JPH0697696A - Superconductive magnetic shielding body - Google Patents

Superconductive magnetic shielding body

Info

Publication number
JPH0697696A
JPH0697696A JP4239940A JP23994092A JPH0697696A JP H0697696 A JPH0697696 A JP H0697696A JP 4239940 A JP4239940 A JP 4239940A JP 23994092 A JP23994092 A JP 23994092A JP H0697696 A JPH0697696 A JP H0697696A
Authority
JP
Japan
Prior art keywords
superconductor
magnetic
tubular
magnetic shield
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4239940A
Other languages
Japanese (ja)
Inventor
Yoshimitsu Ogawa
義光 小川
Hideetsu Haseyama
秀悦 長谷山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP4239940A priority Critical patent/JPH0697696A/en
Publication of JPH0697696A publication Critical patent/JPH0697696A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Measuring And Other Instruments (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PURPOSE:To make weak magnetic signal measurement possible such as a biological magnetic signal and various high precision magnetic measurement by using a shielding body, which comprises an open-ended tubular superconductor and a plate-like superconductor arranged inside both ends of the tubular superconductor. CONSTITUTION:A plate-like superconductor 2 is arranged at a distance (z) inward from each of the open ends of a tubular superconductor 1. Since the combination of the tubular superconductor 1 and the plate-like superconductors 2 stops external magnetic fields from leaking through the ends of the tubular superconductor 1, a ratio L/D of a length L to an opening diameter D which is necessary for high magnetic shield characteristic can be made small. Therefore, a low magnetic field space can be acquired readily and various high precision magnetic measurement including weak magnetic signal measurement such as a biological magnetic signal becomes possible without being affected by earth magnetism, noises, magnetic field, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超電導磁気シールド体
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting magnetic shield.

【0002】[0002]

【従来の技術】従来、磁気シールド材としては、パーマ
ロイ合金等の高透磁率を有する材料が多く用いられてき
たが、これらの材料は低周波(数Hz以下)の交流磁界
におけるシールド効率が悪く、また高い減衰率を得るた
めには複数の積層を必要とし、実用上これら金属や合金
のシールド材を大型化するとその重量が著しく大きなも
のとなってしまうという欠点がある。
2. Description of the Related Art Conventionally, as a magnetic shield material, many materials having a high magnetic permeability such as permalloy alloy have been used, but these materials have a poor shield efficiency in an AC magnetic field of low frequency (several Hz or less). Further, in order to obtain a high attenuation factor, a plurality of laminated layers are required, and there is a drawback in that the weight of the shield material made of these metals or alloys becomes remarkably large when practically used.

【0003】他の磁気シールド材として、筒状超電導体
のマイスナー効果を利用した磁気シールド体が提案され
ているが、この場合、筒状体両端の開口部からの内部に
回り込む漏れ磁場の影響で、良好なシールド効率(減衰
率)が得られない。この対策として、筒状超電導体開口
径に対して少なくとも3倍以上の長さの筒状超電導体を
必要としていたのである。
As another magnetic shield material, a magnetic shield body utilizing the Meissner effect of a tubular superconductor has been proposed, but in this case, due to the effect of a leakage magnetic field that wraps around the inside of the openings at both ends of the tubular body. , Good shield efficiency (attenuation rate) cannot be obtained. As a countermeasure against this, a tubular superconductor having a length at least three times the opening diameter of the tubular superconductor is required.

【0004】[0004]

【発明が解決しようとする課題】本発明は、従来の高透
磁率材料では得られない低磁界空間が手軽に得られ、地
磁気や雑音磁界等に影響されることなく生体磁気信号等
の微弱磁気信号測定を始めとする様々な高精度な磁気測
定を可能とし、しかも軽量・低コストな超電導磁気シー
ルド体を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention can easily obtain a low magnetic field space that cannot be obtained by a conventional high magnetic permeability material, and can detect a weak magnetic field such as a biomagnetic signal without being affected by a geomagnetic field or a noise magnetic field. An object of the present invention is to provide a superconducting magnetic shield body which enables various highly accurate magnetic measurements including signal measurement, and is lightweight and low cost.

【0005】[0005]

【課題を解決するための手段】本発明は、両端開放の筒
状超電導体と該筒状超電導体の両端内部に配設された板
状超電導体とからなる超電導磁気シールド体を提供する
ものである。
DISCLOSURE OF THE INVENTION The present invention provides a superconducting magnetic shield comprising a tubular superconductor with both ends open and plate-shaped superconductors disposed inside both ends of the tubular superconductor. is there.

【0006】上記筒状超電導体と板状超電導体は、酸化
物超電導体に限定されるものではないが、酸化物超電導
体であることが好ましく、しかも該酸化物超電導体が焼
結バルク,厚膜及び薄膜のうちいずれかにより作製され
たものが好ましい。更に、上記筒状超電導体が筒状一体
構造のものあるいは複数の筒状超電導体を組合わせた構
造のものであってもよいのである。なお、本発明に係る
超電導磁気シールド体は、上記板状超電導体を筒状超電
導体両端の開口端よりやや内部に配設することが重要な
のである。
The tubular superconductor and the plate-shaped superconductor are not limited to oxide superconductors, but are preferably oxide superconductors, and the oxide superconductors are sintered bulks and thick It is preferably made of either a film or a thin film. Further, the tubular superconductor may have a tubular integral structure or a structure in which a plurality of tubular superconductors are combined. In the superconducting magnetic shield according to the present invention, it is important to dispose the plate-shaped superconductor slightly inside the open ends of both ends of the cylindrical superconductor.

【0007】図1は、本発明に係る超電導磁気シールド
体の断面図であり、1は筒状超電導体、2は板状超電導
体であって、該板状超電導体2は筒状超電導体1両端の
開口部からやや内部に配設されている。この場合、板状
超電導体の配設位置によって磁気シールド効率が著しく
左右されるのである。即ち、板状超電導体2を筒状超電
導体1の両端開口部の外部に配設した場合、片端のみに
板状超電導体2を配設した場合、あるいは板状超電導体
2を配設せずに両端開口部が開放の場合については、後
記比較例に示すように減衰率の低下が著しく、所期の目
的を達することができない。
FIG. 1 is a sectional view of a superconducting magnetic shield according to the present invention. Reference numeral 1 is a cylindrical superconductor, 2 is a plate-shaped superconductor, and the plate-shaped superconductor 2 is a cylindrical superconductor 1. It is arranged slightly inside from the openings at both ends. In this case, the magnetic shield efficiency is significantly affected by the position of the plate-shaped superconductor. That is, when the plate-shaped superconductor 2 is arranged outside the openings at both ends of the cylindrical superconductor 1, when the plate-shaped superconductor 2 is arranged at only one end, or the plate-shaped superconductor 2 is not arranged. In the case where both end openings are open, the attenuation rate is remarkably lowered as shown in the comparative example, and the intended purpose cannot be achieved.

【0008】図2は、後記の実施例1及び比較例2で作
製した(Bi,Pb)SrCaCuOy酸化物
超電導磁気シールド体、ならびに比較例1に示した高透
磁率材製の磁気シールド体の磁気シールド特性を示した
グラフである。図2中、縦軸は減衰率(Htr/He
x)、横軸はZ/D(Z:開口部からの距離,D:開口
径)を示す。Aは本発明に係る実施例1に示した筒状酸
化物超電導磁気シールド体の開口径Dに対する開口端か
らの距離Zの比Z/Dに対する磁気シールド特性を示す
グラフであり、Bは比較例2に示した筒状酸化物超電導
磁気シールド体の開口径Dに対する開口端からの距離Z
の比Z/Dに対する磁気シールド特性を示すグラフ(板
状超電導体なしで両端開放の場合)である。また、Cは
比較例1に示した高透磁率材料パーマロイ円筒における
開口径Dに対する開口端からの距離Zの比Z/Dに対す
る磁気シールド特性を示すグラフである。この図2か
ら、本発明の超電導磁気シールド体がいかに優れたシー
ルド特性を有するかが分る。
FIG. 2 is a (Bi, Pb) 2 Sr 2 Ca 2 Cu 3 Oy oxide superconducting magnetic shield produced in Example 1 and Comparative Example 2 described later, and the high magnetic permeability material shown in Comparative Example 1. It is a graph which showed the magnetic shield characteristic of the magnetic shield body made from. In FIG. 2, the vertical axis represents the attenuation rate (Htr / He
x), the horizontal axis represents Z / D (Z: distance from the opening, D: opening diameter). A is a graph showing the magnetic shield characteristics with respect to the ratio Z / D of the distance Z from the opening end to the opening diameter D of the tubular oxide superconducting magnetic shield body shown in Example 1 according to the present invention, and B is a comparative example. The distance Z from the opening end with respect to the opening diameter D of the tubular oxide superconducting magnetic shield shown in FIG.
3 is a graph showing the magnetic shield characteristics with respect to the ratio Z / D of (in the case where both ends are open without a plate-shaped superconductor). Further, C is a graph showing the magnetic shield characteristics with respect to the ratio Z / D of the distance Z from the opening end to the opening diameter D in the high magnetic permeability material permalloy cylinder shown in Comparative Example 1. From FIG. 2, it can be seen how the superconducting magnetic shield of the present invention has excellent shield characteristics.

【0009】本発明に係る超電導磁気シールド体は、超
電導体のマイスナー効果によりシールド体内部の磁界を
減少させると共に、外部における磁場変動を遮断し、手
軽に低磁界空間を得ることができ、従って生体磁気計測
をはじめとするSQUID等の高精度磁気センサーを利
用した非常に弱い磁気信号の計測を行なう上での理想的
環境空間を得ることができる。
The superconducting magnetic shield according to the present invention can reduce the magnetic field inside the shield due to the Meissner effect of the superconductor and block the fluctuation of the external magnetic field to easily obtain a low magnetic field space. It is possible to obtain an ideal environment space for measuring a very weak magnetic signal using a high-accuracy magnetic sensor such as SQUID including magnetic measurement.

【0010】また、本発明に係る超電導磁気シールド体
は、筒状超電導体と板状超電導体を組合せることによ
り、筒状超電導体の両端開口部からの回り込み漏れ磁場
を遮蔽することができ、高い磁気シールド特性に必要な
開口径Dに対する長さLの比L/Dを小さくすることが
可能であり、従って軽量かつ低コストで有効な磁気シー
ルド特性を得ることができるのである。次に、本発明の
実施例を説明する。
Further, the superconducting magnetic shield according to the present invention can shield the leakage magnetic field leaking from the openings at both ends of the tubular superconductor by combining the tubular superconductor and the plate superconductor. It is possible to reduce the ratio L / D of the length L to the opening diameter D required for high magnetic shield characteristics, and thus it is possible to obtain effective magnetic shield characteristics at a low weight and at low cost. Next, examples of the present invention will be described.

【0011】[0011]

【実施例】実施例1 円筒ならびに円板型に成形・焼結した(Bi,Pb)
SrCaCuOy酸化物超電導バルクにより作製
した超電導磁気シールド体につき説明する。
[Examples] Example 1 (Bi, Pb) 2 molded and sintered into a cylindrical shape and a disk shape.
A superconducting magnetic shield manufactured by using an Sr 2 Ca 2 Cu 3 Oy oxide superconducting bulk will be described.

【0012】Bi:Pb:Sr:Ca:Cu=2:0.
4:2:2:3の割合で混合した各酸化物及び炭酸塩
(Bi,PbO,SrCO,CaCO,Cu
O)を850℃で100時間空気中で焼成した後、徐冷
することで、(Bi,Pb)SrCaCuOy
酸化物超電導粉末を作製した。
Bi: Pb: Sr: Ca: Cu = 2: 0.
Oxides and carbonates (Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 , Cu mixed in a ratio of 4: 2: 2: 3).
O) is calcined in the air at 850 ° C. for 100 hours and then slowly cooled to obtain (Bi, Pb) 2 Sr 2 Ca 2 Cu 3 Oy.
An oxide superconducting powder was produced.

【0013】この粉末を外径160mm,内径150m
m,長さ400mmの円筒及び直径145mmφで厚さ
5mmの2枚の円板状に成形・焼結して、(Bi,P
b)SrCaCuOy酸化物超電導円筒ならび
に円板(Tc=105K,Jc=1000A/cm
を作製した。
This powder has an outer diameter of 160 mm and an inner diameter of 150 m.
m, 400 mm long cylinder and 2 disks with a diameter of 145 mmφ and a thickness of 5 mm are formed and sintered to form (Bi, P
b) 2 Sr 2 Ca 2 Cu 3 Oy oxide superconducting cylinder and disk (Tc = 105K, Jc = 1000A / cm 2 ).
Was produced.

【0014】この酸化物超電導バルク円筒両端に開口端
から10mm内部の位置に円筒中心軸に垂直に円板状超
電導バルクを配設した。これらを液体窒素(77K)で
冷却した後、円筒中心軸に対して平行ならびに垂直方向
に外部から磁界を印加し、磁気シールド特性を測定した
結果、200G以下の外部磁界に対しシールド体内部の
ほぼ全体で減衰率10−5倍以上の磁気シールド空間が
得られた(図2中のAを参照)。
At both ends of the oxide superconducting bulk cylinder, a disk-shaped superconducting bulk was arranged at a position within 10 mm from the open end, perpendicular to the center axis of the cylinder. After cooling them with liquid nitrogen (77K), a magnetic field was applied from the outside in the directions parallel and perpendicular to the central axis of the cylinder, and the magnetic shield characteristics were measured. A magnetic shield space having an attenuation rate of 10 −5 or more was obtained as a whole (see A in FIG. 2).

【0015】実施例2 MgOの円筒ならびに円板上に(Bi,Pb)Sr
CaCuOy酸化物超電導厚膜を成膜し作製した超
電導磁気シールド体につき説明する。
Example 2 (Bi, Pb) 2 Sr 2 on MgO cylinders and discs
A superconducting magnetic shield manufactured by depositing a Ca 2 Cu 3 Oy oxide superconducting thick film will be described.

【0016】Bi:Pb:Sr:Ca:Cu=2:0.
4:2:2:3の割合で混合した各酸化物及び炭酸塩
(Bi,PbO,SrCO,CaCO,Cu
O)を850℃で100時間空気中で焼成した後、徐冷
することで、(Bi,Pb)SrCaCuOy
酸化物超電導粉末を作製した。
Bi: Pb: Sr: Ca: Cu = 2: 0.
Oxides and carbonates (Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 , Cu mixed in a ratio of 4: 2: 2: 3).
O) is calcined in the air at 850 ° C. for 100 hours and then slowly cooled to obtain (Bi, Pb) 2 Sr 2 Ca 2 Cu 3 Oy.
An oxide superconducting powder was produced.

【0017】この粉末とポリイソブチルメタクリレート
を10wt%溶かしたテルピネオールを3:1の重量比
で混合しペースト化した。
This powder and terpineol in which 10 wt% of polyisobutylmethacrylate were dissolved were mixed at a weight ratio of 3: 1 to form a paste.

【0018】外径160mm,内径150mm,長さ4
00mmの円筒及び直径145mm,厚さ1mmの2枚
の円板状のMgO多結晶焼結体表面に上記ペーストを膜
厚200μmに塗布した後、850℃で100時間空気
中で焼成し、徐冷することにより、MgO円筒ならびに
円板表面に(Bi,Pb)SrCaCuOy酸
化物超電導厚膜(Tc=105K,Jc=1000A/
cm)を成膜した。
Outer diameter 160 mm, inner diameter 150 mm, length 4
The paste was applied to a surface of a cylinder of 00 mm and two disc-shaped MgO polycrystalline sintered bodies having a diameter of 145 mm and a thickness of 1 mm to a film thickness of 200 μm, followed by firing in air at 850 ° C. for 100 hours and gradual cooling. By doing so, on the MgO cylinder and the disk surface, (Bi, Pb) 2 Sr 2 Ca 2 Cu 3 Oy oxide superconducting thick film (Tc = 105K, Jc = 1000A /
cm 2 ) was deposited.

【0019】この酸化物超電導厚膜円筒両端に開口端か
ら10mm内部の位置に円筒中心軸に垂直に円板状超電
導厚膜を配設した。これらを液体窒素(77K)で冷却
した後円筒中心軸に対して平行ならびに垂直方向に外部
から磁界を印加し、磁気シールド特性を測定した結果、
10G以下の外部磁界に対し磁気シールド体内部のほぼ
全体で減衰率10−5倍以上の磁気シールド空間が得ら
れた。
A disk-shaped superconducting thick film was disposed at a position within 10 mm from the opening end on both ends of the oxide superconducting thick film cylinder perpendicularly to the central axis of the cylinder. After cooling these with liquid nitrogen (77K), applying a magnetic field from the outside in the direction parallel and perpendicular to the central axis of the cylinder, and measuring the magnetic shield characteristics,
With respect to an external magnetic field of 10 G or less, a magnetic shield space having an attenuation rate of 10 −5 or more was obtained almost entirely inside the magnetic shield body.

【0020】実施例3 Niの円筒ならびに円板上にYBaCuOx酸化物
超電導厚膜を成膜し作製した超電導磁気シールド体につ
き説明する。
Example 3 A superconducting magnetic shield manufactured by depositing a YBa 2 Cu 3 Ox oxide superconducting thick film on a Ni cylinder and a disk will be described.

【0021】Y:Ba:Cu=1:2:3の割合で混合
した各酸化物及び炭酸塩(Y,BaCO,Cu
O)を950℃で50時間空気中で焼成し、徐冷するこ
とでYBaCuOx酸化物超電導粉末を作製した。
Oxides and carbonates (Y 2 O 3 , BaCO 3 , Cu) mixed in a ratio of Y: Ba: Cu = 1: 2: 3.
O) was calcined in the air at 950 ° C. for 50 hours and gradually cooled to prepare a YBa 2 Cu 3 Ox oxide superconducting powder.

【0022】この粉末とエチルセルロースを5wt%溶
かしたテルヒネオールを3:1の重量比で混合しペース
ト化した。
This powder was mixed with terhineol containing 5% by weight of ethyl cellulose dissolved in a weight ratio of 3: 1 to form a paste.

【0023】外径160mm,内径150mm,長さ4
00mmの円筒及び直径145mm厚さ1mmの2枚の
円板状Ni表面に上記ペーストを膜厚200μmに塗布
した後、975℃で60分間酸素気流中で焼成し、徐冷
することにより、Ni円筒ならびにNi円板表面にYB
CuOx酸化物超電導厚膜(Tc=90K,Jc
=1000A/cm)を成膜した。
Outer diameter 160 mm, inner diameter 150 mm, length 4
After applying the above-mentioned paste in a thickness of 200 μm on the surface of a cylinder of 00 mm and two disc-shaped Ni surfaces of 145 mm in diameter and 1 mm in thickness, the Ni cylinder was baked at 975 ° C. for 60 minutes in an oxygen stream and then slowly cooled. And YB on the Ni disk surface
a 2 Cu 3 Ox oxide superconducting thick film (Tc = 90K, Jc
= 1000 A / cm 2 ) was formed.

【0024】この酸化物超電導厚膜円筒両端に開口端か
ら10mm内部の位置に円筒中心軸に垂直に円板状酸化
物超電導厚膜を配設した。これらを液体窒素(77K)
で冷却した後、円筒中心軸に対して平行ならびに垂直方
向に外部から磁界を印加し、磁気シールド特性を測定し
た結果、10G以下の外部磁界に対し磁気シールド体内
部のほぼ全体で減衰率10−5倍以上の磁気シールド空
間が得られた。
A disk-shaped oxide superconducting thick film was arranged at both ends of the cylinder of the oxide superconducting thick film perpendicularly to the center axis of the cylinder at a position within 10 mm from the open end. Liquid nitrogen (77K)
In After cooling, cylinder center by applying a magnetic field from outside to the parallel and perpendicular direction to the axis, results of measurement of the magnetic shielding characteristics, a magnetic to following external magnetic field 10G shield body portion of the substantially overall attenuation rate 10 - A magnetic shield space of 5 times or more was obtained.

【0025】[0025]

【比較例】比較例1 直径50mm,長さ150mmの高透磁率パーマロイ円
筒弱磁気シールド体に外部磁界を印加し、磁気シールド
特性を測定した結果、減衰率10−2倍の磁気シールド
特性しか得られなかった。(図2中のCに示す)
COMPARATIVE EXAMPLE Comparative Example 1 An external magnetic field was applied to a high magnetic permeability permalloy cylinder weak magnetic shield body having a diameter of 50 mm and a length of 150 mm, and the magnetic shield characteristics were measured. As a result, only a magnetic shield characteristic with an attenuation rate of 10 −2 was obtained. I couldn't do it. (Shown as C in FIG. 2)

【0026】比較例2 両端開放型超電導磁気シールド体につき説明する。B
i:Pb:Sr:Ca:Cu=2:0.4:2:2:3
の割合で混合した各酸化物及び炭酸塩(Bi,P
bO,SrCO,CaCO,CuO)を850℃で
100時間空気中で焼成した後、徐冷することで、(B
i,Pb)SrCaCuOy酸化物超電導粉末
を作製した。
Comparative Example 2 An open-ended superconducting magnetic shield will be described. B
i: Pb: Sr: Ca: Cu = 2: 0.4: 2: 2: 3
Oxides and carbonates (Bi 2 O 3 , P
bO, SrCO 3 , CaCO 3 , CuO) is calcined in the air at 850 ° C. for 100 hours and then slowly cooled (B
i, Pb) 2 Sr 2 Ca 2 Cu 3 Oy oxide superconducting powder was prepared.

【0027】この粉末を外径160mm,内径150m
m,長さ400mmの円筒に成形焼結し、(Bi,P
b)SrCaCuOy酸化物超電導円筒(Tc
=105K,Jc=1000A/cm)を作製した。
This powder has an outer diameter of 160 mm and an inner diameter of 150 m.
m, molded and sintered into a cylinder with a length of 400 mm, (Bi, P
b) 2 Sr 2 Ca 2 Cu 3 Oy oxide superconducting cylinder (Tc
= 105 K, Jc = 1000 A / cm 2 ) was produced.

【0028】この酸化物超電導バルク円筒両端に円板状
酸化物超電導体を配設せずに開放のままとし、これを液
体窒素(77K)で冷却した後、該円筒中心軸に対して
平行ならびに垂直方向に外部から磁界を印加し、磁気特
性を測定した結果、円筒の両開口部からの回り込み漏れ
磁界により、両開口部付近で減衰率の低下が認められ
た。(図2中のBに示す)
The disk-shaped oxide superconductor was not placed at both ends of the oxide superconducting bulk cylinder but was left open, and after being cooled with liquid nitrogen (77 K), it was parallel to the central axis of the cylinder. A magnetic field was applied from the outside in the vertical direction and the magnetic characteristics were measured. As a result, a decrease in the attenuation rate was observed near both openings due to the leakage magnetic field from both openings of the cylinder. (Shown as B in FIG. 2)

【0029】比較例3 片端のみに板状酸化物超電導体を配設した超電導磁気シ
ールド体につき説明する。
Comparative Example 3 A superconducting magnetic shield in which a plate-shaped oxide superconductor is provided only on one end will be described.

【0030】Bi:Pb:Sr:Ca:Cu=2:0.
4:2:2:3の割合で混合した各酸化物及び炭酸塩
(Bi,PbO,SrCO,CaCO,Cu
O)を850℃で100時間空気中で焼成し、徐冷する
ことで、(Bi,Pb)SrCaCuOy酸化
物超電導粉末を作製した。
Bi: Pb: Sr: Ca: Cu = 2: 0.
Oxides and carbonates (Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 , Cu mixed in a ratio of 4: 2: 2: 3).
O) was calcined in air at 850 ° C. for 100 hours and gradually cooled to prepare (Bi, Pb) 2 Sr 2 Ca 2 Cu 3 Oy oxide superconducting powder.

【0031】この粉末を外径160mm,内径150m
m,長さ400mmの円筒ならびに直径145mm,厚
さ5mmの1枚の円板状に成形・焼結して、(Bi,P
b)SrCaCuOy酸化物超電導円筒ならび
に円板(Tc=105K,Jc=1000A/cm
を作製した。
This powder has an outer diameter of 160 mm and an inner diameter of 150 m.
m, 400 mm long cylinder and one disk with a diameter of 145 mm and a thickness of 5 mm are formed and sintered to form (Bi, P
b) 2 Sr 2 Ca 2 Cu 3 Oy oxide superconducting cylinder and disk (Tc = 105K, Jc = 1000A / cm 2 ).
Was produced.

【0032】この超電導バルク円筒片端の開口端から1
0mm内部の位置に円筒中心軸に垂直に円板状超電導体
を配設し、これを液体窒素(77K)で冷却した後、円
筒中心軸に対して平行ならびに垂直方向に外部から磁界
を印加し、磁気シールド特性を測定した結果、円板状超
電導体を配設しなかった片端部に開口部からの回り込み
漏れ磁界による減衰率の低下が認められた。
1 from the open end of one end of this superconducting bulk cylinder
A disk-shaped superconductor was placed at a position of 0 mm inside perpendicular to the central axis of the cylinder, cooled with liquid nitrogen (77 K), and then a magnetic field was applied from the outside in the directions parallel and perpendicular to the central axis of the cylinder. As a result of measuring the magnetic shield characteristics, a decrease in the attenuation rate due to a leakage magnetic field leaking from the opening was found at one end where the disc-shaped superconductor was not arranged.

【0033】比較例4 板状酸化物超電導体を円筒状酸化物超電導体両端開口部
の外部に配設した酸化物超電導磁気シールド体について
説明する。
Comparative Example 4 An oxide superconducting magnetic shield in which a plate-shaped oxide superconductor is provided outside the openings at both ends of a cylindrical oxide superconductor will be described.

【0034】Bi:Pb:Sr:Ca:Cu=2:0.
4:2:2:3の割合で混合した各酸化物及び炭酸塩
(Bi,PbO,SrCO,CaCO,Cu
O)を850℃で100時間空気中で焼成した後、徐冷
することで、(Bi,Pb)SrCaCuOy
酸化物超電導粉末を作製した。
Bi: Pb: Sr: Ca: Cu = 2: 0.
Oxides and carbonates (Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 , Cu mixed in a ratio of 4: 2: 2: 3).
O) is calcined in the air at 850 ° C. for 100 hours and then slowly cooled to obtain (Bi, Pb) 2 Sr 2 Ca 2 Cu 3 Oy.
An oxide superconducting powder was produced.

【0035】この粉末を外径160mm,内径150m
m,長さ400mmの円筒及び直径145mm,厚さ5
mmの2枚の円板状に成形・焼結して、(Bi,Pb)
SrCaCuOy酸化物超電導円筒ならびに円
板(Tc=105K,Jc=1000A/cm)を作
製した。
This powder has an outer diameter of 160 mm and an inner diameter of 150 m.
m, length 400 mm cylinder and diameter 145 mm, thickness 5
Formed and sintered into 2 mm discs (Bi, Pb)
A 2 Sr 2 Ca 2 Cu 3 Oy oxide superconducting cylinder and a disk (Tc = 105K, Jc = 1000A / cm 2 ) were produced.

【0036】この超電導バルク円筒両端に開口端から1
0mm離した外部の位置に該円筒中心軸に対して平行な
らびに垂直方向に外部から磁界を印加し、磁気シールド
特性を測定した結果、円板状超電導体を配設しない場合
と同様に、円筒両開口部からの回り込み漏れ磁界により
両開口部付近で減衰率の低下が認められた。
From the open end to both ends of this superconducting bulk cylinder,
As a result of applying a magnetic field from the outside in a direction parallel and perpendicular to the central axis of the cylinder at an external position separated by 0 mm and measuring the magnetic shield characteristics, as in the case where the disc-shaped superconductor is not arranged, A decrease in the attenuation factor was observed near both openings due to the leakage magnetic field from the openings.

【0037】[0037]

【発明の効果】本発明の超電導磁気シールド体によれ
ば、従来のパーマロイのような高透磁率材料では得られ
ない低磁界空間を手軽に得られ、地磁気や雑音磁界等に
影響されることなく生体磁気信号等の微弱磁気信号測定
をはじめとする様々な高精度な磁気測定が可能となる。
また、本発明の超電導磁気シールド体は筒状超電導体と
板状超電導体を組合わせるのみであるので、軽量かつ低
コストで有効な磁気シールド効果を得ることができる。
According to the superconducting magnetic shield of the present invention, it is possible to easily obtain a low magnetic field space that cannot be obtained with a conventional high permeability material such as permalloy, without being affected by the earth magnetism or noise magnetic field. Various highly accurate magnetic measurements including weak magnetic signal measurements such as biomagnetic signals can be performed.
Further, since the superconducting magnetic shield of the present invention is only a combination of a tubular superconductor and a plate-shaped superconductor, it is possible to obtain an effective magnetic shield effect at a low weight and at a low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る超電導磁気シールド体の説明的断
面図である。
FIG. 1 is an explanatory sectional view of a superconducting magnetic shield according to the present invention.

【図2】本発明及び比較例(従来例)の超電導磁気シー
ルド体の磁気シールド特性を示すグラフである。
FIG. 2 is a graph showing magnetic shield characteristics of superconducting magnetic shields of the present invention and a comparative example (conventional example).

【符号の説明】[Explanation of symbols]

1−筒状超電導体 2−板状超電導体 A−本発明に係る筒状酸化物超電導磁気シールド体の磁
気シールド特性曲線 B−従来の筒状酸化物超電導磁気シールド体の磁気シー
ルド特性曲線 C−従来の高透磁率材料パーマロイの磁気シールド特性
曲線
1-Cylindrical Superconductor 2-Plate-shaped Superconductor A-Magnetic Shielding Characteristic Curve of a Cylindrical Oxide Superconducting Magnetic Shield Body According to the Present Invention B-Magnetic Shielding Characteristic Curve C- of a Conventional Cylindrical Oxide Superconducting Magnetic Shield Body C- Magnetic shield characteristic curve of conventional high permeability material Permalloy

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 両端開放の筒状超電導体と該筒状超電導
体の両端内部に配設された板状超電導体とからなる超電
導磁気シールド体。
1. A superconducting magnetic shield comprising a tubular superconductor with both ends open and plate-shaped superconductors disposed inside both ends of the tubular superconductor.
【請求項2】 前記筒状超電導体と板状超電導体が焼結
バルク,厚膜及び薄膜のうちいずれかで作製されてなる
酸化物超電導体であることを特徴とする請求項1記載の
超電導磁気シールド体。
2. The superconductor according to claim 1, wherein the tubular superconductor and the plate-shaped superconductor are oxide superconductors made of sintered bulk, thick film or thin film. Magnetic shield body.
【請求項3】 前記筒状超電導体が筒状の一体構造ある
いは複数の筒状超電導体を組合せた構造である請求項1
又は2記載の超電導磁気シールド体。
3. The tubular superconductor has a tubular integral structure or a structure in which a plurality of tubular superconductors are combined.
Alternatively, the superconducting magnetic shield according to item 2.
JP4239940A 1992-07-24 1992-07-24 Superconductive magnetic shielding body Pending JPH0697696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4239940A JPH0697696A (en) 1992-07-24 1992-07-24 Superconductive magnetic shielding body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4239940A JPH0697696A (en) 1992-07-24 1992-07-24 Superconductive magnetic shielding body

Publications (1)

Publication Number Publication Date
JPH0697696A true JPH0697696A (en) 1994-04-08

Family

ID=17052087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4239940A Pending JPH0697696A (en) 1992-07-24 1992-07-24 Superconductive magnetic shielding body

Country Status (1)

Country Link
JP (1) JPH0697696A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7259570B1 (en) 2005-06-10 2007-08-21 Hitachi High-Technologies Corporation Magnetic signal measurement apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7259570B1 (en) 2005-06-10 2007-08-21 Hitachi High-Technologies Corporation Magnetic signal measurement apparatus

Similar Documents

Publication Publication Date Title
AU603942B2 (en) Devices and systems based on novel superconducting material
JPH05297089A (en) Magnetic sensor
Kikuchi et al. Preparation of the bulk superconductor Tl2Ba2Ca3Cu4O12
US6276048B1 (en) Method of producing oxide superconductor
EP0292436B1 (en) High current conductors and high field magnets using anisotropic superconductors
JPH0697696A (en) Superconductive magnetic shielding body
JPH03153089A (en) Tunnel junction element wherein compound oxide superconductive material is used
JPH06302989A (en) Magnetic shielding device
JP2700584B2 (en) Magnetic shield for biomagnetism measurement
Poole et al. Structural commonalities of high-temperature superconductors
USRE37587E1 (en) Superconducting quantum interference device formed of oxide superconductor thin film
JPH05196715A (en) Superconductive magnetism sensor
US5612545A (en) Superconducting quantum interference device formed of oxide superconductor thin film
JPH04795A (en) Magnetic shielding plate
US5328892A (en) Oxide superconductor composition and a process for the production thereof
JP2781837B2 (en) Magnetic field stabilization method and magnetic field stabilizer
JPH0410498A (en) Magnetic shield plate
JP2817170B2 (en) Manufacturing method of superconducting material
Shimbo et al. High-Tc magnetic shields prepared by a low pressure plasma spray
JPH0529787A (en) Magnetic shield
JP2846507B2 (en) Gradiometer
JPS63252272A (en) Superconductive quantum interferometer
JPH04313285A (en) Magnetic flux transformer
JPS63280469A (en) Composite superconducting shield plate and manufacture thereof
JPS63261763A (en) Superconducting magnetic shield