of the present invention is to provide an optical CT apparatus that can be applied to a thick and dense scattering object.

【0006】[0006]

【課題を解決するための手段】本発明はこのため実用上
検出の困難な直進光を検出する代わりに、散乱光を経時
的に検出しながら波形解析することによって、対象物の
計測を行うことを特徴としている。より具体的には生体
などの散乱・吸収体試料に複数の波長の極短パルス光を
照射し、内部で散乱・吸収されて、このうち試料の外に
出射された散乱光を時系列的に検出して、得られた波形
である検出光量と到達時間の関係の解析から試料内部の
物体の位置や化学物質の濃度、光学特性などを求めるも
のである。散乱光を検出するため、測定は入射光と試料
に関し対抗した箇所にある数カ所で行われる。また使用
する光は対象となる試料によって吸収を受ける予め既知
の波長と、それとは異なる量の吸収を受ける別の波長を
用いる。
Therefore, the present invention is capable of measuring an object by analyzing a waveform while detecting scattered light over time, instead of detecting straight light which is difficult to detect in practice. Is characterized by. More specifically, a scattering / absorbing material sample such as a living body is irradiated with ultrashort pulsed light of multiple wavelengths, scattered / absorbed inside, and scattered light emitted out of the sample is time-sequentially. The position of an object inside the sample, the concentration of the chemical substance, the optical characteristics, etc. are obtained by analyzing the relationship between the detected light amount, which is the obtained waveform, and the arrival time. In order to detect scattered light, measurements are made at several locations on the sample in opposition to the incident light. Further, the light used has a known wavelength that is absorbed by the target sample and another wavelength that receives a different amount of absorption.

【0007】得られた波形の解析は直進光、即ち最短時
間で得られる信号よりも所定の値だけ遅れた時間領域の
信号を用いて行われる。直進光より遅れた時間域は試料
内部の物体位置や光学特性などに密接に関連し、散乱光
の光量に影響を与える。高濃度散乱・吸収体では非散乱
直進光の検出は困難であるが、それよりはるかに強度が
大きい散乱光の信号を利用し、該信号から逆算すれば試
料の内部状態を知ることが可能である。
The analysis of the obtained waveform is performed using a straight-ahead light, that is, a signal in the time domain delayed by a predetermined value from the signal obtained in the shortest time. The time range delayed from the straight-ahead light is closely related to the object position and optical characteristics inside the sample, and affects the amount of scattered light. It is difficult to detect non-scattering straight-ahead light with a high-concentration scattering / absorbing body, but it is possible to know the internal state of the sample by using the signal of scattered light with much higher intensity and calculating backward from the signal. is there.

【0008】[0008]

【実施例】図1は本発明の実施例1の要部模式図であ
り、本発明の特徴を最も良く表すものである。同図にお
いて1は光検出器、2は散乱・吸収体サンプル、3は2
のサンプル中にある外側とは吸収の異なる物体であり、
サンプルの内部構造に対応するものである。例えば上記
構成において生体組織中のHb(ヘモグロビン)とHb
2 (酸素化ヘモグロビン)の濃度分布を測定するとす
ると、2は筋肉組織、3は血液を多く含んだ肝臓に対応
する。
Embodiment 1 FIG. 1 is a schematic view of the essential portions of Embodiment 1 of the present invention, which best shows the features of the present invention. In the figure, 1 is a photodetector, 2 is a scattering / absorbing material sample, 3 is 2
Is an object with different absorption from the outside in the sample of
This corresponds to the internal structure of the sample. For example, in the above configuration, Hb (hemoglobin) and Hb in the biological tissue
When the concentration distribution of O 2 (oxygenated hemoglobin) is measured, 2 corresponds to muscle tissue and 3 corresponds to the blood-rich liver.

【0009】生体計測では散乱・吸収体のサンプル中に
散乱・吸収係数がサンプルとは異なる物体が入ってお
り、予めその物体に対する吸収特性が分かっている特殊
な波長を利用して測定が行われる。Hbは酸素の運搬を
行うので、HbとHbO2 の濃度量を測定し、両者の濃
度の比を計算するとHbの酸素飽和度が求められる。酸
素飽和度は血液が正常に酸素を運んでいるか否かという
生体組織に対する酸素の供給状態を示す量で、生体に起
きた機能変化を判定する指標となる。Hbと酸素と結合
したHbO2 の近赤外域での吸収特性は異なっており、
本実施例ではその特性を利用する。
In biological measurement, an object having a scattering / absorption coefficient different from that of the sample is contained in the sample of the scattering / absorbing material, and the measurement is performed using a special wavelength whose absorption characteristic for the object is known in advance. . Since Hb carries oxygen, the concentration of Hb and HbO 2 is measured, and the ratio of the concentrations of both is calculated to obtain the oxygen saturation of Hb. The oxygen saturation is an amount indicating the supply state of oxygen to the living tissue, which indicates whether or not blood normally carries oxygen, and is an index for determining a functional change occurring in the living body. The absorption characteristics of HbO 2 combined with Hb and oxygen in the near infrared region are different,
This characteristic is used in this embodiment.

【0010】図1の場合、波長として803nmと、そ
れからわずかにずれた波長である810nmを用いる事
とし、該2つの波長の光がpsecオ−ダ−の極短パル
ス光となってサンプル2に左から入射する。光源として
は不図示のレ−ザ光源が用いられる。803nmはHb
とHbO2 の等吸収波長に当たる特殊波長で、Hbが酸
素化していても、脱酸素化していても吸収は変わらな
い。810nmはHbとHbO2 で吸収量が異なるが、
散乱の様相は波長が近いため803nmと殆ど同じと考
えることができる。
In the case of FIG. 1, 803 nm is used as the wavelength and 810 nm, which is a wavelength slightly deviated from the wavelength, is used, and the light of the two wavelengths becomes an extremely short pulse light of the psec order, and the sample 2 is obtained. It is incident from the left. A laser light source (not shown) is used as the light source. 803 nm is Hb
At a special wavelength corresponding to the isosbestic wavelength of HbO 2 and HbO 2 , absorption does not change whether Hb is oxygenated or deoxygenated. At 810 nm, Hb and HbO 2 have different absorption amounts,
It can be considered that the scattering aspect is almost the same as 803 nm because the wavelengths are close.

【0011】入射した光は散乱・吸収を受けながらサン
プル中を伝播する。検出を行いたいのは物体3について
の情報であるため、吸収に差のある810nmの光が主
となる情報を与え、803nmの光の出力は参照信号出
力としての役割を果す。
The incident light propagates in the sample while being scattered and absorbed. Since it is the information about the object 3 that is desired to be detected, the 810 nm light having a difference in absorption gives the main information, and the output of the 803 nm light serves as a reference signal output.

【0012】サンプル内部を散乱・吸収されつつ拡散し
てサンプルから出射する光はサンプルの回りに配置され
た受光器で検出され、入射してからの経過時間と出射光
量の関係を捉えて、時間分解強度波形に変換される。入
射光、検出器に到達した波長の異なる光とその差分の時
間分解強度波形を図2に示す。
Light emitted from the sample after being diffused while being scattered / absorbed inside the sample is detected by a photodetector arranged around the sample, and the relationship between the elapsed time after the incidence and the amount of emitted light is captured and It is converted into a decomposition intensity waveform. FIG. 2 shows incident light, light having different wavelengths reaching the detector, and time-resolved intensity waveforms of the differences.

【0013】縦軸は入射光量のピ−クを1と規格化した
光の強度、横軸は時間である。検出は波長ごとに別々に
行われるが、時間的に入射パルスを波長ごとに分けて行
って検出しても良いし、また検出素子を波長の数だけ用
意し、検出器の前にフィルタを置いて信号を分離しても
よい。フィルタを用いる場合は入射光が同時発光でも構
わない。
The vertical axis represents the intensity of light in which the peak of the amount of incident light is normalized to 1, and the horizontal axis represents time. Detection is performed separately for each wavelength, but it is also possible to perform detection by dividing the incident pulse for each wavelength in time, or prepare detection elements for each wavelength and place a filter in front of the detector. Signals may be separated. When using a filter, incident light may be emitted simultaneously.

【0014】4は入射パルス光の波形、5は波長803
nmの検出波形、6は波長810nmの検出波形、7は
検出波形5と検出波形6の波形の差分を803nmの出
力で割ったものである。発光が同時に行われない場合
は、波形4のパルスは各波長ごとに独立にサンプルに与
えられ、信号処理時に重ね合わされる。
Reference numeral 4 is the waveform of the incident pulsed light, and 5 is the wavelength 803.
nm is a detection waveform, 6 is a detection waveform having a wavelength of 810 nm, and 7 is a difference between the waveforms of the detection waveform 5 and the detection waveform 6 divided by the output of 803 nm. When the light emission is not performed simultaneously, the pulse of the waveform 4 is applied to the sample independently for each wavelength and superposed during signal processing.

【0015】異なった波長、この場合、803nmと8
10nm間の差は、ある時刻にサンプル内の物体によっ
て受けた吸収量の波長による差の関係を示すものであ
る。また得られた波形に時間を分析することによって、
入射してから吸収差が初めて現われるまでの時間を知る
ことができる。
Different wavelengths, in this case 803 nm and 8
The difference between 10 nm shows the relationship of the difference due to the wavelength of the absorption amount received by the object in the sample at a certain time. By analyzing the time on the obtained waveform,
It is possible to know the time from the incidence until the absorption difference first appears.

【0016】図3は入射した光が検出器に到達するまで
の最短時間からの遅れΔtの中で散乱・吸収体の中でた
どることのできる軌跡の範囲を示したものである。直進
光からのずれ量の片側の最大幅をLとすると、Lは次の
式で与えられることが知られている。
FIG. 3 shows the range of trajectories that can be traced in the scattering / absorbing body within the delay Δt from the shortest time until the incident light reaches the detector. It is known that L is given by the following equation, where L is the maximum width on one side of the deviation amount from the straight-ahead light.

【0017】[0017]

【数1】 ここで cは媒質中の光速度、 LAは入射位置から検出器
の位置までの距離、△t は最短到達時刻からの経過時間
である。吸収係数の異なる物質3のような存在は散乱・
吸収物体内における光の光量に大きな影響を及ぼす。従
って、△t を最短到達時刻から吸収差が現われる時刻ま
での時間とすると、入射位置と射出位置を結ぶ直線から
サンプル中の物体までの距離を知ることができる。
[Equation 1] Here, c is the speed of light in the medium, LA is the distance from the incident position to the detector position, and Δt is the elapsed time from the shortest arrival time. Existence like substance 3 with different absorption coefficient
It has a great influence on the amount of light in the absorbing body. Therefore, if Δt is the time from the shortest arrival time to the time when the absorption difference appears, the distance from the straight line connecting the incident position and the exit position to the object in the sample can be known.

【0018】再び図2に戻りT0 を803nm及び81
0nmの光が検出され始める時刻、T1 を該2つの波長
の出力差が出始める時刻とする。図3で説明したように
出力7は物体3についての情報を持っており、T1 −T
0 が式(1)での△t に相当する。差分を取ることは結
果的に0次成分と言える直進光を信号処理上除去するこ
とに相当する。
Returning to FIG. 2 again, T 0 is set to 803 nm and 81
Let T 1 be the time at which 0 nm light starts to be detected, and T 1 be the time at which the output difference between the two wavelengths begins to appear. As described in FIG. 3, the output 7 has information about the object 3, and T 1 −T
0 corresponds to Δt in equation (1). Taking the difference is equivalent to removing the straight-ahead light, which can be said to be the zero-order component, in the signal processing.

【0019】上記の関係より図1におけるL’、即ち入
射位置と検出位置を結んだ直線と物体3との距離を知る
ことができる。サンプルの全周に配置した検出器で入射
方向を変えて測定することにより、サンプルの光CT
像、即ち断層像を得ることができる。
From the above relationship, L'in FIG. 1, that is, the distance between the object 3 and the straight line connecting the incident position and the detection position can be known. Optical CT of the sample is measured by changing the incident direction with the detectors arranged all around the sample.
An image, that is, a tomographic image can be obtained.

【0020】曲線7は、また、経過時間が十分大きいと
ある一定の値を示すことが分かる。この値は803nm
と810nmの吸収量の比、即ちHbとHbO2 の物体
中での存在比を示すことになる。
It can be seen that curve 7 also exhibits a certain value when the elapsed time is sufficiently large. This value is 803nm
And the ratio of absorption at 810 nm, that is, the abundance ratio of Hb and HbO 2 in the object.

【0021】図1以下の説明は主として酸素飽和度の解
析を例としてHb、HbO2 の吸収特性を利用したもの
を示した。本発明は非破壊、非接触検査で、また人体に
対しても余り強い光をあてない限りは無害であるという
特徴があり、広い範囲での応用が可能である。従って本
発明はHb、HbO2 の測定によるの肝臓に対する応用
にとどまらず、新生児の脳の検査など生体の他の部位へ
の適用や、生体の有するあらゆる色素の利用も同様に可
能である。また本発明は生体に限らずスラグ、汚水、そ
の他濁った媒質中での物体の光学特性の測定にも応用可
能である。
In the following description of FIG. 1, the absorption characteristics of Hb and HbO 2 are mainly used as an example of analysis of oxygen saturation. INDUSTRIAL APPLICABILITY The present invention is characterized by being non-destructive, non-contact inspection, and harmless unless it illuminates the human body too strongly, and can be applied in a wide range. Therefore, the present invention is not limited to the application to the liver by the measurement of Hb and HbO 2 , and can be applied to other parts of the living body such as the examination of the brain of a newborn baby and the use of any dyes that the living body has. Further, the present invention is applicable not only to the living body but also to the measurement of the optical characteristics of an object in slag, sewage, or other turbid medium.

【0022】[0022]

【発明の効果】以上、本発明では複数波長のパルス光を
対象物である散乱・吸収物体に入射させ、該物体より出
射される光をそれぞれ検出器で受けて時間分解強度信号
に直し、前記複数の波長の出力波形の経時的な差を解析
することにより、該物体内部にある物体の位置、化学物
質の濃度分布などを知ることを可能とした。また時間分
解強度信号の解析により内部の物体、或は化学物質の光
学特性も同時に測定ができるようになった。
As described above, according to the present invention, pulsed light having a plurality of wavelengths is incident on a scattering / absorbing object which is an object, and the light emitted from the object is received by a detector and converted into a time-resolved intensity signal. By analyzing the difference in the output waveforms of a plurality of wavelengths over time, it is possible to know the position of an object inside the object, the concentration distribution of chemical substances, and the like. In addition, by analyzing the time-resolved intensity signal, it has become possible to simultaneously measure the optical properties of internal substances or chemical substances.

【0023】生体などの散乱・吸収物体の内部構造を得
る方法には、このほかPET、MRIが知られている。
しかしながら本発明に係る方法は例えば近赤外のパルス
レ−ザと波形検出器を用いているだけで、従来法よりは
るかに安価であり、且つ実現することが容易である。ま
た人体に対する有害性についてもX線CT、PTEのよ
うな放射線被爆や、MRIのような磁気障害の可能性が
なく、極めて安全な非接触、非破壊CTが実現できる。
Other known methods for obtaining the internal structure of a scattering / absorbing body such as a living body are PET and MRI.
However, the method according to the present invention is much cheaper than the conventional method and is easy to implement only by using, for example, a near infrared pulse laser and a waveform detector. Also, regarding the harmfulness to the human body, there is no possibility of radiation exposure such as X-ray CT and PTE, and magnetic interference such as MRI, and extremely safe non-contact and non-destructive CT can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明を円筒型のサンプルに適用した実施例
を示す要部模式図
FIG. 1 is a schematic view of a main part showing an embodiment in which the present invention is applied to a cylindrical sample.

【図2】 図1の系で得られる入射信号と出射信号を示
す説明図
2 is an explanatory diagram showing an incident signal and an outgoing signal obtained in the system of FIG.

【図3】 散乱・吸収物体中を伝播する光の軌跡の範囲
を示す説明図
FIG. 3 is an explanatory diagram showing a range of a trajectory of light propagating in a scattering / absorbing object.

【符号の説明】[Explanation of symbols]

1 光検出器 2 散乱・吸収物体サンプル 3 サンプル内の物体または化学物質 4 入射パルス光の時間分解強度波形 5 第1の波長の出射光の時間分解強度波形 6 第2の波長の出射光の時間分解強度波形 7 2つの波長の検出光の差分を正規化した時間分解
強度波形
1 Photodetector 2 Scattering / absorbing object sample 3 Object or chemical substance in sample 4 Time-resolved intensity waveform of incident pulsed light 5 Time-resolved intensity waveform of emitted light of first wavelength 6 Time of emitted light of second wavelength Resolved intensity waveform 7 Time-resolved intensity waveform normalized to the difference between the detection lights of two wavelengths

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光散乱・吸収物体の内部構造を、該物体
を通過した光によって計測する光CT装置において、該
装置は複数個の波長の異なる光を出すパルスレ−ザ光源
と、該光源から該物体に入射され通過した光を前記複数
個の波長ごとに別々に検出する検出装置とを備え、該検
出装置によって検出される前記複数個の波長の時間分解
強度信号を処理することにより、該物体内部の構造を計
測することを特徴とする光CT装置。
1. An optical CT apparatus for measuring the internal structure of a light scattering / absorbing object by means of light that has passed through the object, the apparatus comprising: a pulse laser light source for emitting a plurality of light beams having different wavelengths; A detection device for separately detecting the light incident on and passing through the object for each of the plurality of wavelengths, and processing the time-resolved intensity signals of the plurality of wavelengths detected by the detection device, An optical CT device characterized by measuring a structure inside an object.
JP4275468A 1992-09-18 1992-09-18 Optical ct apparatus Pending JPH0698890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4275468A JPH0698890A (en) 1992-09-18 1992-09-18 Optical ct apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4275468A JPH0698890A (en) 1992-09-18 1992-09-18 Optical ct apparatus

Publications (1)

Publication Number Publication Date
JPH0698890A true JPH0698890A (en) 1994-04-12

Family

ID=17555965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4275468A Pending JPH0698890A (en) 1992-09-18 1992-09-18 Optical ct apparatus

Country Status (1)

Country Link
JP (1) JPH0698890A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11503236A (en) * 1995-04-06 1999-03-23 アルファ・ラヴァル・アグリ・アクチボラゲット Method and apparatus for quantitatively determining particles in fluid
WO2005110239A1 (en) * 2004-05-18 2005-11-24 Hamamatsu Photonics K.K. Image reconfiguring method
WO2013165888A3 (en) * 2012-04-30 2013-12-27 Mayo Foundation For Medical Education And Research Spectrometric apparatus and methods for improved focus localization of time-iand space-varying measurements
JP2017026611A (en) * 2015-07-23 2017-02-02 パナソニックIpマネジメント株式会社 Optical detector and light detection method
JP2017131482A (en) * 2016-01-29 2017-08-03 キヤノン株式会社 Subject information acquiring apparatus and signal processing method
US10085679B2 (en) 2011-06-23 2018-10-02 Mayo Foundation For Medical Education And Research System and method for detecting vascular contamination by surgical anesthetic using non-invasive IR spectrophotometry
JP2019525801A (en) * 2016-07-07 2019-09-12 ザ ユニバーシティー コート オブ ザ ユニバーシティー オブ エジンバラThe University Court Of The University Of Edinburgh Imaging method and imaging apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11503236A (en) * 1995-04-06 1999-03-23 アルファ・ラヴァル・アグリ・アクチボラゲット Method and apparatus for quantitatively determining particles in fluid
WO2005110239A1 (en) * 2004-05-18 2005-11-24 Hamamatsu Photonics K.K. Image reconfiguring method
JP2005328916A (en) * 2004-05-18 2005-12-02 Hamamatsu Photonics Kk Image reconstruction method
US10085679B2 (en) 2011-06-23 2018-10-02 Mayo Foundation For Medical Education And Research System and method for detecting vascular contamination by surgical anesthetic using non-invasive IR spectrophotometry
WO2013165888A3 (en) * 2012-04-30 2013-12-27 Mayo Foundation For Medical Education And Research Spectrometric apparatus and methods for improved focus localization of time-iand space-varying measurements
JP2017026611A (en) * 2015-07-23 2017-02-02 パナソニックIpマネジメント株式会社 Optical detector and light detection method
JP2017131482A (en) * 2016-01-29 2017-08-03 キヤノン株式会社 Subject information acquiring apparatus and signal processing method
JP2019525801A (en) * 2016-07-07 2019-09-12 ザ ユニバーシティー コート オブ ザ ユニバーシティー オブ エジンバラThe University Court Of The University Of Edinburgh Imaging method and imaging apparatus

Similar Documents

Publication Publication Date Title
US5413098A (en) Path constrained spectrophotometer and method for determination of spatial distribution of light or other radiation scattering and absorbing substances in a radiation scattering medium
Benaron et al. Optical time-of-flight and absorbance imaging of biologic media
EP0710832B1 (en) Method and apparatus for measuring scattering and absorption characteristics of a scattering medium
AT409451B (en) DEVICE FOR DETERMINING THE LOCAL DISTRIBUTION OF A MEASURED VALUE
EP0627619B1 (en) Method for measuring scattering medium and apparatus for the same
JP3665061B2 (en) Quantitative and qualitative in vivo tissue analysis using time-resolved spectroscopy
JP4559995B2 (en) Tumor testing device
JP4469903B2 (en) Biological information imaging device
EP0280986B1 (en) Tissue metalbolism measuring apparatus
JP2645718B2 (en) Optical CT device
JPH06129984A (en) Method and device for absorption information measurement within scatterer-absorber
JP2006516207A (en) Photoacoustic analysis method and apparatus
JP2008307372A (en) Biological information imaging apparatus, biological information analyzing method, and biological information imaging method
JPH0961359A (en) Concentration measuring device
JPH10111238A (en) Method and apparatus for measuring absorption information of scattering body
US20050277817A1 (en) Noninvasive measurement system for monitoring activity condition of living body
JPH11230901A (en) Measuring apparatus for reflection of light
JPH0698890A (en) Optical ct apparatus
USRE36044E (en) Path constrained spectrophotometer and method for determination of spatial distribution of light or other radiation scattering and absorbing substances in a radiation scattering medium
JP3304559B2 (en) Optical measurement method and device
US20060187533A1 (en) Method and device for time-gated amplification of photons
JPH09187442A (en) Non-invasion biochemical sensor
Shimizu et al. Fundamental study on near-axis scattered light and its application to optical computed tomography
Di Costanzo-Mata et al. Time-resolved NIROT ‘pioneer’system for imaging oxygenation of the preterm brain: preliminary results
JP2852096B2 (en) Method and apparatus for suppressing scattered light component while passing through subject