JPH0697486A - Photocoupling circuit element - Google Patents
Photocoupling circuit elementInfo
- Publication number
- JPH0697486A JPH0697486A JP27083692A JP27083692A JPH0697486A JP H0697486 A JPH0697486 A JP H0697486A JP 27083692 A JP27083692 A JP 27083692A JP 27083692 A JP27083692 A JP 27083692A JP H0697486 A JPH0697486 A JP H0697486A
- Authority
- JP
- Japan
- Prior art keywords
- circuit element
- optical
- substrate
- optical transmission
- light receiving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、光結合回路素子に関
し、より詳しくは、コンピュータにおけるマルチプロセ
ッサアーキテクチャの要請に対処可能な光通信を行う光
結合回路素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical coupling circuit element, and more particularly, to an optical coupling circuit element for optical communication capable of coping with the requirements of a multiprocessor architecture in a computer.
【0002】[0002]
【従来の技術】従来、コンピュータにおけるマルチプロ
セッサアーキテクチャの要請に対処すべく、メモリ等の
回路素子間のデータ通信を光信号を用いて行う3次元光
結合回路素子が提案されている(「エレクトロニク
ス」、1991年10月号、「3次元共有メモリで並列
処理システムを実現」)。2. Description of the Related Art Conventionally, in order to meet the demand of a multiprocessor architecture in a computer, a three-dimensional optical coupling circuit element has been proposed which performs data communication between circuit elements such as a memory using an optical signal ("electronics"). , October 1991, "Realization of parallel processing system with three-dimensional shared memory").
【0003】この3次元光結合回路素子は、1つのウェ
ーハーにGaAs等を用いた化合物半導体からなる発光
素子を組み込むとともに、他のウェーハーに受光素子を
組み込んで、発光素子、受光素子を対向させた構造から
なるものである。In this three-dimensional optical coupling circuit element, a light emitting element made of a compound semiconductor using GaAs or the like is incorporated in one wafer, and a light receiving element is incorporated in another wafer so that the light emitting element and the light receiving element face each other. It consists of a structure.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上述し
たような従来の光結合回路素子の場合、少なくとも、G
aAs等の高価な化合物半導体からなる発光素子を形成
しなければならず、シリコン系の材料を用いる場合に比
べ、コストが高くなり、また化合物半導体の特性から信
頼性の点で不十分であるという問題があった。However, in the case of the conventional optical coupling circuit element as described above, at least G
It is necessary to form a light-emitting element made of an expensive compound semiconductor such as aAs, resulting in higher cost than when using a silicon-based material, and the characteristics of the compound semiconductor are insufficient in terms of reliability. There was a problem.
【0005】本発明は上記事情に基づいてなされたもの
であり、低価格で信頼性も高くマルチプロセッサアーキ
テクチャの要請に対処可能な光結合回路素子を提供する
ことを目的とするものである。The present invention has been made in view of the above circumstances, and an object thereof is to provide an optical coupling circuit element which is low in cost, high in reliability, and capable of coping with the demand of a multiprocessor architecture.
【0006】[0006]
【課題を解決するための手段】本発明の光結合回路素子
は、多孔質シリコンを用いたpn接合構造で光信号を送
信する光送信素子を組み込んだ単結晶シリコン基板と、
前記光送信部からの光信号を受信する受光素子を組み込
んだ基板とを、前記光送信素子と前記受光素子とが対向
配置となる状態で接合したことを特徴とするものであ
る。The optical coupling circuit element of the present invention comprises a single crystal silicon substrate incorporating an optical transmission element for transmitting an optical signal with a pn junction structure using porous silicon.
It is characterized in that a substrate in which a light receiving element for receiving an optical signal from the light transmitting section is incorporated is joined in a state where the light transmitting element and the light receiving element face each other.
【0007】[0007]
【作用】上述した構成の光結合回路素子の作用について
以下に説明する。単結晶シリコン基板は、化合物半導体
を用いた基板に比べ、そのコストが安く、物理的な信頼
性も高いので、多孔質シリコンを用いたpn接合構造の
光送信素子を容易に組み込むことができ、したがって、
本発明の光結合回路素子は、低コストで信頼性も良好と
なる。また、光送信素子として多孔質シリコンを用いて
いるので、優れた光信号の送信機能を発揮させることが
できる。さらに、単結晶シリコン基板にメモリやCPU
等を組み込み又は接続し、他の基板にもメモリやCPU
等を組み込むことで、マルチプロセッサアーキテクチャ
の要請にも対応し得るようになる。The operation of the optical coupling circuit element having the above-mentioned structure will be described below. Since a single crystal silicon substrate is lower in cost and higher in physical reliability than a substrate using a compound semiconductor, an optical transmission element having a pn junction structure using porous silicon can be easily incorporated, Therefore,
The optical coupling circuit element of the present invention has low cost and good reliability. Further, since porous silicon is used as the optical transmission element, it is possible to exert an excellent optical signal transmission function. In addition, memory and CPU on a single crystal silicon substrate
Etc. built-in or connected, memory and CPU on other boards
By incorporating the above, it becomes possible to meet the demand for multiprocessor architecture.
【0008】[0008]
【実施例】以下に、本発明の一実施例である光結合回路
素子について図面を参照して詳細に説明する。図1に示
す光結合回路素子1は、多孔質シリコン3を用いたpn
接合構造で光信号を送信する光送信素子2を組み込んだ
単結晶シリコン基板4と、光送信素子2からの光信号を
受信する受光素子6を組み込んだ基板5とを、光送信素
子2、受光素子6が対向配置となる状態で接合したもの
である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An optical coupling circuit element according to an embodiment of the present invention will be described in detail below with reference to the drawings. The optical coupling circuit element 1 shown in FIG. 1 is a pn using porous silicon 3.
The single crystal silicon substrate 4 in which the optical transmission element 2 for transmitting an optical signal having a junction structure is incorporated, and the substrate 5 in which the light receiving element 6 for receiving the optical signal from the optical transmission element 2 is incorporated, The elements 6 are joined in a state of being opposed to each other.
【0009】光送信素子2は、p型の単結晶シリコン基
板4の一面(上面)に形成した多孔質シリコン3と、こ
の多孔質シリコン3上に形成したn−μC−SiC(n
型の微結晶を含有する非晶質シリコンカーボン)7とか
らなり、このn−μC−SiC7上に下部ITO(イン
ジウムティンオキサイド)8を成膜するとともに、この
下部ITO8及び単結晶シリコン基板4の一面の露出部
分に亘って透明な絶縁膜としてのSiO2 膜9を成膜し
ている。The optical transmission element 2 has a porous silicon 3 formed on one surface (upper surface) of a p-type single crystal silicon substrate 4 and an n-μC-SiC (n) formed on the porous silicon 3.
Of the lower type ITO (indium tin oxide) 8 is formed on the n-μC-SiC 7, and the lower ITO 8 and the single crystal silicon substrate 4 are formed. A SiO 2 film 9 as a transparent insulating film is formed over the exposed portion of one surface.
【0010】受光素子6は、他方の単結晶シリコンから
なる基板5の下面に形成したn−μC−SiC10から
なり、このn−μC−SiC10及び基板5の下面の一
部に上部ITO11を成膜するとともに、この上部IT
O11及び基板5の下面の露出部分に亘って透明な絶縁
膜としてのSiO2 膜12を成膜している。The light receiving element 6 is composed of n-μC-SiC10 formed on the lower surface of the other substrate 5 made of single crystal silicon, and the upper ITO 11 is formed on this n-μC-SiC10 and a part of the lower surface of the substrate 5. With this, the upper IT
A SiO 2 film 12 as a transparent insulating film is formed over the exposed portion of the lower surface of the substrate 5 and O11.
【0011】光送信素子2、受光素子6は、図1に示す
ように、SiO2 膜9,12を介して対向配置に接合さ
れ、かつ、SiO2 膜9,12は透明な接着剤13によ
り一体的に接合されている。尚、図1中、14は単結晶
シリコン基板4の他面に設けたAl層、15は基板5の
他面に設けたAl層である。As shown in FIG. 1, the light transmitting element 2 and the light receiving element 6 are bonded to face each other via the SiO 2 films 9 and 12, and the SiO 2 films 9 and 12 are bonded by a transparent adhesive 13. It is joined together. In FIG. 1, 14 is an Al layer provided on the other surface of the single crystal silicon substrate 4, and 15 is an Al layer provided on the other surface of the substrate 5.
【0012】次に、光結合回路素子1の製造工程につい
て、図2乃至図4を参照して説明する。まず、図2に示
すように、Al層14を蒸着してオーミック接触させた
p型の単結晶シリコン基板4を用意し、この単結晶シリ
コン基板4の上面に多孔質シリコン3を形成する。Next, the manufacturing process of the optical coupling circuit element 1 will be described with reference to FIGS. First, as shown in FIG. 2, a p-type single crystal silicon substrate 4 in which an Al layer 14 is vapor-deposited and in ohmic contact is prepared, and porous silicon 3 is formed on the upper surface of the single crystal silicon substrate 4.
【0013】この多孔質シリコン3は、例えば、p型の
単結晶シリコン基板2として、面方位(111)及び
(100)又は抵抗率0.1乃至40Ωcmのp型単結
晶シリコンを用い、エチルアルコール:弗酸(48%水
溶液)=0.1:1乃至5:1の水溶液中で電流密度5
乃至50mA/cm2 、陽極化成時間1乃至5分により
作成できる。さらに、光化学エッチングまたはKOH溶
液に数秒間浸し多孔質シリコン3の表面の不純物を除去
する。The porous silicon 3 is made of, for example, a p-type single crystal silicon substrate 2 made of p-type single crystal silicon having plane orientations (111) and (100) or a resistivity of 0.1 to 40 Ωcm, and ethyl alcohol. : Hydrofluoric acid (48% aqueous solution) = current density 5 in an aqueous solution of 0.1: 1 to 5: 1
To 50 mA / cm 2 and anodization time of 1 to 5 minutes. Further, photochemical etching or immersion in a KOH solution for several seconds is performed to remove impurities on the surface of the porous silicon 3.
【0014】次に、多孔質シリコン3上に、図2に示す
ようにn−μC−SiC7を成膜し、パターニングを行
った後、さらに、このn−μC−SiC7上に下部IT
O8を成膜するとともにそのパターニングを行う。そし
て、この下部ITO8及び単結晶シリコン基板4の一面
の露出部分に亘って透明な絶縁膜としてのSiO2 膜9
をプラズマCVD又はスパッタリングにより成膜し、そ
のパターニングを行うことで、光送信素子2側の製造が
完了する。Next, as shown in FIG. 2, an n-μC-SiC7 film is formed on the porous silicon 3 and patterned, and then a lower IT is formed on the n-μC-SiC7.
O8 is deposited and patterned. Then, the lower ITO 8 and the SiO 2 film 9 as a transparent insulating film over the exposed portion of the one surface of the single crystal silicon substrate 4.
Is formed by plasma CVD or sputtering, and the patterning is performed, whereby the manufacturing on the optical transmission element 2 side is completed.
【0015】一方、受光素子6側については、以下の製
造工程を行う。まず、図3に示すようにAl層15を設
けた単結晶シリコンからなる基板5の下面に、n−μC
−SiC10を成膜し、そのパターニングを行った後、
このn−μC−SiC10及び基板5の下面の一部に上
部ITO11を成膜し、そのパターニングを行う。さら
に、上部ITO11及び基板5の下面の露出部分に亘っ
て透明な絶縁膜としてのSiO2 膜12をプラズマCV
D又はスパッタリングにより成膜してそのパターニング
を行うことで、受光素子6側の製造が完了する。On the other hand, the following manufacturing process is performed on the light receiving element 6 side. First, as shown in FIG. 3, n-μC was formed on the lower surface of the substrate 5 made of single crystal silicon provided with the Al layer 15.
-SiC10 is formed into a film, and after patterning the same,
The upper ITO 11 is deposited on the n-μC-SiC 10 and a part of the lower surface of the substrate 5 and is patterned. Further, a SiO 2 film 12 as a transparent insulating film is formed on the upper ITO 11 and the exposed portion of the lower surface of the substrate 5 by plasma CV.
By forming a film by D or sputtering and patterning the film, the manufacturing on the light receiving element 6 side is completed.
【0016】このようにして、光送信素子2側、受光素
子6側の各要素を形成した後、図4に示すように、光送
信素子2側のSiO2 膜9、受光素子6側のSiO2 膜
12を重ね合せ、これらの端部領域に透明な接着剤13
を充填することで、図1に示す光結合回路素子1を得
る。After the respective elements on the light transmitting element 2 side and the light receiving element 6 side are formed in this way, as shown in FIG. 4, the SiO 2 film 9 on the light transmitting element 2 side and the SiO 2 film on the light receiving element 6 side are formed. 2 Membranes 12 are overlapped, and transparent adhesive 13 is applied to these end regions.
By filling in, the optical coupling circuit element 1 shown in FIG. 1 is obtained.
【0017】図5は、光結合回路素子1の発光試験を行
う構成を示すものであり、光送信素子2側のAl層14
にパルス発信器21を接続するとともに、受光素子6側
のAl層15を接地し、さらに、受光素子6側の上部I
TO11に電流計22及び直流電源Eを接続したもので
ある。このような回路構成で、パルス発信器21により
図6に示すように−10Vの振幅を有するパルス電圧を
光送信素子2に加えると、光送信素子2から受光素子6
に向けて光が送信され、受光素子6に接続した電流計2
2に図6に示す波形の電流が流れることを確認できた。FIG. 5 shows a structure for performing a light emission test of the optical coupling circuit element 1, in which the Al layer 14 on the optical transmission element 2 side is shown.
Is connected to the pulse transmitter 21, the Al layer 15 on the side of the light receiving element 6 is grounded, and the upper part I on the side of the light receiving element 6 is connected.
An ammeter 22 and a DC power source E are connected to the TO11. With such a circuit configuration, when a pulse voltage having an amplitude of −10 V is applied to the optical transmission element 2 by the pulse transmitter 21 as shown in FIG.
Ammeter 2 connected to the light-receiving element 6 when light is transmitted toward
It was confirmed that the current having the waveform shown in FIG.
【0018】上述した構成の光結合回路素子1によれ
ば、単結晶シリコン基板4は、化合物半導体を用いた基
板に比べ、そのコストが安く、物理的な信頼性も高いの
で、多孔質シリコン3を用いたpn接合構造の光送信素
子2を容易に組み込むことができ、したがって、光結合
回路素子1は、低コストで信頼性も良好となる。According to the optical coupling circuit element 1 having the above-mentioned structure, the single crystal silicon substrate 4 is lower in cost and higher in physical reliability than the substrate using the compound semiconductor. The optical transmission element 2 having a pn junction structure using the can be easily incorporated, and therefore the optical coupling circuit element 1 is low in cost and excellent in reliability.
【0019】また、光送信素子2として多孔質シリコン
3を用いているので、簡便で優れた光信号の送信機能を
発揮させることができる。Further, since the porous silicon 3 is used as the optical transmitting element 2, it is possible to exert a simple and excellent optical signal transmitting function.
【0020】図7は、上述した光結合回路素子1の応用
例を概念的に示すものであり、単結晶シリコンからなる
基板21,22,23に、各々既述した構成の光送信素
子2、受光素子6を対向配置に組み込むとともに、各基
板21,22,23にメモリ又はCPU等の論理素子2
4,25,26を組み込んで、各基板21,22,23
を並列に配置し、各光送信素子2から各受光素子6へ光
信号を送るようにすれば、各論理素子24,25,26
の動作と並行して各光送信素子2から各受光素子6への
信号伝送を行うことができ、マルチプロセッサアーキテ
クチャの要請にも対応し得るようになる。FIG. 7 conceptually shows an application example of the above-described optical coupling circuit element 1, in which the optical transmission elements 2 having the above-described configurations are provided on the substrates 21, 22 and 23 made of single crystal silicon. The light-receiving element 6 is installed in a facing arrangement, and the logic elements 2 such as a memory or a CPU are provided on the respective substrates 21, 22, 23.
Incorporating 4, 25, 26, each substrate 21, 22, 23
Are arranged in parallel and an optical signal is sent from each optical transmitting element 2 to each light receiving element 6, each logical element 24, 25, 26
Signals can be transmitted from each optical transmitting element 2 to each light receiving element 6 in parallel with the above operation, and the demand for the multiprocessor architecture can be met.
【0021】本発明は、上述した実施例に限定されるも
のではなく、その要旨の範囲内で種々の変形が可能であ
る。The present invention is not limited to the above-mentioned embodiments, but various modifications can be made within the scope of the invention.
【0022】[0022]
【発明の効果】以上詳述した本発明によれば、上述した
構成としたので、低コストで信頼性も高く優れた光送信
機能を発揮するとともに、マルチプロセッサアーキテク
チャの要請にも対応し得る光結合回路素子を提供するこ
とができる。According to the present invention described in detail above, since it has the above-mentioned configuration, it is possible to realize an optical transmission function that is low in cost, highly reliable, and capable of meeting the requirements of a multiprocessor architecture. A coupling circuit element can be provided.
【図1】本発明の実施例装置の断面図である。FIG. 1 is a sectional view of an apparatus according to an embodiment of the present invention.
【図2】本発明の実施例装置の製造工程図である。FIG. 2 is a manufacturing process diagram of an apparatus according to an embodiment of the present invention.
【図3】本発明の実施例装置の製造工程図である。FIG. 3 is a manufacturing process diagram of an apparatus according to an embodiment of the present invention.
【図4】本発明の実施例装置の製造工程図である。FIG. 4 is a manufacturing process diagram of the device according to the embodiment of the present invention.
【図5】本発明の実施例装置の発光試験を行う回路構成
図である。FIG. 5 is a circuit configuration diagram for performing a light emission test of the device of the embodiment of the present invention.
【図6】図5に示す発光試験におけるパルス信号及び検
出電流の波形図である。6 is a waveform diagram of a pulse signal and a detection current in the light emission test shown in FIG.
【図7】本発明の応用例を示す概念的な説明図である。FIG. 7 is a conceptual explanatory diagram showing an application example of the present invention.
1 光結合回路素子 2 光送信素子 3 多孔質シリコン 4 単結晶シリコン基板 6 受光素子 1 Optical coupling circuit element 2 Optical transmission element 3 Porous silicon 4 Single crystal silicon substrate 6 Light receiving element
Claims (1)
光信号を送信する光送信素子を組み込んだ単結晶シリコ
ン基板と、前記光送信部からの光信号を受信する受光素
子を組み込んだ基板とを、前記光送信素子と前記受光素
子とが対向配置となる状態で接合したことを特徴とする
光結合回路素子。1. A single crystal silicon substrate incorporating an optical transmitting element for transmitting an optical signal with a pn junction structure using porous silicon, and a substrate incorporating a light receiving element for receiving an optical signal from the optical transmitting section. An optical coupling circuit element, characterized in that the optical transmission element and the light receiving element are bonded to each other in a state of being opposed to each other.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27083692A JPH0697486A (en) | 1992-09-14 | 1992-09-14 | Photocoupling circuit element |
US08/008,566 US5285078A (en) | 1992-01-24 | 1993-01-22 | Light emitting element with employment of porous silicon and optical device utilizing light emitting element |
DE4301940A DE4301940A1 (en) | 1992-01-24 | 1993-01-25 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27083692A JPH0697486A (en) | 1992-09-14 | 1992-09-14 | Photocoupling circuit element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0697486A true JPH0697486A (en) | 1994-04-08 |
Family
ID=17491691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27083692A Withdrawn JPH0697486A (en) | 1992-01-24 | 1992-09-14 | Photocoupling circuit element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0697486A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999030250A1 (en) * | 1997-12-10 | 1999-06-17 | Seiko Epson Corporation | Information processing system, enciphering/deciphering system, system lsi, and electronic apparatus |
-
1992
- 1992-09-14 JP JP27083692A patent/JPH0697486A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999030250A1 (en) * | 1997-12-10 | 1999-06-17 | Seiko Epson Corporation | Information processing system, enciphering/deciphering system, system lsi, and electronic apparatus |
US6557020B1 (en) | 1997-12-10 | 2003-04-29 | Seiko Epson Corporation | Information processing system, enciphering/deciphering system, system LSI, and electronic apparatus |
US7117237B2 (en) | 1997-12-10 | 2006-10-03 | Seiko Epson Corporation | Information processing system, encryption/decryption system, system LSI, and electronic equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6172417B1 (en) | Integrated semiconductor devices | |
US4199777A (en) | Semiconductor device and a method of manufacturing the same | |
JP4159421B2 (en) | Light emitting diode having adhesive layer and method for manufacturing the same | |
US3879606A (en) | Light projection coupling of semiconductor type devices through the use of thermally grown or deposited SiO{HD 2 {B films | |
TW202010152A (en) | Light emitting diode structure | |
JP3561084B2 (en) | Photodetector with built-in circuit, electronic component, optical pickup device, and method of manufacturing photodetector with built-in circuit | |
CN100466301C (en) | Semiconductor light-receiving device and method for manufacturing same | |
US6625367B2 (en) | Optoelectronic device having a P-contact and an N-contact located over a same side of a substrate and a method of manufacture therefor | |
US5470761A (en) | Process for fabricating a front surface resonant mesh array detector | |
US20170243988A1 (en) | Compound micro-transfer-printed optical filter device | |
JPH10206229A (en) | Radiation image pick-up apparatus and method for forming contact finger assembly for photodetector array thereof | |
JPH01196183A (en) | Monolithic photocoupler | |
US20040029366A1 (en) | Method for calculating a temporal level signal | |
JPH0697486A (en) | Photocoupling circuit element | |
JPS6223163A (en) | Hybrid optical ic device | |
US7094664B2 (en) | Method for fabricating semiconductor photodetector | |
US6184054B1 (en) | Optical electronic IC capable of photo detection and its process | |
JPH06268254A (en) | Semiconductor device | |
US20240337870A1 (en) | Integration of advanced photonic materials in silicon photonic platform | |
JPH03136282A (en) | Photodiode | |
JPH10223878A (en) | Semiconductor device | |
JPH0697420A (en) | Optically coupled device | |
JPS5929471A (en) | Substrate for thin film optical waveguide | |
JPH0697419A (en) | Optical transmission element | |
JPH0582827A (en) | Semiconductor light receiving element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19991130 |