JPH0698279B2 - Gas exchange hollow fiber membrane - Google Patents

Gas exchange hollow fiber membrane

Info

Publication number
JPH0698279B2
JPH0698279B2 JP63036185A JP3618588A JPH0698279B2 JP H0698279 B2 JPH0698279 B2 JP H0698279B2 JP 63036185 A JP63036185 A JP 63036185A JP 3618588 A JP3618588 A JP 3618588A JP H0698279 B2 JPH0698279 B2 JP H0698279B2
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
gas exchange
gas
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63036185A
Other languages
Japanese (ja)
Other versions
JPH01210016A (en
Inventor
泰志 下村
正彦 山口
健次 武下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP63036185A priority Critical patent/JPH0698279B2/en
Publication of JPH01210016A publication Critical patent/JPH01210016A/en
Publication of JPH0698279B2 publication Critical patent/JPH0698279B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/62Manufacturing or production processes characterised by the final manufactured product related technologies for production or treatment of textile or flexible materials or products thereof, including footwear

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、耐圧性が優れた多孔質ガス交換中空糸膜に関
するものである。本発明のガス交換中空糸膜は、例えば
超純水を製造する際の帯電防止用炭酸ガス溶解用隔膜と
して好適に使用することができるものである。
TECHNICAL FIELD The present invention relates to a porous gas exchange hollow fiber membrane having excellent pressure resistance. The gas exchange hollow fiber membrane of the present invention can be suitably used, for example, as an antistatic carbon dioxide gas dissolving membrane when producing ultrapure water.

[従来の技術] ガス交換中空糸膜は一般に緻密層膜型と多孔質膜型とに
分類される。前者の例としては、ポリイミド製ガス分離
膜などがあり、これらは極めて耐圧性能の優れているも
のが多い。また、後者の例としては、第4図に示すよう
な、超純水を製造する際の帯電防止用の炭酸ガス溶解用
隔膜などがある。
[Prior Art] Gas exchange hollow fiber membranes are generally classified into a dense layer membrane type and a porous membrane type. Examples of the former include a gas separation membrane made of polyimide, etc., and many of these have extremely excellent pressure resistance. Further, as an example of the latter, there is a carbon dioxide gas dissolving diaphragm for antistatic when producing ultrapure water as shown in FIG.

第4図の場合、隔膜10の片側から微量の炭酸ガス(CO2
ガス)Aを供給し、CO2ガスAは隔膜20を通って、隔膜2
0の反対側を流れる超純水B中に溶解し、超純水Bの比
抵抗値を下げる機能を果たし、比抵抗調整超純水Cを製
造している。また、超純水Bの比抵抗値のコントロール
はCO2ガスAの供給量を微量調節することにより行なう
ものである。
In the case of FIG. 4, a small amount of carbon dioxide (CO 2
Gas) A, CO 2 gas A passes through the diaphragm 20,
It dissolves in ultrapure water B flowing on the opposite side of 0, fulfills the function of lowering the specific resistance value of ultrapure water B, and manufactures specific resistance-adjusted ultrapure water C. Further, the control of the specific resistance value of the ultrapure water B is performed by minutely adjusting the supply amount of the CO 2 gas A.

[発明が解決しようとする課題] しかし、このような多孔質膜型である超純水帯電防止用
の炭酸ガス溶解用隔膜にあっては、例えば、20kg/cm2
度の加水圧下において、長期間の使用に当って水漏れを
生じるという欠点があり、従って耐圧性能が優れている
炭酸ガス溶解用隔膜、即ち、ガス交換膜が要請されてい
た。
[Problems to be Solved by the Invention] However, in such a porous membrane-type ultrapure water antistatic carbon dioxide dissolving membrane, for example, under a hydrolyzing pressure of about 20 kg / cm 2 , There has been a demand for a carbon dioxide gas-dissolving membrane, that is, a gas exchange membrane, which has the drawback of causing water leakage during long-term use and therefore has excellent pressure resistance.

[課題を解決するための手段] そこで、本発明者は、多孔質膜型のガス交換中空糸膜に
おいて、その耐圧性能の向上を目指し鋭意検討を行った
結果、本発明に至ったものである。
[Means for Solving the Problems] Therefore, the inventors of the present invention have achieved the present invention as a result of extensive studies aimed at improving the pressure resistance of a porous membrane type gas exchange hollow fiber membrane. .

即ち、本発明は、疎水性高分子物質からなる多孔質中空
糸膜であって、その外径が30〜500μm、膜厚が30μm
以上、平均孔径が0.001〜0.010μm(水銀圧入法による
測定)、空隙率が2.5〜20%であり、N2ガス透過性能が5
0〜500l/min・m2・kg/cm2であるガス交換中空糸膜を提
供するもので、このような構成とすることで、20kg/cm2
程度の加圧下の使用においても破損しない中空糸膜とな
ることを見出したものである。
That is, the present invention is a porous hollow fiber membrane made of a hydrophobic polymer substance, having an outer diameter of 30 to 500 μm and a film thickness of 30 μm.
As described above, the average pore diameter is 0.001 to 0.010 μm (measured by mercury porosimetry), the porosity is 2.5 to 20%, and the N 2 gas permeation performance is 5
It provides a gas exchange hollow fiber membrane of 0 to 500 l / min · m 2 · kg / cm 2 , and with such a configuration, it is 20 kg / cm 2
It was found that the hollow fiber membrane does not break even when used under a certain pressure.

本発明のガス交換中空糸膜は、疎水性高分子物質から形
成されるもので、特にその種類を限定されるものではな
いが、例えばポリプロピレン、ポリエチレンなどのポリ
オレフィン系樹脂、ポリフッ化ビニリデン、エチレンテ
トラフルオロエチレン共重合体などのフッ素樹脂、シリ
コーン樹脂等が好ましいものとして挙げられ、その中で
もポリオレフィン系樹脂が好ましく、ポリプロピレンが
特に好ましい。
The gas exchange hollow fiber membrane of the present invention is formed of a hydrophobic polymer material, and its type is not particularly limited, but examples thereof include polyolefin resins such as polypropylene and polyethylene, polyvinylidene fluoride, and ethylene tetra. Fluorine resins such as fluoroethylene copolymers, silicone resins and the like are mentioned as preferable ones, and among them, polyolefin resins are preferable and polypropylene is particularly preferable.

ガス交換中空糸膜は、その周壁部に多数の微小細孔を有
しており、そこでガス交換が行われる。
The gas exchange hollow fiber membrane has a large number of fine pores in its peripheral wall, and gas exchange is performed there.

微小細孔の平均孔系は0.001〜0.010μm、好ましくは0.
003〜0.006μm(水銀圧入法による測定)であり、中空
糸膜の外径は30〜500μm、好ましくは150〜350μm、
その膜厚は30μm以上、好ましくは45μm以上である。
The average pore size of the micropores is 0.001-0.010 μm, preferably 0.
003 to 0.006 μm (measured by mercury porosimetry), and the outer diameter of the hollow fiber membrane is 30 to 500 μm, preferably 150 to 350 μm,
The film thickness is 30 μm or more, preferably 45 μm or more.

微小細孔の平均孔系が0.001μmより小さいとガス透過
量が小さく、微小細孔の平均孔径が0.010μmより大き
いと、加水圧中で長期間放置している場合に水もれが生
じ、好ましくない。
When the average pore size of the fine pores is smaller than 0.001 μm, the gas permeation amount is small, and when the average pore size of the fine pores is larger than 0.010 μm, water leakage occurs when left for a long time under water pressure, Not preferable.

中空糸膜の膜厚が30μmより薄いと、20kg/cm2程度の加
圧下では長期間の使用に耐えることができない。
If the thickness of the hollow fiber membrane is less than 30 μm, it cannot withstand long-term use under a pressure of about 20 kg / cm 2 .

また、中空糸膜の空隙率が2.5%より小さいとガス透過
量が小さく、中空糸膜の空隙率が20%を超ると耐圧性が
低下する。
If the porosity of the hollow fiber membrane is less than 2.5%, the amount of gas permeation is small, and if the porosity of the hollow fiber membrane exceeds 20%, the pressure resistance decreases.

上記の如き構成を有する疎水性高分子物質からなる多孔
質中空糸膜は、20kg/cm2程度の加圧下においても破損せ
ず、しかも50〜500l/min・m2・kg/cm2、好ましくは100
〜250l/min・m2・kg/cm2なるN2ガス透過性能を達成でき
るものである。
The porous hollow fiber membrane composed of the hydrophobic polymer substance having the above-mentioned constitution does not break even under a pressure of about 20 kg / cm 2 , and further 50 to 500 l / min · m 2 · kg / cm 2 , preferably Is 100
It is possible to achieve N 2 gas permeation performance of up to 250 l / min · m 2 · kg / cm 2 .

次に、本発明のガス交換中空糸膜を炭酸ガス溶解用隔膜
として用い、超純水を製造する場合の使用例を、第1図
及び第2図に従って説明する。
Next, an example of use in the case of producing ultrapure water using the gas exchange hollow fiber membrane of the present invention as a membrane for dissolving carbon dioxide will be described with reference to FIGS. 1 and 2.

第2図(a)(b)に示すように、開口端100を開孔状
態に保ったまま端部を接着剤(ポッティング材)101に
て液密に固定したU字状のガス交換中空糸膜102をハウ
ジング103に収納して、ガス交換カートリッジ104を作製
し、第1図の如く超純水Bが流れるチューブ105に取付
ける。
As shown in FIGS. 2 (a) and (b), a U-shaped gas exchange hollow fiber in which the open end 100 is kept open and the end is liquid-tightly fixed with an adhesive (potting material) 101. The membrane 102 is housed in the housing 103, the gas exchange cartridge 104 is manufactured, and is attached to the tube 105 through which the ultrapure water B flows as shown in FIG.

次いで、チューブ105内に超純水Bを流し、一方、ガス
交換中空糸膜102の中空部にCO2ガスAを供給する。そう
すると、CO2ガスAは中空糸膜102の透孔を介して超純水
B中に溶解し、比抵抗値が下がった比抵抗調整超純水C
が製造されるのである。
Next, ultrapure water B is flown into the tube 105, while CO 2 gas A is supplied to the hollow portion of the gas exchange hollow fiber membrane 102. Then, the CO 2 gas A is dissolved in the ultrapure water B through the through holes of the hollow fiber membrane 102, and the specific resistance is lowered.
Is manufactured.

[実施例] 以下、本発明を実施例に基ずき更に詳細に説明するが、
本発明がこれら実施例に限定されないことは明らかであ
ろう。
[Examples] Hereinafter, the present invention will be described in more detail with reference to Examples.
It will be clear that the invention is not limited to these examples.

(実施例1) ポリプロピレンを直径8mm、内径7mmの気体供給管を備え
た中空糸製造用ノズルを使用し、紡糸温度210℃、引取
速度200m/粉の条件で紡糸した。得られたポリプロピレ
ン中空糸を150℃の加熱空気槽で6分間加熱処理し、次
いで液体窒素(−195℃)中で、初期長さに対し20%延
伸し、延伸状態を保ったまま145℃の加熱空気槽内で50
秒間熱処理を行ない、多孔質ポリプロピレン中空糸を製
造した。
Example 1 Polypropylene was spun under the conditions of a spinning temperature of 210 ° C. and a take-up speed of 200 m / powder, using a hollow fiber manufacturing nozzle equipped with a gas supply pipe having a diameter of 8 mm and an inner diameter of 7 mm. The obtained polypropylene hollow fiber was heat-treated in a heated air tank at 150 ° C for 6 minutes, and then stretched in liquid nitrogen (-195 ° C) by 20% with respect to the initial length, and the stretched state was maintained at 145 ° C. 50 in heated air tank
Heat treatment was performed for a second to produce a porous polypropylene hollow fiber.

得られた多孔質ポリプロピレン中空糸の平均透過径を水
銀圧入法で測定したところ、0.004μmであり、空隙率
は4.18%であった。
When the average permeation diameter of the obtained porous polypropylene hollow fiber was measured by the mercury porosimetry, it was 0.004 μm and the porosity was 4.18%.

この多孔質ポリプロピレン中空糸を第3図(a)(b)
に示すようにモジュール化した。第3図においては、多
孔質ポリプロピレン中空糸10を複数本集束し、その両端
部を開口状態でポッティング材11に埋め込み、このポッ
ティング材11により多孔質ポリプロピレン中空糸10の両
端部をハウジング12に液密に封止して人工肺タイプのモ
ジュールを構成している。このモジュールにおいて、第
3図(a)に示す如くモジュールの入口13よりエタノー
ルXを通すことにより多孔質ポリプロピレン中空糸10を
浸した。このようにすることにより、中空糸10内の内表
面部にアルコールの薄層を形成させた後、第3図(b)
のように、モジュールの出口14にキャップ15を嵌めて封
じ、次いで入口13からN2ガスにて20kg/cm2の加圧を行な
った。こうすることにより、中空糸内表面に20kg/cm2
圧力が加わることになる。
This porous polypropylene hollow fiber is shown in Figs. 3 (a) and (b).
It was modularized as shown in. In FIG. 3, a plurality of porous polypropylene hollow fibers 10 are bundled, both ends thereof are embedded in a potting material 11 in an open state, and both end portions of the porous polypropylene hollow fibers 10 are filled in a housing 12 by the potting material 11. It is sealed tightly to form an artificial lung type module. In this module, the porous polypropylene hollow fiber 10 was immersed by passing ethanol X through the inlet 13 of the module as shown in FIG. 3 (a). In this way, after forming a thin layer of alcohol on the inner surface of the hollow fiber 10, FIG.
As described above, a cap 15 was fitted and sealed in the outlet 14 of the module, and then a pressure of 20 kg / cm 2 was applied from the inlet 13 with N 2 gas. By doing so, a pressure of 20 kg / cm 2 is applied to the inner surface of the hollow fiber.

その結果、多孔質ポリプロピレン中空糸膜は破損せず、
充分な強度を示した。
As a result, the porous polypropylene hollow fiber membrane is not damaged,
It showed sufficient strength.

(実施例2) また、この多孔質ポリプロピレン中空糸を実施例1と同
様にモジュール化し、中空糸外側に水を満たした4kg/cm
2の静水圧下で1ケ付き放置したこところ、この多孔質
中空糸には何ら異常は認められなかった。
(Example 2) Also, this porous polypropylene hollow fiber was modularized in the same manner as in Example 1, and the outer side of the hollow fiber was filled with water at 4 kg / cm.
No abnormalities were observed in this porous hollow fiber when it was allowed to stand for one piece under hydrostatic pressure of 2 .

[発明の効果] 以上説明したように、本発明のガス交換中空糸膜によれ
ば、上記のような特定の物性を有する如き構成としたの
で、耐圧性に優れ、加水圧下においても長期間の使用に
耐えることができるという利点を有する。
[Effects of the Invention] As described above, according to the gas exchange hollow fiber membrane of the present invention, the gas exchange hollow fiber membrane is configured to have the specific physical properties as described above, and thus has excellent pressure resistance and a long period of time even under a hydrous pressure. It has the advantage that it can withstand the use of.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のガス交換中空糸膜を炭酸ガス溶解用隔
膜に用いた例を示す断面図、第2図は本発明のガス交換
中空糸膜を用いて作製されたガス交換カートリッジの例
を示すもので、第2図(a)は断面図、第2図(b)は
平面図、第3図(a)(b)は本発明の中空糸膜をモジ
ュール化した例を示す概要図、第4図は炭酸ガス溶解用
隔膜の例を示す説明図である。 10……多孔質ポリプロピレン中空糸、11……ポッティン
グ材、12……ハウジング、13……モジュール入口、14…
…モジュール出口、15……キャップ、20……隔膜、A…
…CO2ガス、B……超純水、C……比抵抗調整超純水、
X……エタノール、100……開口端、101……接着剤、10
2……ガス交換中空糸膜、103……ハウジング、104……
ガス交換カートリッジ、105……チューブ。
FIG. 1 is a cross-sectional view showing an example in which the gas exchange hollow fiber membrane of the present invention is used as a membrane for dissolving carbon dioxide, and FIG. 2 is an example of a gas exchange cartridge produced using the gas exchange hollow fiber membrane of the present invention. FIG. 2 (a) is a cross-sectional view, FIG. 2 (b) is a plan view, and FIGS. 3 (a) and 3 (b) are schematic views showing an example in which the hollow fiber membrane of the present invention is modularized. FIG. 4 is an explanatory view showing an example of a carbon dioxide gas dissolving diaphragm. 10 …… Porous polypropylene hollow fiber, 11 …… Potting material, 12 …… Housing, 13 …… Module inlet, 14…
… Module outlet, 15… Cap, 20… Septa, A…
… CO 2 gas, B …… Ultrapure water, C …… Resistance adjustment ultrapure water,
X: ethanol, 100: open end, 101: adhesive, 10
2 …… Gas exchange hollow fiber membrane, 103 …… Housing, 104 ……
Gas exchange cartridge, 105 ... tube.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】疎水性高分子物質からなる多孔質中空糸膜
であって、その外径が30〜500μm、膜厚が30μm以
上、平均孔径が0.001〜0.010μm(水銀圧入法による測
定)、空隙率が2.5〜20%であり、N2ガス透過性能が50
〜500l/min・m2・kg/cm2であることを特徴とするガス交
換中空糸膜。
1. A porous hollow fiber membrane made of a hydrophobic polymer substance, having an outer diameter of 30 to 500 μm, a film thickness of 30 μm or more, and an average pore diameter of 0.001 to 0.010 μm (measured by mercury porosimetry), Porosity is 2.5 to 20% and N 2 gas permeation performance is 50
Gas exchange hollow fiber membrane, characterized in that it is ~ 500 l / min · m 2 · kg / cm 2 .
JP63036185A 1988-02-18 1988-02-18 Gas exchange hollow fiber membrane Expired - Fee Related JPH0698279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63036185A JPH0698279B2 (en) 1988-02-18 1988-02-18 Gas exchange hollow fiber membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63036185A JPH0698279B2 (en) 1988-02-18 1988-02-18 Gas exchange hollow fiber membrane

Publications (2)

Publication Number Publication Date
JPH01210016A JPH01210016A (en) 1989-08-23
JPH0698279B2 true JPH0698279B2 (en) 1994-12-07

Family

ID=12462671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63036185A Expired - Fee Related JPH0698279B2 (en) 1988-02-18 1988-02-18 Gas exchange hollow fiber membrane

Country Status (1)

Country Link
JP (1) JPH0698279B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6306491B1 (en) 1996-12-20 2001-10-23 Gore Enterprise Holdings, Inc. Respiratory aids

Also Published As

Publication number Publication date
JPH01210016A (en) 1989-08-23

Similar Documents

Publication Publication Date Title
CA1323271C (en) Membrane-type artificial lung and method of using it
US5192320A (en) Artificial lung and method of using it
US4268279A (en) Gas transfer process with hollow fiber membrane
GB2025256A (en) A Gas Transfer Process Using a Hollow Fiber Membrane
KR20050093018A (en) Efficient 3-d nanostructured membranes
JP2700170B2 (en) Membrane oxygenator
KR20140082532A (en) Method for composite membrane module
CN110559866A (en) High-permeability compact hollow fiber membrane for blood oxygenation
CN112657343A (en) Polyamide hollow fiber composite separation membrane and preparation method thereof
JPH07121340B2 (en) Hollow fiber membrane
EP0041692A1 (en) Blood oxygenator
JPH0771795A (en) Humidifier of hollow yarn membrane type
JPH06210146A (en) Hollow fiber inhomogeneous membrane and its production
JPH0698279B2 (en) Gas exchange hollow fiber membrane
JPH0760082A (en) Method and apparatus for adjusting specific resistance of ultrapure water
JPH0751505A (en) Method and apparatus for removal of gal dissolved in aqueous solution
WO2011010690A1 (en) Process for producing porous film
JP2622629B2 (en) Manufacturing method of hollow fiber membrane
JPH055529B2 (en)
JP2592725B2 (en) Manufacturing method of hollow fiber membrane
JP2553248B2 (en) Method for producing porous hollow fiber membrane
CN214131098U (en) Durable hollow fiber ultrafiltration membrane
JP2002035557A (en) Hollow fiber microporous membrane and membrane type oxygenator having the same incorporated therein
JP2018012071A (en) Gas permeable membrane and production method thereof
KR20180097700A (en) METHOD FOR PRODUCING FILM AND RELATED FILM AND FILTER ELEMENT

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees