JPH0697188B2 - Infrared detector and manufacturing method thereof - Google Patents

Infrared detector and manufacturing method thereof

Info

Publication number
JPH0697188B2
JPH0697188B2 JP61128665A JP12866586A JPH0697188B2 JP H0697188 B2 JPH0697188 B2 JP H0697188B2 JP 61128665 A JP61128665 A JP 61128665A JP 12866586 A JP12866586 A JP 12866586A JP H0697188 B2 JPH0697188 B2 JP H0697188B2
Authority
JP
Japan
Prior art keywords
infrared
reinforcing frame
electrode
pyroelectric element
receiving surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61128665A
Other languages
Japanese (ja)
Other versions
JPS62285029A (en
Inventor
邦雄 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61128665A priority Critical patent/JPH0697188B2/en
Publication of JPS62285029A publication Critical patent/JPS62285029A/en
Publication of JPH0697188B2 publication Critical patent/JPH0697188B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、赤外線を利用して温度計測、地球資源観測、
気象観測、公害監視、防犯・防災監視、交通機関の運転
管理、工場での熱管理工程などの監視、測定を行う赤外
検出器及びその製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Industrial Field of the Invention The present invention uses infrared rays to measure temperature, observe earth resources,
The present invention relates to an infrared detector and a manufacturing method thereof, which perform meteorological observation, pollution monitoring, crime prevention / disaster prevention monitoring, operation management of transportation facilities, heat management processes in factories, and measurements.

従来の技術 集光レンズに赤外検出素子を直接密着し、集光効率を高
くして赤外検出性能を改善したものとして、赤外集光レ
ンズ付サーミスタ赤外検出器がある(電子技術総合研究
所調査報告 第177号、PP65〜66)。このサーミスタ赤
外検出器について第4図(a)、(b)を参照しながら
説明すると、ゲルマニウム赤外集光レンズ22にサーミス
タ素子21が密着され、サーミスタ素子21に赤外信号を電
気信号として取出すための電極23、24が設けられ、各電
極23、24に信号取出しのためのリード線25、26が接続さ
れている。
Conventional technology A thermistor infrared detector with an infrared condensing lens is one that improves the infrared detection performance by directly adhering the infrared detecting element to the condensing lens to improve the condensing efficiency (Electronic Technology General Research Report No. 177, PP65-66). This thermistor infrared detector will be described with reference to FIGS. 4 (a) and 4 (b). The thermistor element 21 is closely attached to the germanium infrared condenser lens 22, and the infrared signal is converted into an electric signal by the thermistor element 21. Electrodes 23 and 24 for taking out are provided, and lead wires 25 and 26 for taking out signals are connected to the electrodes 23 and 24, respectively.

上記サーミスタ素子以上の高感度を得る赤外検出器とし
て、特願昭60−83764号に記載されているように集光レ
ンズに焦電形赤外検出素子を接着した構成が知られてい
る。この赤外検出器は高感度を達成するため、小型薄板
化が望まれ、例えば、φ0.3(有効受光面)、素子寸法1
mm×1mm×10μmt程度に形成されたものがあるが、更に
薄板化することが望まれている。以下、上記従来の焦電
形の赤外検出器について第5図(a)、(b)を参照し
ながら説明する。
As an infrared detector having a higher sensitivity than that of the thermistor element, there is known a structure in which a pyroelectric infrared detection element is bonded to a condenser lens as described in Japanese Patent Application No. 60-83764. In order to achieve high sensitivity, this infrared detector is required to be small and thin. For example, φ0.3 (effective light receiving surface), element size 1
Some of them are formed to have a size of mm × 1 mm × 10 μmt, but it is desired to make them thinner. Hereinafter, the conventional pyroelectric infrared detector will be described with reference to FIGS. 5 (a) and 5 (b).

第5図(a)、(b)に示すように焦電素子11に信号取
出し電極13とアース電極を兼用する赤外受光面電極14が
形成されて焦電形赤外検出素子が形成され、この焦電形
赤外検出素子が接着剤15により赤外集光レンズ12に接着
されている。信号取出し電極13には信号取出し用のリー
ド線18が接続され、赤外受光面電極14の腕状部16にはア
ース用のリード線17が接続されている。
As shown in FIGS. 5 (a) and 5 (b), the pyroelectric element 11 is formed with an infrared receiving surface electrode 14 which also serves as a signal extracting electrode 13 and a ground electrode to form a pyroelectric infrared detecting element. This pyroelectric infrared detection element is bonded to the infrared condenser lens 12 with an adhesive 15. A lead wire 18 for taking out a signal is connected to the signal taking-out electrode 13, and a lead wire 17 for earthing is connected to an arm portion 16 of the infrared light-receiving surface electrode 14.

発明が解決しようとする問題点 しかし、上記従来の焦電形の赤外検出器の構成では、焦
電薄膜を酸化マグネシウム単結晶基板(図示省略)にス
パッタ蒸着し、然る後、酸化マグネシウム単結晶基板を
エッチングにより除去し、厚さ2〜5μmtの焦電素子11
を得ているが、このような薄膜よりなる焦電素子11を赤
外集光レンズ12にマウントするのは非常に困難で、歩留
りが悪い。また焦電形赤外検出素子を赤外集光レンズに
密着してマウントすると、熱時定数が大変短くなり(0.
5ms以下)、赤外検出器として必ずしも望ましいもので
はない。また焦電形赤外検出素子を赤外集光レンズ12に
密着させないように酸化マグネシウム単結晶基板を焦電
素子11の周辺だけ枠状に残し、補強に利用する構成も検
討されているが、この酸化マゲネシウム単結晶はへき開
性が強く、もろく破損し易いため、望ましい補強材とは
云えない。しかも熱膨張係数が1.38×10-5deg-1とかな
り大きく、焦電素子材やゲルマニウムレンズ材の熱膨張
係数0.55×10-5deg-1との差が大きいため、温度変化に
弱い。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention However, in the configuration of the conventional pyroelectric infrared detector, the pyroelectric thin film is sputter-deposited on a magnesium oxide single crystal substrate (not shown), and then the magnesium oxide single crystal is used. The crystalline substrate is removed by etching, and the pyroelectric element with a thickness of 2-5 μmt 11
However, it is very difficult to mount the pyroelectric element 11 made of such a thin film on the infrared condenser lens 12, and the yield is low. If the pyroelectric infrared detector is mounted in close contact with the infrared condenser lens, the thermal time constant becomes extremely short (0.
5ms or less), it is not always desirable as an infrared detector. Further, the magnesium oxide single crystal substrate is left in a frame shape only around the pyroelectric element 11 so that the pyroelectric infrared detection element is not brought into close contact with the infrared condensing lens 12, and a configuration used for reinforcement is also considered, This magnesium oxide single crystal has a strong cleavability, is brittle and easily damaged, and is therefore not a desirable reinforcing material. Moreover, the coefficient of thermal expansion is quite large at 1.38 × 10 -5 deg -1 , and the difference between the coefficient of thermal expansion of the pyroelectric element material and the germanium lens material is 0.55 × 10 -5 deg -1 , so it is weak against temperature changes.

そこで、本発明は、望ましい特性を得ることができ、ま
た温度変化に対する信頼性を向上させることができ,ま
た製作時の歩留りを向上させることができ、更には製作
時の焦電素子の破損を防止することができるようにした
赤外検出器及びその製造法を提供しようとするものであ
る。
Therefore, the present invention can obtain desirable characteristics, improve reliability with respect to temperature change, improve yield during production, and further prevent damage to the pyroelectric element during production. It is an object of the present invention to provide an infrared detector which can be prevented and a manufacturing method thereof.

問題点を解決するための手段 そして上記問題点を解決するための本発明の赤外検出器
は、球面状部と平面部とを有する半球状赤外集光レンズ
と、焦電素子及び電極を有する焦電形赤外検出素子と、
前記赤外集光レンズの平面部と前記焦電素子の周辺部と
の間に設けられた補強枠とを有した赤外検出器であっ
て、前記焦電素子の赤外受光面と前記平面部とが赤外入
力波長の2倍以下の間隔であるように、更に、好適には
補強枠の材質を赤外集光レンズ及び焦電素子の材質と熱
膨張係数が実質的に均等になるように形成されたもので
あり、また本発明の製造法は、単結晶基板に蒸着した焦
電素子に焦電素子及び赤外集光レンズと熱膨張係数の差
が少ない材料よりなる補強枠を接着し、接着後、単結晶
基板をエッチングにより除去して補強枠を一体にし、電
極を有する焦電形赤外検出素子を形成し、補強枠を赤外
集光レンズに接着するものである。
Means for Solving the Problems And the infrared detector of the present invention for solving the above problems, a hemispherical infrared condenser lens having a spherical portion and a flat portion, a pyroelectric element and an electrode. A pyroelectric infrared detection element having,
An infrared detector having a reinforcing frame provided between a flat portion of the infrared condensing lens and a peripheral portion of the pyroelectric element, the infrared receiving surface of the pyroelectric element and the flat surface. In addition, it is preferable that the material of the reinforcing frame is substantially equal in thermal expansion coefficient to the materials of the infrared condenser lens and the pyroelectric element so that the distance between the parts and the infrared input wavelength is twice or less. The manufacturing method of the present invention is a pyroelectric element vapor-deposited on a single crystal substrate, a reinforcing frame made of a material having a small difference in thermal expansion coefficient from the pyroelectric element and the infrared condenser lens. After adhering, after adhering, the single crystal substrate is removed by etching to integrate the reinforcing frame, a pyroelectric infrared detecting element having an electrode is formed, and the reinforcing frame is adhered to the infrared condenser lens.

作 用 上記技術的手段による作用は次のようになる。すなわ
ち、赤外集光レンズと焦電素子との間は光学的観点から
は、全反射、光学収差などの点で極力接近していること
が望ましいが、研究の結果、測定すべき赤外線の波長の
2倍までは光学損失の増大率は僅かである。一方、熱時
定数の観点からは、ある程度、赤外集光レンズと焦電素
子は離れていることが望ましい。これは赤外検出器の使
用目的によって最適値が異なるので、熱伝導率Gを補強
枠の設計時に考慮しておけば、 (τ:熱時定数、H;焦電素子熱容量)から望ましい熱
時定数を設定することができる。従って補強枠の介在に
より望ましい赤外検出器特性を達成することができる。
また補強枠を焦電素子及び赤外集光レンズと熱膨張係数
の差が少ない材料により形成しているので、温度変化に
対する信頼性を向上させることができる。また補強枠を
用いることにより焦電形赤外検出素子を赤外集光レンズ
にマウントする際、及び焦電素子に電極を蒸着する際、
取扱い易いので、歩留りを向上させることができる。更
に単結晶基板に蒸着した焦電素子に補強枠を接着した
後、単結晶基板を除去するので、焦電素子の破損率を著
しく低減することができる。
Operation The above-mentioned technical means work as follows. That is, from the optical point of view, it is desirable that the infrared condensing lens and the pyroelectric element be as close as possible in terms of total reflection, optical aberration, etc. The increase rate of the optical loss is small up to twice. On the other hand, from the viewpoint of the thermal time constant, it is desirable that the infrared condenser lens and the pyroelectric element be separated from each other to some extent. The optimum value depends on the purpose of use of the infrared detector, so if you consider the thermal conductivity G when designing the reinforcement frame, A desired thermal time constant can be set from (τ T : thermal time constant, H; pyroelectric element heat capacity). Therefore, the desired infrared detector characteristics can be achieved by interposing the reinforcing frame.
Further, since the reinforcing frame is made of a material having a small difference in thermal expansion coefficient from the pyroelectric element and the infrared condenser lens, reliability with respect to temperature change can be improved. When mounting the pyroelectric infrared detection element on the infrared condenser lens by using the reinforcing frame, and when depositing the electrode on the pyroelectric element,
Since it is easy to handle, the yield can be improved. Furthermore, since the single crystal substrate is removed after the reinforcing frame is bonded to the pyroelectric element deposited on the single crystal substrate, the breakage rate of the pyroelectric element can be significantly reduced.

実施例 以下、本発明の実施例について図面を参照しながら説明
する。
Examples Hereinafter, examples of the present invention will be described with reference to the drawings.

先ず、本発明の第1実施例について説明する。第1図
(a)は断面図、第1図(b)は底面図である。酸化マ
グネシウム単結晶基板(図示省略)に信号取出し電極3
として、0.3φ及び腕状の白金蒸着膜を予め蒸着してお
き、その上より焦電素子1として、チタン酸鉛薄膜層を
スパッタ蒸着により10mμtの厚さに形成する。次に信
号取出し電極3の0.3φの円形部が中央に配置されるよ
うにして酸化マグネシウム単結晶基板及び焦電素子1を
1mm×1mmの大きさにダイシングマシンにより切断する。
次に酸化マグネシウム単結晶基板の反対側において焦電
素子1の周辺部にアルミナ焼結体よりなる補強枠9をア
ラルダイド系接着剤により接着する。この補強枠9は外
寸法が1mm×1mmt、内寸法が0.6mm×0.6mmt、厚さが10μ
mtである、接着剤固化後、リン酸エッチング液により70
℃にて酸化マグネシウム単結晶基板を除去する。酸化マ
グネシウム単結晶基板を除去することにより表面に現わ
れた白金蒸着膜の腕状部にアルミニウム蒸着膜を重ねて
蒸着し、信号取出し電極3を形成する。次に焦電素子1
に補強枠9の内側中央において、アース電極兼用の赤外
受光面電極4として0.3mmφのニクロム蒸着膜を約300Ω
/cm×cmになるよう蒸着すると共に、赤外受光面電極4
に連続して補強枠9上にアース電極取出し用の腕状部6
となるニクロム蒸着膜を同様に蒸着する。この腕状部6
にアルミニウムを重ねて蒸着する。
First, a first embodiment of the present invention will be described. FIG. 1 (a) is a sectional view and FIG. 1 (b) is a bottom view. Signal extraction electrode 3 on a magnesium oxide single crystal substrate (not shown)
As a platinum vapor deposition film having a diameter of 0.3 and an arm, is vapor-deposited in advance, and a lead titanate thin film layer is formed thereon as a pyroelectric element 1 by sputtering vapor deposition to have a thickness of 10 mμt. Next, the magnesium oxide single crystal substrate and the pyroelectric element 1 were arranged so that the 0.3φ circular portion of the signal extraction electrode 3 was arranged in the center.
Cut to a size of 1mm x 1mm with a dicing machine.
Next, a reinforcing frame 9 made of an alumina sintered body is bonded to the peripheral portion of the pyroelectric element 1 on the opposite side of the magnesium oxide single crystal substrate with an Araldide adhesive. The reinforcing frame 9 has an outer dimension of 1 mm × 1 mmt, an inner dimension of 0.6 mm × 0.6 mmt, and a thickness of 10 μm.
After the adhesive is solidified, it is mt.
The magnesium oxide single crystal substrate is removed at ℃. By removing the magnesium oxide single crystal substrate, an aluminum vapor deposition film is overlaid and vapor-deposited on the arm-like portion of the platinum vapor deposition film exposed on the surface to form the signal extraction electrode 3. Next, pyroelectric element 1
In the center of the inside of the reinforcing frame 9, a 0.3 mmφ Nichrome vapor-deposited film is used as the infrared light-receiving surface electrode 4 which also serves as a ground electrode and has a thickness of about 300 Ω.
Infrared light-receiving surface electrode 4 while vapor-depositing it to be / cm x cm
To the reinforcing frame 9 in succession to the
A nichrome vapor-deposited film that becomes This arm 6
Aluminum is overlaid and evaporated.

一方、赤外集光レンズ2はゲルマニウム製(若しくはシ
リコン製)で、直径3mmφ、凸面γ=2.5mm、厚さ2.4mm
に形成し、凸面、平面共に反射防止膜として、中央部0.
5φ中に硫化亜鉛を4nd=10μm(n=2.2)になるよう
に厚さd=1.14μmで蒸着する。また赤外集光レンズ2
の平面側にアース電極取出し用の腕状部6となるアルミ
ニウム蒸着膜を蒸着しておく。而して上記補強枠9を一
体にした焦電形赤外検出素子の腕状部6と赤外集光レン
ズ2の腕状部6を重ね、超音波ボンダにより金属接合す
る。必要であればインジウムを腕状部6であるアルミニ
ウム蒸着膜に重ねて蒸着し、接着性を強化することもで
きる。
On the other hand, the infrared condenser lens 2 is made of germanium (or made of silicon) and has a diameter of 3 mmφ, a convex surface γ = 2.5 mm, and a thickness of 2.4 mm.
It is formed as an antireflection film on both the convex surface and the flat surface, and the central part
Zinc sulfide is vapor-deposited in 5φ with a thickness d = 1.14 μm so that 4nd = 10 μm (n = 2.2). In addition, the infrared condenser lens 2
An aluminum vapor deposition film to be the arm-shaped portion 6 for taking out the ground electrode is vapor-deposited on the flat surface side. Then, the arm-shaped portion 6 of the pyroelectric infrared detection element in which the reinforcing frame 9 is integrated and the arm-shaped portion 6 of the infrared condensing lens 2 are overlapped and metal-bonded by the ultrasonic bonder. If necessary, indium may be vapor-deposited on the aluminum vapor-deposited film which is the arm portion 6 to enhance the adhesiveness.

金属接合後、補強枠9をアラルダイド系の接着剤5によ
り赤外集光レンズ2の平面に接着して補強する。次にア
ース電極用リード線7を腕状部6に超音波ボンダにより
接続すると共に、信号取出し用リード線8を信号取出し
電極3の腕状部13に超音波ボンダにより接続することに
より赤外検出器を得ることができる。
After the metal bonding, the reinforcing frame 9 is bonded to the plane of the infrared condenser lens 2 with the Araldide adhesive 5 to reinforce. Next, the ground electrode lead wire 7 is connected to the arm portion 6 with an ultrasonic bonder, and the signal extracting lead wire 8 is connected to the arm portion 13 of the signal extracting electrode 3 with an ultrasonic bonder to detect infrared rays. You can get a vessel.

上記第1実施例によれば、赤外比検出能4×108cmHz1/2
/W(チョッピング周波数160Hz)の素子を歩留り80%で
得ることができ、従来、歩留り50%以下であったのを大
幅に向上することができた。また補強枠9を形成するア
ルミナ焼結体は、その熱膨張係数が約0.6×10-5deg-1
あり、ゲルマニウムレンズ2の熱膨張係数、0.55×10-5
deg-1、若しくはシリコンレンズ2の熱膨張係数、0.42
×10-5deg-1との差が比較的少なく、熱衝撃に優れた耐
性を示し、−40℃〜+80℃の熱サイクルで100サイクル
耐えることを確認することができた。
According to the first embodiment described above, the infrared ratio detection ability is 4 × 10 8 cmHz 1/2.
A device with a / W (chopping frequency of 160 Hz) can be obtained with a yield of 80%, which is a significant improvement over the conventional yield of 50% or less. The thermal expansion coefficient of the alumina sintered body forming the reinforcing frame 9 is about 0.6 × 10 −5 deg −1 , and the thermal expansion coefficient of the germanium lens 2 is 0.55 × 10 −5.
deg -1 , or coefficient of thermal expansion of silicon lens 2, 0.42
It was confirmed that the difference from × 10 -5 deg -1 was relatively small, that it showed excellent resistance to thermal shock, and that it could withstand 100 cycles at a thermal cycle of -40 ° C to + 80 ° C.

次に本発明の第2実施例について説明する。第2図は斜
視図、第3図は焦電形赤外検出素子と補強枠の分解斜視
図である。本実施例においては、上記第1実施例と異な
る点について説明する。
Next, a second embodiment of the present invention will be described. FIG. 2 is a perspective view, and FIG. 3 is an exploded perspective view of a pyroelectric infrared detection element and a reinforcing frame. In this embodiment, points different from the first embodiment will be described.

補強枠9の一つの角部にリード線接続用の突出面を有し
ている。これに伴い、補強枠9の突出面に第3図に示す
ようにアース電極取出し用の突出面14となるアルミニウ
ム蒸着膜を蒸着し、必要に応じてインジウム膜を重ねて
蒸着する。一方、焦電素子1における補強枠9側にも予
め補強枠9のアルミニウム、あるいはインジウム蒸着膜
の外端部を除く対応部分にアース電極取出し用腕状部14
となるアルミニウム蒸着膜を形成し、これら電気伝導部
分である蒸着膜を超音波ボンダにより接続し、電気的に
導導通させる。このアース側の腕状部14及び焦電素子1
の信号取出し電極3の腕状部13は共に二股部を設けて信
頼性を向上させた。また腕状部14の露出部及び露出して
いる腕状部13にはそれぞれ2本づつのリード線7及び8
を接続した。焦電素子1と補強枠9とは超音波ボンディ
ングによる金属接着部以外の部分においてエポキシ系の
接着剤15により固着する。赤外集光レンズ2と補強枠9
とは上記第1実施例と同様、エポキシ系接着剤5(第1
図(a)参照)で固着する。但し、電気的導通は必要な
いので、補強枠9の全面に亘り接着剤5により固着す
る。
The reinforcing frame 9 has a projecting surface for connecting a lead wire at one corner. Along with this, as shown in FIG. 3, an aluminum vapor deposition film serving as a projecting surface 14 for taking out the ground electrode is vapor-deposited on the projecting surface of the reinforcing frame 9, and an indium film is overlapped and vapor-deposited if necessary. On the other hand, on the side of the reinforcing frame 9 of the pyroelectric element 1, the arm portion 14 for taking out the ground electrode is previously formed on the corresponding portion of the reinforcing frame 9 excluding the outer end of the aluminum or indium vapor deposition film.
An aluminum vapor deposition film is formed, and the vapor deposition film that is the electrically conductive portion is connected by an ultrasonic bonder to electrically conduct electricity. The ground-side arm portion 14 and the pyroelectric element 1
The arm-like portion 13 of the signal extraction electrode 3 is provided with a bifurcated portion to improve reliability. Also, two lead wires 7 and 8 are provided on the exposed portion of the arm-like portion 14 and the exposed arm-like portion 13, respectively.
Connected. The pyroelectric element 1 and the reinforcing frame 9 are fixed to each other by an epoxy adhesive 15 at a portion other than the metal bonding portion by ultrasonic bonding. Infrared condenser lens 2 and reinforcing frame 9
Is the same as in the first embodiment, the epoxy adhesive 5 (first
(See Fig. (A)). However, since electrical conduction is not necessary, the entire surface of the reinforcing frame 9 is fixed with the adhesive 5.

上記第2実施例によれば、熱時定数が4ms±0.5msと、非
常に安定した性能を確認でき、従来においては、0.5〜4
msの間でバラツキが大きかったのを大幅に改善すること
ができた。またリード線接続のための突出面14を設ける
ことにより、取り扱い易く、マウント作業を行い易く、
しかも信頼性を向上させることができる。
According to the second embodiment, the thermal time constant was 4 ms ± 0.5 ms, and very stable performance could be confirmed.
We were able to greatly improve the large variation between ms. Further, by providing the protruding surface 14 for connecting the lead wire, it is easy to handle and mount work is easy,
Moreover, reliability can be improved.

次に本発明の第3実施例について説明する。本実施例に
おいては、第1図に示す第1実施例と異なる点について
説明する。補強枠9における赤外集光レンズ2に接する
側の一部を凹入状態に削るか、あるいは完全に削除し、
その空間を利用して、赤外集光レンズ2側の焦電素子1
の電極4に接続したリード線をくぐらせ、直接電極4か
らリード線を引き出すように構成し、これにより電気的
接触部を2個所減らすようにした。
Next, a third embodiment of the present invention will be described. In this embodiment, points different from the first embodiment shown in FIG. 1 will be described. A part of the reinforcing frame 9 on the side in contact with the infrared condenser lens 2 is cut into a recessed state or completely removed,
Using the space, the pyroelectric element 1 on the infrared condenser lens 2 side
The lead wire connected to the electrode 4 was passed through and the lead wire was directly pulled out from the electrode 4, thereby reducing two electrical contact portions.

上記第3実施例によれば、インジウム圧着による電気的
接続部がないので、所謂低融点金属による電気的接続の
信頼度の低減の恐れを設計段階で解消することができ
る。
According to the third embodiment described above, since there is no electrical connection portion by indium pressure bonding, it is possible to eliminate the risk of reducing the reliability of electrical connection due to a so-called low melting point metal at the design stage.

発明の効果 以上のように本発明は、焦電素子の周辺部と赤外集光レ
ンズの間に補強枠を介在させ、この補強枠は好適には焦
電素子及び赤外集光レンズと熱膨張係数の差が少ない材
料により形成し、且つ赤外集光レンズと焦電素子の赤外
受光面とが赤外線の波長の2倍以下となる厚さに形成し
ているので、望ましい特性を得ることができ、また温度
変化に対する信頼性を向上させることができる。また補
強枠を用いているので、製作を容易にし、歩留りを向上
させることができる。更に単結晶基板に蒸着した焦電素
子に補強枠を接着した後、単結晶基板を除去するので、
製作時に焦電素子を補強し、これが破損するのを防止す
ることができる。
As described above, according to the present invention, the reinforcing frame is interposed between the peripheral portion of the pyroelectric element and the infrared condensing lens, and the reinforcing frame is preferably the pyroelectric element and the infrared condensing lens and the heat condensing lens. Since the infrared condensing lens and the infrared receiving surface of the pyroelectric element are formed to have a thickness that is less than twice the wavelength of infrared rays, the desired characteristics are obtained. It is also possible to improve reliability against temperature change. Further, since the reinforcing frame is used, the production can be facilitated and the yield can be improved. After further adhering the reinforcing frame to the pyroelectric element deposited on the single crystal substrate, the single crystal substrate is removed.
It is possible to reinforce the pyroelectric element during manufacturing and prevent it from being damaged.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)は本発明の第1実施例における赤外検出器
の断面図、第1図(b)はその底面図、第2図及び第3
図は本発明の第2実施例を示し、第2図は斜視図、第3
図は焦電形赤外検出素子と補強枠の分解斜視図、第4図
(a)は従来の赤外検出器の断面図、第4図(b)はそ
の底面図、第5図(a)は従来の他の例の赤外検出器を
示す断面図、第5図(b)はその底面図である。 1……焦電素子、2……赤外集光レンズ、3……信号取
出し電極、4……アース電極兼赤外受光面電極、5……
接着剤、7、8……リード線、9……補強枠。
FIG. 1 (a) is a sectional view of an infrared detector according to the first embodiment of the present invention, and FIG. 1 (b) is a bottom view thereof, FIG. 2 and FIG.
FIG. 2 shows a second embodiment of the present invention, FIG. 2 is a perspective view, and FIG.
FIG. 4 is an exploded perspective view of a pyroelectric infrared detection element and a reinforcing frame, FIG. 4 (a) is a sectional view of a conventional infrared detector, FIG. 4 (b) is its bottom view, and FIG. 5 (a). ) Is a cross-sectional view showing another conventional infrared detector, and FIG. 5 (b) is a bottom view thereof. 1 ... Pyroelectric element, 2 ... Infrared condenser lens, 3 ... Signal extraction electrode, 4 ... Ground electrode and infrared receiving surface electrode, 5 ...
Adhesive, 7, 8 ... Lead wire, 9 ... Reinforcing frame.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】球面状部と平面部とを有する半球状赤外集
光レンズと、焦電素子及び電極を有する焦電形赤外検出
素子と、前記赤外集光レンズの平面部と前記焦電素子の
周辺部との間に設けられた補強枠とを有した赤外検出器
であって、前記焦電素子の赤外受光面と前記平面部とが
赤外入力波長の2倍以下の間隔である赤外検出器。
1. A hemispherical infrared condenser lens having a spherical portion and a plane portion, a pyroelectric infrared detection element having a pyroelectric element and an electrode, a plane portion of the infrared condenser lens, and the An infrared detector having a reinforcing frame provided between the pyroelectric element and a peripheral portion thereof, wherein the infrared receiving surface of the pyroelectric element and the flat portion are not more than twice the infrared input wavelength. Infrared detector that is the interval of.
【請求項2】補強枠がアルミナ焼結体製である特許請求
の範囲第1項記載の赤外検出器。
2. The infrared detector according to claim 1, wherein the reinforcing frame is made of an alumina sintered body.
【請求項3】補強枠が焦電素子の赤外受光面電極と電気
的導通を保つように組合わせられる電気伝導部分と、リ
ード線が接続される突出部とを有する特許請求の範囲第
1項又は第2項記載の赤外検出器。
3. A reinforcing frame having an electrically conductive portion combined with the infrared light receiving surface electrode of the pyroelectric element so as to maintain electrical continuity, and a protruding portion to which a lead wire is connected. Infrared detector according to item 2 or item 2.
【請求項4】単結晶板に信号取出し電極を形成する工程
と、前記信号取出し電極上に焦電素子を形成する工程
と、前記焦電素子の赤外受光面に対応して赤外受光面電
極を形成する工程と、前記赤外受光面電極を形成された
焦電素子の周辺部に前記単結晶板の反対側から補強枠を
接着する工程と、前記補強枠を接着した後に前記単結晶
板を除去する工程と、前記赤外受光面電極に電気的導通
を保つ電気導電部分を前記補強枠に形成する工程と、前
記電気導電部分に電気的導通を保ちアース電極として機
能する突出部を前記補強枠に形成する工程と、球面状部
と平面部とを有する半球状赤外集光レンズの前記平面部
と前記補強枠とを、前記赤外受光面と前記平面部とが赤
外入力波長の2倍以下の間隔となるように、接着する工
程とを有する赤外検出器の製造法。
4. A step of forming a signal extracting electrode on a single crystal plate, a step of forming a pyroelectric element on the signal extracting electrode, and an infrared receiving surface corresponding to an infrared receiving surface of the pyroelectric element. A step of forming an electrode, a step of adhering a reinforcing frame from the opposite side of the single crystal plate to the peripheral portion of the pyroelectric element on which the infrared receiving surface electrode is formed, and the single crystal after adhering the reinforcing frame A step of removing the plate; a step of forming an electrically conductive portion on the infrared receiving surface electrode for maintaining electrical conduction on the reinforcing frame; and a projecting portion for electrically conducting on the electrically conductive portion and functioning as a ground electrode. The step of forming the reinforcing frame, the plane portion of the hemispherical infrared condensing lens having a spherical portion and a plane portion and the reinforcing frame, the infrared light receiving surface and the plane portion infrared input Infrared detection having a step of adhering so that the interval is not more than twice the wavelength. Vessel of the production process.
JP61128665A 1986-06-03 1986-06-03 Infrared detector and manufacturing method thereof Expired - Lifetime JPH0697188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61128665A JPH0697188B2 (en) 1986-06-03 1986-06-03 Infrared detector and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61128665A JPH0697188B2 (en) 1986-06-03 1986-06-03 Infrared detector and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS62285029A JPS62285029A (en) 1987-12-10
JPH0697188B2 true JPH0697188B2 (en) 1994-11-30

Family

ID=14990414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61128665A Expired - Lifetime JPH0697188B2 (en) 1986-06-03 1986-06-03 Infrared detector and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0697188B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3207583B2 (en) * 1992-09-21 2001-09-10 松下電器産業株式会社 Temperature distribution measurement device
JP5386729B2 (en) * 1995-02-16 2014-01-15 三菱電機株式会社 Infrared detector
JP6186281B2 (en) * 2011-12-05 2017-08-23 日本碍子株式会社 Infrared detector, infrared detector module, and manufacturing method thereof

Also Published As

Publication number Publication date
JPS62285029A (en) 1987-12-10

Similar Documents

Publication Publication Date Title
US20080164413A1 (en) Infrared Sensor
US9533875B2 (en) MEMS sensor packaging and method thereof
US5122666A (en) Pyroelectric and other infrared detection devices with thin films
JPS58182285A (en) Piezoelectric pressure sensor
CN104465850A (en) Pyroelectric infrared detector based on graphene absorption layer and manufacturing method thereof
EP0041297B1 (en) Pyroelectric detector
JPS6212454B2 (en)
US4367408A (en) Pyroelectric type infrared radiation detecting device
JPH0697188B2 (en) Infrared detector and manufacturing method thereof
JP2001174323A (en) Infrared ray detecting device
CN112768598B (en) Infrared pyroelectric detector and preparation method thereof
CN104409554A (en) Carbon black absorbing layer-based pyroelectric infrared detector and manufacturing method thereof
JPS5913926A (en) Pyroelectric element
JP2014095674A (en) Infrared detector and manufacturing method thereof
JPS6069524A (en) Infrared ray detecting element
JPS62119418A (en) Pyroelectric type infrared detection thin film element
JP2742287B2 (en) Infrared sensor and method of manufacturing the same
JP3086305B2 (en) Sensor and manufacturing method thereof
JPS5895224A (en) Infrared ray detector
JPS62119420A (en) Pyroelectric type infrared detection element
JPS5937448B2 (en) Room temperature infrared detector
JPH03287022A (en) Infrared detecting element, infrared detector and production of infrared detecting element
JPS6011477Y2 (en) Pyroelectric temperature sensing element
JPS61266927A (en) Pyroelectric infrared detecting element
JPS6379021A (en) Pyroelectric type infrared detector