JPH0697500B2 - High density magnetic recording medium - Google Patents

High density magnetic recording medium

Info

Publication number
JPH0697500B2
JPH0697500B2 JP60222660A JP22266085A JPH0697500B2 JP H0697500 B2 JPH0697500 B2 JP H0697500B2 JP 60222660 A JP60222660 A JP 60222660A JP 22266085 A JP22266085 A JP 22266085A JP H0697500 B2 JPH0697500 B2 JP H0697500B2
Authority
JP
Japan
Prior art keywords
film
less
recording medium
magnetic recording
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60222660A
Other languages
Japanese (ja)
Other versions
JPS6282511A (en
Inventor
幸彦 南平
博史 冨田
重嘉 升田
淳二 小林
智行 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP60222660A priority Critical patent/JPH0697500B2/en
Publication of JPS6282511A publication Critical patent/JPS6282511A/en
Publication of JPH0697500B2 publication Critical patent/JPH0697500B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (1) 技術分野 本発明はトラツキングミスを回避できる可撓性の磁気記
録デイスクに関する。更に詳しくは、高いトラツク密度
記録の可能な線記録密度の高い記録媒体、主としてフレ
キシブルデイスクに関する。
Description: TECHNICAL FIELD The present invention relates to a flexible magnetic recording disk capable of avoiding a tracking error. More specifically, the present invention relates to a recording medium having a high linear recording density capable of recording a high track density, mainly a flexible disk.

(2) 従来技術 磁気デイスク記録再生装置自体に、温度変化を抑制する
機構やトラツク検出の特別な回路(トラツクサーボ等)
を設けることによつて、トラツキングミスを防止するこ
とが従来から知られている。もつとも、これらの手段で
は記録再生装置が複雑となるので汎用的ではない。実際
的には、基材フイルムや磁気材料は可能な限り、その熱
膨張係数がデイスクドライブの熱膨張係数に近く、また
湿度膨張係数の小さい材料を選択することによつてフレ
キシブルな磁気デイスクをつくり、トラツキングミスを
防止する手段が採られている。
(2) Prior art The magnetic disk recording / reproducing apparatus itself has a mechanism for suppressing a temperature change and a special circuit for detecting a track (track servo, etc.).
It is conventionally known to prevent a tracking error by providing the. In addition, since these means complicate the recording / reproducing apparatus, they are not versatile. Practically, as far as possible, the base film and the magnetic material have a coefficient of thermal expansion close to that of the disk drive, and a flexible magnetic disk is made by selecting a material having a small coefficient of humidity expansion. , Measures have been taken to prevent tracking mistakes.

しかしながら、この様なフレキシブルな磁気デイスクで
も高温(40〜50℃)及び/又は高湿(約80%RH)で使用
すると、トラツキングミスが発生する。特に低温(10℃
程度)ないし低湿(20%RH程度)の条件下で記録したフ
レキシブルな磁気デイスクは、高温(40〜50℃程度)及
び高い湿度(60〜30%RH程度)雰囲気のもとで再生する
とトラツキングミスが発生するという欠点があつた。ま
た低温・高湿度で記録したフレキシブルな磁気デイスク
を高温・低湿度で再生する場合にもトラツキングミスが
発生するという欠点があつた。このトラツキングミスに
よつて、出力の低下が起り、ドロツプアウトが発生する
という問題はまだ未解決である。
However, even such a flexible magnetic disk causes a tracking error when used at high temperature (40 to 50 ° C.) and / or high humidity (about 80% RH). Especially low temperature (10 ℃
Flexible magnetic disk recorded under conditions of high humidity (about 20% RH) or low humidity (about 20% RH) will be tracked when reproduced in a high temperature (about 40 to 50 ° C) and high humidity (about 60 to 30% RH) atmosphere. There was a drawback that mistakes occurred. In addition, there is a drawback that a tracking mistake occurs when a flexible magnetic disk recorded at low temperature and high humidity is reproduced at high temperature and low humidity. Due to this tracking mistake, the problem that the output drops and the dropout occurs is still unsolved.

別に、線記録密度を高めるべく、磁性材料の改良や磁性
層を基板の上に均一かつ薄く塗設する改良が試みられて
いるが、トラツク密度及び線密度を共に高めることによ
り、磁気記録が高密度化されてなるフレキシブルデイス
クは未だ知られていない。
Separately, attempts have been made to improve the magnetic material and to coat the magnetic layer uniformly and thinly on the substrate in order to increase the linear recording density. However, by increasing both the track density and the linear density, high magnetic recording can be achieved. Flexible discs that have been densified are not yet known.

〔発明の目的〕[Object of the Invention]

本発明の目的は、使用可能な雰囲気条件温度,湿度範囲
を拡大し、高温・高湿の条件でもトラツクミスが発生し
ない様に改良し、かつ、線記録密度の高いフレキシブル
な磁気記録媒体(デイスク)を提供することにある。
An object of the present invention is to expand the usable atmospheric condition temperature and humidity range, improve it so as not to cause a track mistake even under high temperature and high humidity conditions, and have a high linear recording density and a flexible magnetic recording medium (disk). To provide.

更に、フレキシブルデイスクであつて、この様な温度・
湿度による寸法安定性の高い磁気記録媒体は、磁気記録
の高密度化、就中、トラツク密度の向上を可能にするも
のであり、かようなデイスクを提供することも本発明の
他の目的である。
Furthermore, with a flexible disk, such temperature
A magnetic recording medium having high dimensional stability with respect to humidity makes it possible to increase the density of magnetic recording, and particularly to improve the track density. It is also another object of the present invention to provide such a disk. is there.

〔発明の構成〕[Structure of Invention]

本発明は、フレキシブルな熱可塑性重合体からなる非磁
性基板に磁性層を塗設し、かつ磁性層表面を平滑化処理
により平滑化せしめてなる磁気記録媒体において、非磁
性基板は、温度膨張係数が全周方向について最大と最小
の差が2×10-6/℃以下でありかつ、湿度膨張係数が8
×10-6/%RH以下でしかも全周方向について最大と最小
の差が1×10-6/%RH以下であり、更に表面粗さが0.012
μm以下である2軸配向ポリエチレンナフタレンジカル
ボキシレートフイルムからなること並びに磁性層は厚さ
が2μm以下であつて、強磁性体微粉末と高分子材料と
の組成物からなることを特徴とする高密度磁気記録媒体
である。
The present invention provides a magnetic recording medium in which a magnetic layer is coated on a non-magnetic substrate made of a flexible thermoplastic polymer and the surface of the magnetic layer is smoothed by a smoothing treatment. Has a maximum and minimum difference of 2 × 10 -6 / ° C or less in all circumferential directions and a coefficient of humidity expansion of 8
X 10 -6 /% RH or less, the maximum and minimum difference in all circumferential directions is 1 x 10 -6 /% RH or less, and surface roughness is 0.012
It is characterized by comprising a biaxially oriented polyethylene naphthalene dicarboxylate film having a thickness of 2 μm or less and a magnetic layer having a thickness of 2 μm or less and comprising a composition of ferromagnetic fine powder and a polymer material. It is a density magnetic recording medium.

非磁性基板として、ポリエチレンナフタレンジカルボキ
シレートフィルムの場合はフィルム中の高比重不活性微
粒子を除いた密度が1.355g/cm3以下である2軸配向ポリ
エチレンナフタレートフイルムを用いたものであること
が好ましい。
In the case of a polyethylene naphthalene dicarboxylate film as the non-magnetic substrate, a biaxially oriented polyethylene naphthalate film having a density of 1.355 g / cm 3 or less excluding high specific gravity inert fine particles in the film is used. preferable.

更に、高分子バインダーとして、低透水性かつ低吸水性
のエポキシエステル系又はエポキシ/ポリアミド系成分
を50%以上含有せしめた高分子バインダーを用いた磁気
記録高密度フレキシブルデイスクであることが好まし
い。
Further, a magnetic recording high density flexible disk using a polymer binder containing 50% or more of an epoxy ester type or epoxy / polyamide type component having low water permeability and low water absorption is preferable as the polymer binder.

本発明におけるポリエチレンナフタレンジカルボキシレ
ートとは、ポリエチレン2,6ナフタレンジカルボキシレ
ートのホモポリマーまたはこの重合体を70重量%以上含
む共重合体、混合体をいい、本質的にポリエチレンナフ
タレンジカルボキシレート(以下PENと略記する)の性
質を失わないポリエステル組成物等も包含する。
The polyethylene naphthalene dicarboxylate in the present invention means a homopolymer of polyethylene 2,6 naphthalene dicarboxylate or a copolymer or mixture containing 70% by weight or more of this polymer, and essentially polyethylene naphthalene dicarboxylate ( Hereinafter, a polyester composition which does not lose the property of PEN) is also included.

本発明における2軸配向PENフイルムの温度膨張係数と
しては、15〜25(×10-6/℃)の範囲にあることが好ま
しい。磁気記録媒体であるフレキシブルデイスクの駆動
装置は、金属として温度膨張係数の比較的小さいアルミ
ニウム(温度膨張係数25(×10-6/℃))が主体で構成
され上記温度膨張係数がこの範囲外にあると設計がむず
かしい。湿度膨張係数としては8.0(×10-6/%RH)以下
が必須であり、出来るだけ小さいことが好ましい。
The temperature expansion coefficient of the biaxially oriented PEN film in the present invention is preferably in the range of 15 to 25 (× 10 -6 / ° C). The drive device of a flexible disk, which is a magnetic recording medium, is mainly composed of aluminum having a relatively small temperature expansion coefficient (temperature expansion coefficient 25 (× 10 −6 / ° C.)) as a metal, and the above temperature expansion coefficient is out of this range. Design is difficult if there is. A humidity expansion coefficient of 8.0 (× 10 -6 /% RH) or less is essential, and it is preferable that it is as small as possible.

PENフイルムを2軸配向せしめる方法は、例えば未延伸
状態のフィルムを機械方向(縦方向)及び幅方向(横方
向)に2〜5倍程度(好ましくは2.5〜4.5倍)の範囲で
延伸し、延伸面積倍率を4〜25倍(好ましくは面積倍率
6.5〜20程度)にする。この2軸延伸には公知の延伸装
置を用い、未延伸状態のフィルムをそのガラス転移点以
上の温度域(通常115〜145℃程度)に加熱して、縦方向
及び横方向に伸張せしめるものであり、延伸法として同
時2軸延伸法や逐次2軸延伸法によるものであつてよ
く、また、2軸2段階の延伸法のほかに、延伸の段数が
3以上のものであつてよい。PENフイルムの熱固定方法
としては、公知のステンターや加熱ロールを用いる手段
が利用できる。これ以外にも緊張または弛緩状態でフィ
ルムの四方を把持して熱処理を行なってもよいが、工業
上ステンター法が有利であり、また後述する表面粗さを
保つためにも好ましい。
The method of biaxially orienting the PEN film is, for example, stretching the unstretched film in the machine direction (longitudinal direction) and the width direction (transverse direction) in the range of about 2 to 5 times (preferably 2.5 to 4.5 times), Stretched area ratio is 4 to 25 times (preferably area ratio)
6.5 to 20). A known stretching device is used for this biaxial stretching, and the unstretched film is heated to a temperature range above the glass transition point (usually about 115 to 145 ° C.) to stretch in the longitudinal and transverse directions. The stretching method may be a simultaneous biaxial stretching method or a sequential biaxial stretching method, and in addition to the biaxial bistep stretching method, the stretching step number may be 3 or more. As a heat setting method for the PEN film, a known means such as a stenter or a heating roll can be used. Besides this, heat treatment may be carried out by gripping the four sides of the film in a tensioned or relaxed state, but the industrial stenter method is advantageous in industrial terms, and is also preferable for maintaining the surface roughness described later.

本発明におけるPENフイルムの表面粗さ(測定法は後述
する)としては、0.012μm以下が必要であり、好まし
くは0.005〜0.008μmの範囲である。PENフイルムの表
面粗さが0.012μmを超えると、保磁力を高めスペーシ
ングロスを小さくするため、磁性層の膜厚を2.0μm以
下にしようとすると、均一な磁性層塗膜の形成が著しく
困難になる。また、フイルム表面粗さが0.005μm以下
であると非磁性基材の取扱(ロールに巻取ることや塗膜
工程でフイルムをロール等で搬送すること)が困難とな
る。PENフイルムの表面粗さを調整する方法としては、
不活性固体微粒子をポリマー中に含有せしめてもよく、
また不活性固体微粒子の分散した塗膜を形成させる等の
他の表面加工処理を施すことでもよい。
The surface roughness of the PEN film in the present invention (the measuring method will be described later) needs to be 0.012 μm or less, and preferably 0.005 to 0.008 μm. If the surface roughness of the PEN film exceeds 0.012μm, the coercive force is increased and the spacing loss is reduced. Therefore, if the film thickness of the magnetic layer is set to 2.0μm or less, it is extremely difficult to form a uniform magnetic layer coating film. become. Further, if the film surface roughness is 0.005 μm or less, it becomes difficult to handle the non-magnetic substrate (winding it on a roll or transporting the film by a roll in the coating step). As a method of adjusting the surface roughness of the PEN film,
Inert solid fine particles may be contained in the polymer,
Further, other surface processing treatment such as forming a coating film in which inert solid fine particles are dispersed may be performed.

不活性固体微粒子としては、本発明においては、好まし
くは二酸化ケイ素(水和物、ケイ藻土、ケイ砂、石英
等を含む);アルミナ;SiO2分を30重量%以上含有
するケイ酸塩(例えば非晶質或は結晶質の粘土鉱物、ア
ルミノシリケート(焼成物や水和物を含む)、温石綿、
ジルコン、フライアツシユ等);Mg、Zn、Zr、及びTi
の酸化物;Ca、及びBaの硫酸塩;Li、Na、及びCaの
リン酸塩(1水素塩や2水素塩を含む);Li、Na及び
Kの安息香酸塩;Ca、Ba、Zn、及びMnのテレフタル酸
塩;Mg、Ca、Ba、Zn、Cd、Pb、Sr、Mn、Fe、Co及びNi
のチタン酸塩;Ba、及びPbのクロム酸塩;炭素(例
えばカーボンブラツク、グラフアイト等);ガラス
(例えばガラス粉、ガラスビーズ等);Ca、及びMgの
炭酸塩;ホタル石及びZnSが例示される。更に好ま
しくは、無水ケイ酸、含水ケイ酸、酸化アルミニウム、
ケイ酸アルミニウム(焼成物、水和物等を含む)、燐酸
1リチウム、燐酸3リチウム、燐酸ナトリウム、燐酸カ
ルシウム、硫酸バリウム、酸化チタン、安息香酸リチウ
ム、これらの化合物の複塩(水和物を含む)、ガラス
粉、粘土(カオリン、ペントナイト、白土等を含む)、
タルク、ケイ藻土、炭酸カルシウム等が例示される。特
に好ましくは、二酸化ケイ素、酸化チタン、炭酸カルシ
ウムが挙げられる。これら不活性固体微粒子はその平均
粒径が0.05〜0.6μm、更には0.08〜0.4μmが好まし
く、またその添加量は0.01〜1.5重量%(対ポリエステ
ル)、更には0.03〜1.0重量%(同)、特に0.05〜0.6重
量%(同)であることが好ましい。
In the present invention, the inert solid fine particles are preferably silicon dioxide (including hydrates, diatomaceous earth, silica sand, quartz, etc.); alumina; silicates containing 30% by weight or more of SiO 2 ( For example, amorphous or crystalline clay minerals, aluminosilicates (including fired products and hydrates), asbestos,
Zircon, fly ash, etc.); Mg, Zn, Zr, and Ti
Oxides of Ca; sulfates of Ca and Ba; phosphates of Li, Na, and Ca (including monohydrogen salts and dihydrogen salts); benzoates of Li, Na, and K; Ca, Ba, Zn, And Mn terephthalates; Mg, Ca, Ba, Zn, Cd, Pb, Sr, Mn, Fe, Co and Ni
Examples are titanates of Ba; and chromates of Ba and Pb; carbon (for example, carbon black, graphite, etc.); glass (for example, glass powder, glass beads, etc.); Ca, and Mg carbonates; fluorite and ZnS. To be done. More preferably, silicic acid anhydride, hydrous silicic acid, aluminum oxide,
Aluminum silicates (including calcined products, hydrates, etc.), 1 lithium phosphate, 3 lithium phosphate, sodium phosphate, calcium phosphate, barium sulfate, titanium oxide, lithium benzoate, double salts of these compounds (hydrates Glass powder, clay (including kaolin, pentonite, clay etc.),
Examples are talc, diatomaceous earth, calcium carbonate and the like. Particularly preferred are silicon dioxide, titanium oxide and calcium carbonate. The average particle size of these inert solid fine particles is preferably 0.05 to 0.6 μm, more preferably 0.08 to 0.4 μm, and the addition amount is 0.01 to 1.5% by weight (relative to polyester), and further 0.03 to 1.0% by weight (same). , Particularly preferably 0.05 to 0.6% by weight (the same).

本発明において、非磁性基板となるPENフイルムは温度
膨張係数及び湿度膨張係数において著しい異方性を呈し
ないことが必要となる。そして、2軸配向PENフイルム
にあつては、実質的な等方性を備える条件として、フイ
ルムの密度(高い比重を有する不活性固体微粒子が分散
しているポリマーにあつてはこれら微粒子を除外した
値)が1.359g/cm3以下であることが望ましい。PENフイ
ルムは2軸延伸後熱固定するとき、クリツプ等に把持さ
れたフイルムの両側端部がフイルムの中央部分に先行し
て走行する傾向があり(ボーイング現象と呼称され
る)、これに起因して異方性が起き易いので、熱固定後
のPENフイルムの結晶化(高密度化)を抑制して異方性
を最小限にとどめる処置が実用的である。更に詳しく述
べると、通常の逐次2軸延伸法、すなわち縦延伸に続い
てテンターによる横延伸を施す方法において、製品フイ
ルムの幅方向の物性を均一にすることは極めて困難であ
った。これは次の理由によるテンター内においてフイル
ムの両側端部を把持されているから、横延伸に伴う縦方
向の収縮応力はクリップ等によって拘束されているもの
の、フイルム中央部は比較的拘束力が弱い。この結果と
して走行中のフイルムの中央部は上記収縮応力によって
位置的に遅れて進み、横延伸の前にフイルム面上に幅方
向に直線を、例えば糸に油性インクを塗布して走行する
フイルムに瞬間的に接触させて描くと横延伸とそれにつ
づく緊張熱処理の間にこの直線はフイルム進行方向に向
って凹形の曲線となる。この現象はボーイングと称され
るものであって、ボーイングによってフイルムは幅方向
において、中央部と両端部として物性差(殊に温度膨張
率、湿度膨張率の不均一性)を生ずる原因となってい
る。フイルム中央部の諸物性を縦横方向にバランスさせ
た場合、フイルムの両端部ではボーイング線に対し更に
縦方向に傾斜した配向主軸ができ、この主軸方向の温度
膨張率、湿度膨張率は小さくなり、主軸と直角方向の各
々の値は大きくなる。
In the present invention, it is necessary that the PEN film, which is a non-magnetic substrate, does not exhibit significant anisotropy in temperature expansion coefficient and humidity expansion coefficient. For the biaxially oriented PEN film, the density of the film (a polymer in which inert solid fine particles having a high specific gravity are dispersed is excluded as a condition for providing substantially isotropic properties). It is desirable that the value) is 1.359 g / cm 3 or less. When the PEN film is heat-fixed after being biaxially stretched, both side edges of the film gripped by a clip or the like tend to run ahead of the central part of the film (called a bowing phenomenon), which is caused by this. Since anisotropy is likely to occur, it is practical to suppress the crystallization (densification) of the PEN film after heat setting to minimize the anisotropy. More specifically, it was extremely difficult to make the physical properties of the product film uniform in the width direction in the usual sequential biaxial stretching method, that is, the method of performing longitudinal stretching and then transverse stretching with a tenter. This is because the both ends of the film are gripped in the tenter for the following reasons, so the contraction stress in the longitudinal direction due to the lateral stretching is restricted by clips, but the central part of the film has a relatively weak restriction force. . As a result, the central portion of the running film advances with a positional delay due to the above-mentioned contraction stress, and a straight line in the width direction is formed on the film surface before transverse stretching, for example, a film that is run by applying an oil-based ink to the yarn is run. When drawn by contacting with each other instantaneously, this straight line becomes a concave curve in the film advancing direction during the transverse stretching and the subsequent tension heat treatment. This phenomenon is called bowing, and it causes a difference in physical properties (especially non-uniformity of coefficient of thermal expansion and coefficient of humidity expansion) between the center and both ends in the width direction due to bowing. There is. When the physical properties of the central portion of the film are balanced in the vertical and horizontal directions, oriented spindles further inclined in the vertical direction with respect to the bowing line are formed at both ends of the film, and the temperature expansion coefficient and humidity expansion coefficient in the main axis direction become small, Each value in the direction perpendicular to the main axis becomes large.

これらのことから、テンターの両側部に近い部分は、温
度膨張率と、湿度膨張率との等方性が悪くなってくるこ
とがわかる。このため中央部分(センター)では温度膨
張率、湿度膨張率の等方性が良い場合でも両側部(エッ
ジ)では等方性が悪い場合がでてくる。さらに、この中
央部(センター)と両側部(エッジ)との等方性の差は
密度が低い方が小さくなることがわかっている。このよ
うにボーイングを抑える観点からPENフイルムの密度を
1.359g/cm3以下、好ましくは1.353g/cm3以下とすべきで
ある。
From these, it can be seen that the isotropic properties of the temperature expansion coefficient and the humidity expansion coefficient deteriorate in the portions near both sides of the tenter. Therefore, even if the coefficient of temperature expansion and the coefficient of humidity expansion are good in the central part (center), the isotropy may be poor in both sides (edges). Further, it is known that the difference in isotropicity between the central portion (center) and both side portions (edge) is smaller when the density is lower. In this way, from the viewpoint of suppressing bowing, the density of PEN film
It should be 1.359 g / cm 3 or less, preferably 1.353 g / cm 3 or less.

このようにしてポリエチレンテレフタレートでは事実上
困難であつた温度膨張係数が、デイスクではそのあらゆ
る方向においてPENフイルムでは最大と最小の差が2.0
(×10-6/℃)以下となり、また湿度膨張係数の同様の
差は2.0(×10-6/℃)以下となる。
In this way, the coefficient of thermal expansion, which was practically difficult with polyethylene terephthalate, is 2.0 in all directions for discs, and the difference between the maximum and minimum for PEN film is 2.0.
(× 10 -6 / ° C) or less, and the similar difference in humidity expansion coefficient is 2.0 (× 10 -6 / ° C) or less.

本発明における磁性層の厚さは2.0μm以下、好ましく
は1.5μm以下である。強磁性体微粉末としては、例え
ばγ−Fe2O3,Co含有のγ−Fe2O3,Fe3O4,Co含有のFe3O4,
CrO2,Co−Ni−P合金,Co−Ni−Fe合金,Co−Cr合金,Co−
Ni合金,、バリウムフエライト等の強磁性体が例示でき
る。
The thickness of the magnetic layer in the present invention is 2.0 μm or less, preferably 1.5 μm or less. As the ferromagnetic fine powder, for example, γ-Fe 2 O 3 , Co-containing γ-Fe 2 O 3 , Fe 3 O 4 , Co-containing Fe 3 O 4 ,
CrO 2 , Co-Ni-P alloy, Co-Ni-Fe alloy, Co-Cr alloy, Co-
Ferromagnetic materials such as Ni alloy and barium ferrite can be exemplified.

本発明で強磁性体微粉末と共に使用される高分子材料と
しては、熱可塑性樹脂,熱硬化性樹脂,反応型樹脂又は
これらの混合物が挙げられる。例えば、エポキシ/エス
テル系,エポキシ/アミン系,エポキシ/ポリアミド
系,ビニル系,フエノリツク系,ウレタン系など、又は
これらの混合物の重合体が挙げられる。
Examples of the polymer material used together with the ferromagnetic fine powder in the present invention include a thermoplastic resin, a thermosetting resin, a reactive resin, or a mixture thereof. Examples thereof include polymers of epoxy / ester type, epoxy / amine type, epoxy / polyamide type, vinyl type, phenolic type, urethane type and the like, or a mixture thereof.

上記に例示した中でも低透水性かつ低吸水性のエポキシ
エステル系又はエポキシ/ポリアミド系成分を50%以上
含んでいる単一体又は組成物が好ましい。
Among the above examples, a single body or composition containing 50% or more of an epoxy ester-based or epoxy / polyamide-based component having low water permeability and low water absorption is preferable.

これら、低透水性かつ低吸水性の高分子材料を選択する
により磁性層を形成せしめると、プラスチツクフイルム
を基板としたものでは0に近づけることが、困難であつ
た磁気記録媒体の湿度膨張係数による変化を、短時間の
環境変化においては、実質上0にすることが出来る。
When a magnetic layer is formed by selecting a polymer material having low water permeability and low water absorption, it is difficult to bring the magnetic layer close to 0 in the case where the plastic film is used as a substrate because of the humidity expansion coefficient of the magnetic recording medium. The change can be substantially zero in a short time environmental change.

〔本発明の効果〕[Effect of the present invention]

本発明に於て、非磁性基板の温度膨張係数の差を2.0
(×10-6/℃)以下かつ、湿度膨張係数が8.0(×10-6/
%RH)以下でその差が1.0(×10-6/%RH)以下にするこ
とにより、温湿度変化によるトラツキングミスを防止
し、更にトラツク密度を上げた磁気記録媒体を得ること
が出来る。
In the present invention, the difference in the coefficient of thermal expansion of the non-magnetic substrate is 2.0
(× 10 -6 / ℃) or less and the humidity expansion coefficient of 8.0 (× 10 -6 /
% RH) or less and the difference is 1.0 (× 10 -6 /% RH) or less, it is possible to prevent a tracking error due to a change in temperature and humidity, and to obtain a magnetic recording medium having an increased track density.

また、低透水性かつ低吸水性の高分子材料を磁性層の組
成に使用することにより湿度変化による磁気記録媒体の
膨張又は収縮を実質上皆無にしたものとなる。
Further, by using a polymer material having low water permeability and low water absorption in the composition of the magnetic layer, expansion or contraction of the magnetic recording medium due to a change in humidity can be substantially eliminated.

更に非磁性基板の表面粗さを0.012μm以下にすること
により、強磁性微粉末と高分子材料よりなる磁性層を2.
0μm以下の薄い塗膜に形成せしめてスペーシングロス
がなく、保磁力及び再生出力の高いものが得られるの
で、線密度の高い磁気記録媒体(フレキシブルデイス
ク)となる。
Furthermore, by setting the surface roughness of the non-magnetic substrate to 0.012 μm or less, the magnetic layer composed of ferromagnetic fine powder and polymer material can be 2.
Since a thin coating film having a thickness of 0 μm or less can be obtained without causing a spacing loss and having high coercive force and reproduction output, the magnetic recording medium (flexible disk) has a high linear density.

〔実施例〕〔Example〕

以下、実施例により本発明を説明する。 Hereinafter, the present invention will be described with reference to examples.

なお、本発明における特性値の測定方法は次の通りであ
る。
The method of measuring the characteristic value in the present invention is as follows.

(1) 温度膨張率 日本自動制御社製の定荷重及び試験機 ITL2型)を恒温
恒湿槽内に置き測定を行う。測定サンプルは予め所定の
条件(例えば70℃30分)で熱処理を施し、このサンプル
を試験機に取付け温度20℃・湿度60%RH(相対湿度)と
温度40℃・湿度60%RHとの間での寸法変化を読取ること
によつて温度膨張率を測定する。このときの原サンプル
長は、505mm,サンプル巾は1/4インチである。測定時に
加える加重は5g/1/4インチ巾当りで一定とした。長いサ
ンプルが得られない場合は、真空理工社製熱機械分析装
置TM−3000を用い測定することもできる。温度膨張率の
最大値及び最小値の差をもとめる場合は、TM−3000を用
いる。サンプルの寸法は長さ15mm,巾5mmであつて、温度
10℃・湿度0%RHと温度40℃・相対湿度0%における寸
法変化を読取ることによつて、温度膨張率の最大と最小
との差を知ることができる。両者の測定法によつて得ら
れた値は完全に一致するから、いずれの測定法でもよ
い。
(1) Temperature expansion coefficient Place a constant load and testing machine ITL2 manufactured by Japan Automatic Control Co., Ltd. in the constant temperature and humidity chamber and perform measurement. The measurement sample is heat-treated in advance under predetermined conditions (for example, 70 ° C for 30 minutes), and this sample is mounted on a tester between a temperature of 20 ° C and a humidity of 60% RH (relative humidity) and a temperature of 40 ° C and a humidity of 60% RH. The coefficient of thermal expansion is measured by reading the dimensional change at. At this time, the original sample length is 505 mm and the sample width is 1/4 inch. The weight applied at the time of measurement was constant per 5 g / 1/4 inch width. When a long sample cannot be obtained, it can be measured using a thermomechanical analyzer TM-3000 manufactured by Vacuum Riko Co., Ltd. Use TM-3000 to determine the difference between the maximum and minimum values of the coefficient of thermal expansion. The dimensions of the sample are 15 mm in length and 5 mm in width.
By reading the dimensional changes at 10 ° C / humidity 0% RH and temperature 40 ° C / relative humidity 0%, the difference between the maximum and minimum of the thermal expansion coefficient can be known. Since the values obtained by both measuring methods are completely the same, either measuring method may be used.

(2) 湿度膨張率 温度膨張率を求める場合と同様に日本自動制御社製の定
荷種伸び試験機を用い、温度40℃・相対湿度90%の条件
で予め処理を施したサンプルを取付け、温度20℃・相対
湿度30%と20℃湿度70%RHの間における寸法変化を読取
ることによつて湿度膨張率を求める。サンプルが長くと
れない場合は温度膨張測定時と同様に真空理工社製の熱
機械分析装置を恒温恒室機に置き、前記条件のもとで測
定を行なつた。この場合もいずれの方法によつて得られ
る値も完全に一致する。
(2) Humidity expansion rate As in the case of obtaining the temperature expansion rate, using a constant load seed elongation tester manufactured by Japan Automatic Control Co., attach a sample that has been pre-treated under the conditions of temperature 40 ° C and relative humidity 90%, The coefficient of humidity expansion is obtained by reading the dimensional change between a temperature of 20 ° C, relative humidity of 30% and a humidity of 20 ° C and 70% RH. When the sample could not be taken for a long time, the thermomechanical analyzer manufactured by Vacuum Riko Co., Ltd. was placed in a thermostatic chamber as in the measurement of temperature expansion, and the measurement was performed under the above conditions. Also in this case, the values obtained by either method are completely the same.

(3) 密度 ヘプタンと四塩化炭素の混合溶液を用い、密度勾配管法
で25℃において測定した。単位は〔g/cm3〕である。但
し酸化チタン等の高比重の不活性微粒子を含むときは、
その組成を求め補正する。
(3) Density Using a mixed solution of heptane and carbon tetrachloride, measurement was carried out at 25 ° C by a density gradient tube method. The unit is [g / cm 3 ]. However, when containing high-density inert fine particles such as titanium oxide,
The composition is obtained and corrected.

(4) トラツキングずれテスト(温度変化)松下通信
工業(株)製の5 1/4インチ用フロツピーデイスクドラ
イブJU−581(1.6MB用)を恒温恒湿槽に入れ、インタフ
エースを介して、東京エンジニアリング(株)製のドロ
ツプイン・ドロツプアウトカウンターSK−444Bに接続し
て、ミツシングパルスを測定した。
(4) Tracking deviation test (temperature change) 5 1/4 inch Flotspie disk drive JU-581 (for 1.6MB) made by Matsushita Communication Industrial Co., Ltd. is put in a constant temperature and humidity chamber and passed through an interface. The mixing pulse was measured by connecting to a drop-in / drop-out counter SK-444B manufactured by Tokyo Engineering Co., Ltd.

温度15℃湿度60%RHで安定後記録し、次いで温度40℃・
湿度60%RHの条件で3時間経過したのち、再生し、出力
50%以下又は30%以下のミツシングパルス有無を測定し
た。
Recorded after stabilizing at a temperature of 15 ℃ and humidity of 60% RH, then recording at a temperature of 40 ℃.
Reproduced and output after 3 hours under the condition of humidity 60% RH
The presence or absence of a mixing pulse of 50% or less or 30% or less was measured.

50%以下のミツシングパルスがない場合を良、30%以下
のミツシングパルスはないが50%以下のミツシングパル
スがある場合を可、30%以下のミツシングパルスがある
場合を不可とした。
The case where there is no mixing pulse of 50% or less is good, the case where there is no mixing pulse of 30% or less but there is a mixing pulse of 50% or less is possible, and the case where there is a mixing pulse of 30% or less is not possible .

(5) トラツキングずれテスト(温度変化) (4)項と同じ装置を用い、記録を温度25℃湿度20%RH
で行い、再生を温度25℃湿度70%RHで行い、同様の判定
を行つた。
(5) Tracking deviation test (temperature change) Using the same equipment as in (4), record at a temperature of 25 ° C and a humidity of 20% RH.
The temperature was 25 ° C. and the humidity was 70% RH, and the same judgment was made.

(6) トラツキングずれテスト温湿度変化) (4)(5)項と同じ装置を用い、記録を温度15℃,湿
度20%RHとし、再生を温度40℃,湿度70%RHで行い、同
様の判定を行つた。
(6) Tracking deviation test temperature / humidity change) (4) Using the same device as in (5), recording was performed at a temperature of 15 ° C and humidity of 20% RH, and reproduction was performed at a temperature of 40 ° C and humidity of 70% RH. I made a decision.

(7) レゾルーシヨン(分解能)テスト 松下通信工業(株)製の5 1/4インチ用プロツピーデイ
スクドライブJU−581(1.6MB用)をインターフエースを
介して東京エンジニアリング(株)製フロツピーデイス
ク試験装置SK−403Cに測定し、最内層トラツクのレゾル
ーシヨン〔2F再生出力値/1F再生出力値×100(%)〕を
測定した。標準デイスクのレゾルーシヨンに対して、0.
95以上を良、0.90以上0.95未満を可、0.90未満を不可と
した。
(7) Resolution test Matsushita Communication Industrial Co., Ltd.'s 5 1 / 4-inch PROTOPS disk drive JU-581 (for 1.6MB) Floppy disk test by Tokyo Engineering Co., Ltd. The apparatus [SK-403C] was used to measure the resolution [2F playback output value / 1F playback output value x 100 (%)] of the innermost track. 0 for standard disk resolution.
A value of 95 or more was rated as good, a value of 0.90 or more but less than 0.95 was acceptable, and a value of less than 0.90 was not acceptable.

(8) フイルム表面粗さ JIS B0601に準じて測定した。東京精密社製の触針式表
面粗さ計(SURFOOM 3B)を用いて、針の半径2μm,荷重
0.07gの条件下にチヤート(フイルム表面粗さ曲線)を
かかせた。フイルム表面粗さ曲線からその中心線の方向
に測定長さLの部分を抜き取り、この抜き取り部分の中
心線をX軸とし、縦倍率の方向Y軸として、粗さ曲線を
Y=f(x)で表わしたとき、次の式で与えられる(R
a:μm)をフイルム表面粗さとして定義する。
(8) Film surface roughness Measured according to JIS B0601. Using a stylus type surface roughness meter (SURFOOM 3B) made by Tokyo Seimitsu Co., Ltd., the radius of the needle is 2 μm, and the load is
A chart (film surface roughness curve) was applied under the condition of 0.07 g. A portion of the measurement length L is extracted from the film surface roughness curve in the direction of the center line, and the center line of the extracted portion is taken as the X axis and the longitudinal magnification direction is taken as the Y axis, and the roughness curve is taken as Y = f (x). Is given by (R
a: μm) is defined as the film surface roughness.

本発明では、基準長を0.25mmとして8個測定し、値の大
きい方から3個除いた5個の平均値としてRaを表わし
た。
In the present invention, 8 pieces were measured with a reference length of 0.25 mm, and Ra was expressed as an average value of 5 pieces excluding 3 pieces having the larger values.

実施例1,比較例1〜6 平均粒子径0.25μmの酸化チタンを0.3重量%含有して
なる極限粘度0.60のPENホモポリマーのペレツトを180℃
で4時間乾燥した。このポリマーを常法に従つてT型ダ
イにより溶融押出しし、厚さ1080μmの未延伸フイルム
を作成して、縦方向に120℃で3.7倍,横方向に130℃で
3.9倍、逐次二軸延伸を施し、更に235℃で30秒間熱固定
を行い、表面粗さ0.008μm,厚み75μmでかつ3m幅のフ
イルムを作成した。
Example 1, Comparative Examples 1 to 6 PEN homopolymer pellets containing 0.3% by weight of titanium oxide having an average particle diameter of 0.25 μm and an intrinsic viscosity of 0.60 were placed at 180 ° C.
And dried for 4 hours. This polymer is melt extruded by a T-die according to a conventional method to prepare an unstretched film having a thickness of 1080 μm, which is 3.7 times at 120 ° C in the longitudinal direction and 130 ° C at the lateral direction.
The film was sequentially biaxially stretched 3.9 times and further heat-set at 235 ° C. for 30 seconds to prepare a film having a surface roughness of 0.008 μm, a thickness of 75 μm and a width of 3 m.

このフイルムの幅方向のセンター部とセンターより0.5m
外れたミドル部及び1.0m外れたエツヂ部について、密度
を測定したのち、温度膨張係数と湿度膨張係数を30゜毎
に0〜150゜まで測定し、平均値及び最大値と最小値の
差を求めた。その結果を熱固定条件と共に表−1に示
す。
0.5m from the widthwise center of this film
After measuring the densities of the middle part and the edge part that are 1.0m apart, measure the temperature expansion coefficient and humidity expansion coefficient from 0 to 150 degrees every 30 degrees, and determine the difference between the average value and the maximum value and the minimum value. I asked. The results are shown in Table 1 together with the heat setting conditions.

このようにして得られたフイルムのセンター部、ミドル
部及びエツジ部を250mm幅のフイルムにスリツトし、次
に示す組成の磁性層を1.5μmの厚さに形成した。
The center portion, middle portion and edge portion of the film thus obtained were slit into a film having a width of 250 mm, and a magnetic layer having the following composition was formed to a thickness of 1.5 μm.

(磁性塗布液) γ−Fe2O3 200重量部 塩化ビニール−酢酸ビニル共重合樹脂(UCC製VAGH) 30
重量部 ポリウレタン(日本ポリウレタン工業製PP−88)20重量
部 イソシアネート化合物(日本ポリウレタン工業製コロネ
ートHL) 40重量部 カーボン(平均サイズ0.5μm径) 20重量部 ジメチルシロキサン 2重量部 トルエン 70重量部 メチルエチルケトン 70重量部 シクロヘキサノン 70重量部 上記塗料を充分に混合撹拌して塗布処理に供した。次い
で磁性層表面にカレンダーロール処理を施した。その
後、5 1/4インチのデイスクに打ち抜いた。そのトラツ
ク外れテスト及びレゾルーションの結果を実施例−1,比
較例−1,2として表−1に示す。実施例1、比較例1及
び同2のフィルムは235℃の比較的高い温度で熱処理を
施し、その密度が1.359g/cm3と高いものであることか
ら、3000mm幅のフィルムの中央部分(センター)のみが
等方性を呈するに過ぎず、ミドル部分(中央から500mm
離れた位置)やエッジ部分(中央から1m隔った位置)で
は異方性があり、ΔαtやΔαhが高く、良質のフレキ
シブルディスクが得られなかった。更に比較例3とし
て、実施例1のペレツトのかわりに平均粒子径0.4μm
のカオリンを0.13重量%含有してなる極限粘度0.60のPE
Nのペレツトを用いた。得られたフイルムの表面粗さは
0.015μmであつた。そのセンター部の評価結果を比較
例3として、表−1に示す。
(Magnetic coating liquid) γ-Fe 2 O 3 200 parts by weight Vinyl chloride-vinyl acetate copolymer resin (VAGH manufactured by UCC) 30
20 parts by weight Polyurethane (PP-88 manufactured by Nippon Polyurethane Industry) 20 parts by weight Isocyanate compound (Coronate HL manufactured by Nippon Polyurethane Industry) 40 parts by weight Carbon (average size 0.5 μm diameter) 20 parts by weight Dimethylsiloxane 2 parts by weight Toluene 70 parts by weight Methyl ethyl ketone 70 Parts by weight Cyclohexanone 70 parts by weight The above coating composition was thoroughly mixed and stirred to be applied. Then, the surface of the magnetic layer was subjected to calendar roll treatment. After that, it was punched into a 5 1/4 inch disk. The results of the off-track test and the resolution are shown in Table 1 as Example-1 and Comparative Examples-1 and 2. The films of Example 1, Comparative Examples 1 and 2 were subjected to heat treatment at a relatively high temperature of 235 ° C., and their density was as high as 1.359 g / cm 3 , so that the center part (center) of the 3000 mm wide film was ) Is only isotropic, and the middle part (500 mm from the center)
There is anisotropy in the distant position) and the edge portion (the position 1 m away from the center), and Δαt and Δαh are high, so that a good quality flexible disk cannot be obtained. Further, as Comparative Example 3, instead of the pellet of Example 1, the average particle size is 0.4 μm.
PE with an intrinsic viscosity of 0.60 containing 0.13% by weight of kaolin
N pellets were used. The surface roughness of the obtained film is
It was 0.015 μm. The evaluation result of the center portion is shown in Table 1 as Comparative Example 3.

比較例−3のPENフィルムは、粒径がやや粗いカオリン
を添加したためフィルムの表面が粗れてしまい、磁性層
表面に表面粗れが影響したためレゾルーションが不合格
となった。
In the PEN film of Comparative Example-3, the surface of the film was roughened due to the addition of kaolin having a slightly rough particle size, and the surface roughness of the magnetic layer surface affected the resolution.

次に実施例1,比較例1,2のペレツトのかわりに平均粒子
径0.25μmの酸化チタンを0.3重量%含有してなるポリ
エチレンテレフタレートを用い溶融温度と延伸温度以外
は同様にして、磁気記録フレキシブルデイスクを作成
し、同様の評価を行なつた。このセンター部,ミドル部
及びエツジ部の結果を比較例4,5及び6として表−1に
示す。
Next, in place of the pellets of Examples 1 and 2, polyethylene terephthalate containing 0.3% by weight of titanium oxide having an average particle size of 0.25 μm was used in the same manner except for the melting temperature and the stretching temperature, and magnetic recording flexibility was obtained. A disk was created and the same evaluation was performed. The results of the center portion, middle portion and edge portion are shown in Table 1 as Comparative Examples 4, 5 and 6.

実施例2,3及び比較例7 実施例1において、235℃で30秒間熱固定を施すかわり
に210℃で熱固定を行い、他の条件は同様にして評価を
した。その結果を実施例2,3及び比較例7として表2に
示す。
Examples 2 and 3 and Comparative Example 7 In Example 1, instead of heat setting at 235 ° C. for 30 seconds, heat setting was performed at 210 ° C., and other conditions were evaluated in the same manner. The results are shown in Table 2 as Examples 2 and 3 and Comparative Example 7.

実施例−2及び同−3のPENフィルムは熱処理温度が210
℃であり、密度が1.353g/cm3となり、実施例1や比較例
1及び同2に比べて密度が低くなった。この効果とし
て、3m幅のフィルムはそのセンター部分のみでなく、ミ
ドル部分(センターから0.5m離れた位置)でも等方的
(異方性が弱まり)となり、均質で低い熱膨張率や湿度
膨張率を呈するものとなっている。
The PEN films of Examples 2 and 3 have a heat treatment temperature of 210.
C., and the density was 1.353 g / cm 3 , which was lower than those of Example 1 and Comparative Examples 1 and 2. As a result, the 3 m wide film becomes isotropic (weak anisotropy) not only in the center part but also in the middle part (position 0.5 m away from the center), and it is homogeneous and has a low coefficient of thermal expansion and humidity expansion. Is to be presented.

実施例4,比較例8 実施例3の磁性塗布液についてにおいて塩化ビニール・
酢酸ビニル共重合物とポリウレタンの組成比を換えた。
なお前者の透水性は0.261g/日/cm3で、20℃/65%Rの平
衡水分率1.32%であつたが後者の透水性は0.399g/日/cm
3で平衡水分率は2.34%であつた。他は同様にして磁気
記録デイスク作成しトラツキングテストの温湿度変化の
評価を行い、その結果を実施例4及び比較例8として表
−3に示す。
Example 4, Comparative Example 8 For the magnetic coating liquid of Example 3, vinyl chloride
The composition ratio of the vinyl acetate copolymer and the polyurethane was changed.
The water permeability of the former was 0.261 g / day / cm 3 , and the equilibrium moisture content at 20 ° C / 65% R was 1.32%, but the water permeability of the latter was 0.399 g / day / cm 3.
At 3 , the equilibrium moisture content was 2.34%. Otherwise, magnetic recording disks were prepared in the same manner, and changes in temperature and humidity in a tracking test were evaluated. The results are shown in Table 3 as Example 4 and Comparative Example 8.

比較例9及び10 Na2S・9H2Oを1モル、NaOHを0.05モル、安息香酸ナトリ
ウム0.6モル、Nメチルピロリドン3.5モルをオートクレ
ーブに入れ210℃に加熱し、脱水を行った。脱水終了
後、系を160℃に降温し、1モルのP−ジクロルベンゼ
ンを添加し、280℃にて撹拌下で重合を行った。重合終
了後、室温まで降温し、水とアセトンで洗浄を繰り返し
行いポリ−P−フェニレンスルフィドポリマーを得た。
Comparative Examples 9 and 10 1 mol of Na 2 S.9H 2 O, 0.05 mol of NaOH, 0.6 mol of sodium benzoate and 3.5 mol of N-methylpyrrolidone were placed in an autoclave and heated to 210 ° C. for dehydration. After the completion of dehydration, the temperature of the system was lowered to 160 ° C., 1 mol of P-dichlorobenzene was added, and polymerization was carried out at 280 ° C. with stirring. After completion of the polymerization, the temperature was lowered to room temperature and washing with water and acetone was repeated to obtain a poly-P-phenylene sulfide polymer.

これらのポリマーを300℃で溶融押出し、未延伸フイル
ムを得た。ついで、105℃にて縦方向に3.6倍、115℃で
横方向に3.7倍延伸し、更に240℃で30秒間熱固定をして
厚さ75μmの2軸配向フイルムを得た。別に延伸温度を
縦方向115℃(3.6倍)、横方向125℃(3.8倍)、熱固定
温度260℃(30秒間)とした試験も行った。前者を比較
例9、後者を比較例10とする。これらの結果を表−4に
示した。
These polymers were melt extruded at 300 ° C. to obtain an unstretched film. Then, the film was stretched at 105 ° C. in the longitudinal direction by 3.6 times and at 115 ° C. in the lateral direction by 3.7 times, and further heat-set at 240 ° C. for 30 seconds to obtain a biaxially oriented film having a thickness of 75 μm. Separately, a test was conducted in which the stretching temperature was 115 ° C (3.6 times) in the longitudinal direction, 125 ° C (3.8 times) in the transverse direction, and the heat setting temperature was 260 ° C (30 seconds). The former is referred to as Comparative Example 9 and the latter is referred to as Comparative Example 10. The results are shown in Table-4.

比較例11及び12 二塩基酸成分として、テレフタル酸を85モル%、イソフ
タル酸を15モル%、グリコール成分として1,4−シクロ
ヘキサンジメタノールを用い、触媒として酸化チタン0.
05モル%をオートクレーブに入れ、撹拌下で加熱してエ
ステル交換し、次いで重縮合して、1,4−シクロヘキサ
ンジメタノールとテレフタル酸及びイソフタル酸よりな
るポリ−1,4−シクロヘキシレン、ジメチレンテレフタ
レート系ポリエステルを得た。
Comparative Examples 11 and 12 As a dibasic acid component, terephthalic acid was 85 mol%, isophthalic acid was 15 mol%, 1,4-cyclohexanedimethanol was used as a glycol component, and titanium oxide was used as a catalyst.
05 mol% was put into an autoclave, heated under agitation to undergo transesterification, and then polycondensed to obtain poly-1,4-cyclohexylene, dimethylene and 1,4-cyclohexanedimethanol and terephthalic acid and isophthalic acid. A terephthalate polyester was obtained.

このポリエステルを300℃で溶融押出し、未延伸フイル
ムを得、次いで95℃にて縦方向に3.6倍延伸し、更に105
℃にて横方向に3.7倍延伸し、220℃において30秒間熱固
定した。これを比較例11とする。また、延伸条件を縦延
伸120℃(3.6倍)、横延伸130℃(3.7倍)をし、235℃
において30秒間熱固定した試料(フイルム厚さ75μm)
を比較例12とした。これら比較例9〜12の各試料を実施
例1と同様に250mm幅のフイルムにスリットし、実施例
1で供した磁性塗布液を塗布し、厚さ1.5mmの磁性層を
形成した。次に、これら磁性層の表面にカレンダーロー
ル処理を施し、5 1/4インチのディスクに打抜いた。し
かる後トラック外れテストを行って、その結果を表−4
に示した。
This polyester is melt extruded at 300 ° C. to obtain an unstretched film, and then stretched at 95 ° C. in the machine direction by a factor of 3.6,
It was stretched 3.7 times in the transverse direction at ℃ and heat set at 220 ℃ for 30 seconds. This is Comparative Example 11. The stretching conditions are longitudinal stretching 120 ° C (3.6 times), horizontal stretching 130 ° C (3.7 times), and 235 ° C.
Sample heat-fixed for 30 seconds (film thickness 75 μm)
Was designated as Comparative Example 12. Each of the samples of Comparative Examples 9 to 12 was slit into a film having a width of 250 mm in the same manner as in Example 1, and the magnetic coating solution used in Example 1 was applied to form a magnetic layer having a thickness of 1.5 mm. Next, the surfaces of these magnetic layers were subjected to calender roll treatment and punched into a 5 1/4 inch disk. After that, a track off test was conducted and the results are shown in Table-4.
It was shown to.

実施例5〜7、比較例13〜15 実施例1において、235℃で30秒間熱固定を施すかわり
に、198℃で熱固定を行ない、他の条件は同様にして評
価をした。その結果を実施例−5、−6及び−7として
表−5に示す。また242℃で熱固定を行なって、その他
の条件は同様にして評価をした結果を比較例−13、−14
及び−15として表−5に併せて示す。
Examples 5 to 7 and Comparative Examples 13 to 15 In Example 1, instead of heat fixing at 235 ° C for 30 seconds, heat fixing was performed at 198 ° C, and other conditions were evaluated in the same manner. The results are shown in Table-5 as Examples-5, -6 and -7. Also, the results were evaluated by carrying out heat setting at 242 ° C. and under the same conditions other than Comparative conditions -13 and -14.
And -15 are also shown in Table-5.

以上の[実施例5〜7]、[実施例1、比較例1〜
2]、[実施例−2、−3、比較例7]、[比較例13〜
15]を比較すると、高温熱処理によってフィルムの密度
が高くなると、温度膨張率、湿度膨張率の良好な等方性
を示すフィルム幅方向の位置(有効幅)が狭くなるこ
と、更に密度が高くなりすぎると等方性の部分がなくな
ること、また密度が低くなると良好な等方性を示すフィ
ルム幅方向の位置(幅間隔)が広くなることが判った。
[Examples 5 to 7], [Example 1, Comparative Example 1]
2], [Examples-2 and -3, Comparative Example 7], [Comparative Example 13 to
Comparing 15], when the density of the film increases due to the high temperature heat treatment, the position in the width direction of the film (effective width), which exhibits good temperature expansion coefficient and humidity expansion coefficient, is narrow, and the density increases further. It was found that if it is too much, the isotropic portion disappears, and if the density becomes low, the position (width interval) in the film width direction showing good isotropic property becomes wider.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 淳二 神奈川県相模原市小山3丁目19番37号 帝 人株式会社プラスチツク研究所内 (72)発明者 中村 智行 神奈川県相模原市小山3丁目19番37号 帝 人株式会社プラスチツク研究所内 (56)参考文献 特開 昭59−185029(JP,A) 特開 昭59−186120(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Junji Kobayashi 3-1937 Koyama, Sagamihara City, Kanagawa Prefecture Teijin Ltd. Plastics Research Institute (72) Inventor Tomoyuki Nakamura 3-1937 Koyama, Sagamihara City, Kanagawa Prefecture Teijin Ltd. Plastics Laboratory (56) References JP-A-59-185029 (JP, A) JP-A-59-186120 (JP, A)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】可撓性の非磁性基板に平滑な磁性層を塗設
してなる磁気記録媒体において、非磁性基板はその面内
のあらゆる方向における温度膨張係数の最大値と最小値
との差が2.0×10-6/℃以下であり、その面内のあらゆる
方向における湿度膨張係数の最大値が8×10-6/%RH以
下でありしかも該最大値の温度膨張係数の最小値との差
が1.0×10-6/%RH以下であり、かつ表面粗さが0.012μ
m以下であるポリエチレンナフタレンジカルボキシレー
トの二軸配向フイルムからなること並びに磁性層は強磁
性体微粉末と高分子材料との組成物であって、かつその
厚さが2.0μm以下であることを特徴とする高密度磁気
記録媒体。
1. A magnetic recording medium comprising a flexible non-magnetic substrate coated with a smooth magnetic layer, wherein the non-magnetic substrate has a maximum value and a minimum value of a coefficient of thermal expansion in all directions in its plane. The difference is 2.0 × 10 -6 / ° C. or less, the maximum value of the humidity expansion coefficient in all directions in the plane is 8 × 10 -6 /% RH or less, and the minimum value of the temperature expansion coefficient of the maximum value. Difference is 1.0 × 10 -6 /% RH or less, and the surface roughness is 0.012μ
a biaxially oriented film of polyethylene naphthalene dicarboxylate having a thickness of m or less, and a magnetic layer made of a composition of ferromagnetic fine powder and a polymer material, and having a thickness of 2.0 μm or less. Characteristic high-density magnetic recording medium.
【請求項2】非磁性基板となるポリエチレンナフタレン
ジカルボキシレートフイルムの密度が1.359g/cm3以下で
あることを特徴とする特許請求の範囲第1項記載の高密
度磁気記録媒体。
2. The high density magnetic recording medium according to claim 1, wherein the density of the polyethylene naphthalene dicarboxylate film as the non-magnetic substrate is 1.359 g / cm 3 or less.
【請求項3】磁性層となる高分子材料が透水性及び吸水
性の低いエポキシ−エステル系またはエポキシ−アミド
系の成分を含む高分子であることを特徴とする特許請求
の範囲第1項記載の高密度磁気記録媒体。
3. The polymer material for forming the magnetic layer is a polymer containing an epoxy-ester type or epoxy-amide type component having low water permeability and water absorption. High density magnetic recording medium.
【請求項4】磁気記録媒体がデイスク状である特許請求
の範囲第1項乃至第3項のいずれかに記載の高密度磁気
記録媒体。
4. The high-density magnetic recording medium according to claim 1, wherein the magnetic recording medium has a disk shape.
JP60222660A 1985-10-08 1985-10-08 High density magnetic recording medium Expired - Lifetime JPH0697500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60222660A JPH0697500B2 (en) 1985-10-08 1985-10-08 High density magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60222660A JPH0697500B2 (en) 1985-10-08 1985-10-08 High density magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS6282511A JPS6282511A (en) 1987-04-16
JPH0697500B2 true JPH0697500B2 (en) 1994-11-30

Family

ID=16785928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60222660A Expired - Lifetime JPH0697500B2 (en) 1985-10-08 1985-10-08 High density magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0697500B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288735A (en) * 1987-05-21 1988-11-25 Teijin Ltd Polyester film
JP3306088B2 (en) * 1992-04-02 2002-07-24 帝人株式会社 High density magnetic recording media
JPH11250449A (en) * 1998-02-27 1999-09-17 Fuji Photo Film Co Ltd Magnetic tape
DE602005016549D1 (en) * 2004-05-14 2009-10-22 Teijin Dupont Films Japan Ltd STRIPPED POLYESTER FOIL FOR A FLEXIBLE ELECTRONIC SUBSTRATE
JP4904179B2 (en) * 2007-03-07 2012-03-28 帝人デュポンフィルム株式会社 Biaxially oriented polyester film for flat speaker substrate and laminated member for flat speaker comprising the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185029A (en) * 1983-04-05 1984-10-20 Teijin Ltd Magnetic recording flexible disc
JPS59186120A (en) * 1983-04-07 1984-10-22 Teijin Ltd Flexible disk for magnetic recording

Also Published As

Publication number Publication date
JPS6282511A (en) 1987-04-16

Similar Documents

Publication Publication Date Title
KR100270824B1 (en) Laminated polyester film for magnetic recording medium
US4720412A (en) Polyester base film for magnetic recording media
US5252388A (en) Biaxially oriented polyester film for magnetic recording media
KR100227401B1 (en) Biaxially oriented film of polyethylene-2,6-naphthalenedicarboxylate
KR20000070955A (en) Biaxially oriented polyester film for magnetic recording media
EP0593773B1 (en) Biaxially oriented base film and floppy disk for high-density magnetic recording made therefrom
JP2675217B2 (en) Polyethylene-2,6-naphthalate film
JP7303999B2 (en) LAMINATED POLYESTER FILM AND MAGNETIC RECORDING TAPE USING THE SAME
JPS63113931A (en) Magnetic recording medium
JPH0697500B2 (en) High density magnetic recording medium
KR0179395B1 (en) Laminated polyester film and magnetic recording medium using it as base film
JPH0756689B2 (en) Biaxially stretched polyester film
JP2528960B2 (en) Polyethylene-2,6-naphthalate film
US5368932A (en) Biaxially oriented polyester film for magnetic recording media containing theta or mixed alpha plus gamma aluminum oxide and inert organic particles
JPH0458818B2 (en)
JP2675216B2 (en) Polyethylene-2,6-naphthalate film
JPH0518327B2 (en)
JP3024888B2 (en) High density magnetic recording media
JPS6273420A (en) Micro floppy disk
JP3489849B2 (en) Base film for magnetic recording tape
JPH0618071B2 (en) Biaxially oriented polyester film for magnetic recording media
JP3068320B2 (en) Laminated polyester film for magnetic recording media
JP3350077B2 (en) floppy disk
JPH0152816B2 (en)
JP3051263B2 (en) Laminated polyester film for magnetic recording media

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term