JPH0696894A - Inverter type x-ray high-voltage device - Google Patents

Inverter type x-ray high-voltage device

Info

Publication number
JPH0696894A
JPH0696894A JP26778892A JP26778892A JPH0696894A JP H0696894 A JPH0696894 A JP H0696894A JP 26778892 A JP26778892 A JP 26778892A JP 26778892 A JP26778892 A JP 26778892A JP H0696894 A JPH0696894 A JP H0696894A
Authority
JP
Japan
Prior art keywords
circuit
switching element
output
voltage
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26778892A
Other languages
Japanese (ja)
Inventor
Keiichi Chabata
圭一 茶畑
Hiroshi Takano
博司 高野
Ichiro Kobayashi
一郎 小林
Hideki Uemura
秀記 植村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP26778892A priority Critical patent/JPH0696894A/en
Publication of JPH0696894A publication Critical patent/JPH0696894A/en
Pending legal-status Critical Current

Links

Landscapes

  • X-Ray Techniques (AREA)

Abstract

PURPOSE:To surely prevent the breakage of a switching element when an overcurrent is generated. CONSTITUTION:The inter-terminal voltage is inputted from driving circuits 3a-3d, the overcurrent by the arm short circuit is detected by a comparing circuit 11, the inverter output current is inputted from a sensor 10, and the overcurrent by a load circuit is detected by the second comparing circuit 12. The overcurrent is compared with the reference value by the comparing circuit 11 or the second comparing circuit 12 respectively, signals are outputted to driving circuits 3a-3d if the measured value is larger, and operations of gate insulation type bipolar transistors 2a-2d are stopped. Overcurrents by the arm short circuit and load short circuit are separately detected respectively, the overcurrents can be surely detected, and the breakage of IGBT2 can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はインバータ式X線高電圧
装置に係り、特に負荷回路への過電流によるスイッチン
グ素子の破壊防止の技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inverter type X-ray high voltage device, and more particularly to a technique for preventing the destruction of switching elements due to overcurrent in a load circuit.

【0002】[0002]

【従来の技術】インバータ式X線高電圧装置は、図5に
示すように直流電源電圧を高周波交流に変換するインバ
ータ回路4と、このインバータ回路4の出力電圧を昇圧
する高圧変圧器7と、この高圧変圧器7の出力電圧を整
流する高圧整流器8と、この高圧整流器8の出力電圧が
印加されるX線管9とを有して構成されている。
2. Description of the Related Art An inverter type X-ray high voltage device includes an inverter circuit 4 for converting a DC power supply voltage into a high frequency AC as shown in FIG. 5, and a high voltage transformer 7 for boosting an output voltage of the inverter circuit 4. It comprises a high voltage rectifier 8 for rectifying the output voltage of the high voltage transformer 7 and an X-ray tube 9 to which the output voltage of the high voltage rectifier 8 is applied.

【0003】そして、このインバータ回路は近年大電力
化、高周波化の傾向にあり、大容量で高速でスイッチン
グ可能なスイッチング素子へと変化してきている。これ
に伴い過電流も大電流となってきており、過電流をいち
早く検出しスイッチング素子を高速かつ安全に停止さ
せ、スイッチング素子を保護することが必要不可欠とな
ってきている。
In recent years, this inverter circuit has tended to have higher power and higher frequency, and has been changed to a switching element having a large capacity and capable of switching at high speed. Along with this, the overcurrent has become a large current, and it has become essential to detect the overcurrent promptly, stop the switching element at high speed and safely, and protect the switching element.

【0004】また、この過電流には、インバータ回路の
直列接続体のスイッチング素子が同時に導通して発生す
るもの(以下、アーム短絡という)と、負荷回路である
X線管の微放電あるいは高圧変圧器の巻線の短絡により
発生するもの(以下、負荷短絡という)がある。従来で
はこれらの過電流を検出するために、スイッチング素子
の端子間電圧を測定して間接的に求めて、比較回路で基
準値と比較し測定値が基準値を超えた場合にスイッチン
グ素子の動作を停止させる。
In addition, this overcurrent is generated when the switching elements of the series connection body of the inverter circuit are simultaneously conducted (hereinafter referred to as arm short-circuit), and a slight discharge of the X-ray tube as a load circuit or a high voltage transformer. There is something that occurs due to a short circuit in the winding of the container (hereinafter referred to as load short circuit). Conventionally, in order to detect these overcurrents, the voltage across the terminals of the switching element is measured and indirectly obtained, and compared with a reference value in a comparison circuit, and the switching element operates when the measured value exceeds the reference value. To stop.

【0005】[0005]

【発明が解決しようとする課題】上記従来の装置では、
アーム短絡と負荷短絡の両方を一つの比較回路で制御し
ていた。しかし、アーム短絡は立上りが早いため短時間
で過電流を検出できるが、負荷短絡は配線のインピーダ
ンスにより過電流の変化率が小さいため検出に時間がか
かる。そのため、負荷短絡で検出している間はスイッチ
ング素子に過電流が流れてしまいスイッチング素子を破
壊してしまうことがあった。
In the above-mentioned conventional device,
Both the arm short circuit and the load short circuit were controlled by a single comparison circuit. However, although arm short-circuiting has a quick rise, overcurrent can be detected in a short time, but load short-circuiting takes a long time because the rate of change of overcurrent is small due to the impedance of the wiring. Therefore, an overcurrent may flow in the switching element during the detection due to the load short circuit, and the switching element may be destroyed.

【0006】そこで本発明の目的は、過電流が発生した
ときに確実にスイッチング素子の破壊を防ぐことにあ
る。
Therefore, an object of the present invention is to prevent the switching element from being destroyed when an overcurrent occurs.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、直流電源と、第一のスイッチング素子と第二のスイ
ッチング素子の直列接続体とこの直列接続体に並列に接
続した第三のスイッチング素子と第四のスイッチング素
子の直列接続体と前記第一から第四のスイッチング素子
に設けた駆動回路とを備え前記直流電源からの出力を高
周波交流に変換するインバータ回路と、前記駆動回路で
検出した前記スイッチング素子に流れる電流を入力し基
準値と比較して前記スイッチング素子の動作を停止する
信号を出力する比較回路と、前記高周波交流を昇圧する
高圧変圧器と、この高圧変圧器の出力を直流に整流する
高圧整流器と、この整流された直流を印加してX線を発
生するX線管とを有するインバータ式X線高電圧装置に
おいて、上記インバータ回路の出力電流を検出する検出
器と、この検出器で検出された電流と基準値とを比較し
上記スイッチング素子の動作を停止させる信号を出力す
る第二の比較回路とを備え、上記比較回路の出力あるい
は前記第二の比較回路の出力によりインバータ回路の動
作を制御するものである。
In order to achieve the above object, a DC power supply, a series connection body of a first switching element and a second switching element, and a third switching device connected in parallel to the series connection body. An inverter circuit for converting the output from the DC power supply into high-frequency AC, which includes a series connection body of an element and a fourth switching element and a drive circuit provided in the first to fourth switching elements, and detection by the drive circuit Comparing circuit for inputting the current flowing through the switching element and comparing it with a reference value to output a signal for stopping the operation of the switching element, a high voltage transformer for boosting the high frequency alternating current, and an output of this high voltage transformer. In an inverter type X-ray high voltage device having a high-voltage rectifier for rectifying DC, and an X-ray tube for applying the rectified DC to generate X-rays, A detector for detecting the output current of the data circuit, and a second comparison circuit for comparing the current detected by the detector with a reference value and outputting a signal for stopping the operation of the switching element, The operation of the inverter circuit is controlled by the output of the comparison circuit or the output of the second comparison circuit.

【0008】[0008]

【作用】比較回路によりアーム短絡による過電流を検出
し、第二の比較回路により負荷短絡による過電流を検出
する。そして、この比較回路あるいは第二の比較回路で
それぞれの基準値と検出値とを比較し、測定値の方が大
きければ駆動回路へ信号を出力しスイッチング素子の動
作を停止させる。これにより、アーム短絡、負荷短絡を
別々に検出できるため、確実に過電流によるスイッチン
グ素子の破壊が防げる。
The comparator circuit detects the overcurrent due to the arm short circuit, and the second comparison circuit detects the overcurrent due to the load short circuit. Then, the comparison circuit or the second comparison circuit compares the reference value and the detected value, and if the measured value is larger, outputs a signal to the drive circuit to stop the operation of the switching element. As a result, the arm short circuit and the load short circuit can be detected separately, so that the switching element can be surely prevented from being damaged by the overcurrent.

【0009】[0009]

【実施例】以下、本発明の一実施例を図1乃至図4によ
り説明する。図1は本発明の構成を示す回路図、図2は
IGBTの特性を示す図、図3はインバータの駆動電圧
及び正常時とアーム短絡時のインバータ電流、端子間電
圧を示す図、図4は正常時と負荷短絡時のインバータ出
力電流を示す図である。1は直流電源、2はゲート絶縁
型バイポーラトランジスタ(以下、IGBTという)で
4個のIGBT2a〜2dをフルブリッジ型に組合せて
用いられており、それぞれにダイオードが逆並列に接続
されている。3はIGBT2a〜2dを動作させる駆動
回路でIGBT2a〜2dにそれぞれ1個ずつ3a〜3
dが設けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 1 is a circuit diagram showing a configuration of the present invention, FIG. 2 is a diagram showing characteristics of an IGBT, FIG. 3 is a diagram showing an inverter drive voltage, an inverter current in a normal state and an arm short circuit, a terminal voltage, and FIG. It is a figure which shows the inverter output current at the time of normal and a load short circuit. Reference numeral 1 is a DC power source, 2 is a gate insulating bipolar transistor (hereinafter referred to as IGBT), and four IGBTs 2a to 2d are combined in a full bridge type and used, and diodes are respectively connected in antiparallel. Reference numeral 3 is a drive circuit for operating the IGBTs 2a to 2d, and one drive circuit is provided for each of the IGBTs 2a to 2d.
d is provided.

【0010】4はIGBT2と駆動回路3とより構成さ
れ直流電源1からの電圧を高周波の交流電圧に変換する
インバータ回路、5はインバータ回路4からの高周波交
流が印加される負荷回路である。本実施例ではこの負荷
回路5は、インバータ回路4の出力に直列接続された共
振用のコンデンサ6と、インバータ回路4の出力電圧を
昇圧する高圧変圧器7と、この高圧変圧器7の出力電圧
を直流に変換する高圧整流器8と、この高圧整流器8の
出力が印加されX線を放射するX線管9とで構成され
る。
Reference numeral 4 is an inverter circuit composed of an IGBT 2 and a drive circuit 3 for converting the voltage from the DC power supply 1 into a high frequency AC voltage, and 5 is a load circuit to which the high frequency AC from the inverter circuit 4 is applied. In this embodiment, the load circuit 5 includes a resonance capacitor 6 connected in series with the output of the inverter circuit 4, a high-voltage transformer 7 that boosts the output voltage of the inverter circuit 4, and an output voltage of the high-voltage transformer 7. And a high-voltage rectifier 8 for converting DC into DC, and an X-ray tube 9 to which the output of the high-voltage rectifier 8 is applied and radiates X-rays.

【0011】10は負荷回路5に流れる電流を検出する
センサ、11は駆動回路3で検出したIGBT2の電流
を基準値とを比較する比較回路、12はセンサ10の電
流と基準値とを比較する比較回路、13は比較回路11
あるいは比較回路12の出力信号のうちどちらかが入力
されたときに駆動回路3へ制御信号を出力するOR回路
である。
Reference numeral 10 is a sensor for detecting the current flowing in the load circuit 5, 11 is a comparison circuit for comparing the current of the IGBT 2 detected by the drive circuit 3 with a reference value, and 12 is a comparison of the current of the sensor 10 with the reference value. A comparison circuit, 13 is a comparison circuit 11
Alternatively, it is an OR circuit that outputs a control signal to the drive circuit 3 when either of the output signals of the comparison circuit 12 is input.

【0012】次に本実施例の動作を図1により説明す
る。まず、直流電源1から直流電圧がインバータ回路4
へ入力されると、高周波交流の電圧に変換される。この
インバータ回路4では、最初にIGBT2aと2dを動
作させ、次のタイミングではIGBT2bと2cを動作
させることにより直流を交流に変換している。そして、
インバータ回路4からの高周波交流の電圧をコンデンサ
6と高圧変圧器7の漏れインダクタンスで共振させ高圧
変圧器7で昇圧し、この昇圧した電圧を高圧整流器8で
直流電圧に変換してX線管9に印加する。
Next, the operation of this embodiment will be described with reference to FIG. First, the DC voltage from the DC power supply 1 is converted into the inverter circuit 4
When input to, it is converted into a high frequency AC voltage. In this inverter circuit 4, first, the IGBTs 2a and 2d are operated, and at the next timing, the IGBTs 2b and 2c are operated to convert direct current into alternating current. And
The high-frequency AC voltage from the inverter circuit 4 resonates with the leakage inductance of the capacitor 6 and the high-voltage transformer 7, and is boosted by the high-voltage transformer 7. The boosted voltage is converted into a DC voltage by the high-voltage rectifier 8 and the X-ray tube 9 Apply to.

【0013】また、アーム短絡時及び負荷短絡時の検出
を図2乃至図4を加えて説明する。アーム短絡の検出は
IGBT2の電流を駆動回路3で検出し、この検出した
値を比較回路11に入力し、任意に設定した基準値と比
較する。実際には駆動回路3でIGBT2の電流Icを
直接検出せず端子間電圧Vceを測定することにより求
めている。この電流Icと端子間電圧Vceとは図2に
示されるように電流Icが通常動作範囲以上に増加する
と、端子間電圧Vceは急激に増加をする関係となって
いるため、端子間電圧Vceを測定することで電流Ic
がどのくらい流れているか判断している。
The detection when the arm is short-circuited and when the load is short-circuited will be described with reference to FIGS. To detect the arm short circuit, the current of the IGBT 2 is detected by the drive circuit 3, and the detected value is input to the comparison circuit 11 to be compared with the arbitrarily set reference value. Actually, the driving circuit 3 does not directly detect the current Ic of the IGBT 2 but measures the inter-terminal voltage Vce. As shown in FIG. 2, the current Ic and the inter-terminal voltage Vce have a relationship in which the inter-terminal voltage Vce rapidly increases when the current Ic increases above the normal operating range, and therefore the inter-terminal voltage Vce is changed. Measure the current Ic
Is deciding how much is flowing.

【0014】また、この動作をIGBT2aについてみ
ると、図3に示すような駆動回路3より駆動信号Vge
aがIGBT2aに入力される。正常時には端子間電圧
Vceaは数Vの動作電圧となり、電流Icaはコンデ
ンサ6と高圧変圧器7の漏れインダクタンスを含む直列
共振回路により正方向はIGBT2a、負方向はダイオ
ードを流れる正弦波の電流となる。アーム短絡時は端子
間電圧V´ceaは最初のうちは動作電圧がかかってい
るが次第に増加していく。電流I´caはアーム短絡し
ているためコンデンサ6等の共振回路を流れないため正
弦波の電流にならず、さらに負荷にも流れないため電流
が急激に増加する。
Looking at the operation of the IGBT 2a, the drive signal Vge from the drive circuit 3 as shown in FIG.
a is input to the IGBT 2a. During normal operation, the terminal voltage Vcea becomes an operating voltage of several V, and the current Ica becomes a sinusoidal current flowing through the IGBT 2a in the positive direction and through the diode in the negative direction due to the series resonance circuit including the leakage inductance of the capacitor 6 and the high-voltage transformer 7. . When the arm is short-circuited, the inter-terminal voltage V'cea is initially applied with the operating voltage, but gradually increases. Since the current I'ca does not flow through the resonance circuit such as the capacitor 6 because the arm is short-circuited, it does not become a sinusoidal current and further does not flow into the load, so that the current rapidly increases.

【0015】そして、駆動回路3で測定した端子間電圧
V´ceaを比較回路11に入力し、予め設定した基準
値と比較をして測定値の方が大きい場合にはIGBT2
aの動作を停止させる信号を出力する。IGBT2b〜
2dについても同様にしてアーム短絡の検出をする。
The inter-terminal voltage V'cea measured by the drive circuit 3 is input to the comparison circuit 11 and compared with a preset reference value. If the measured value is larger, the IGBT2
A signal for stopping the operation of a is output. IGBT2b ~
Similarly for 2d, the arm short circuit is detected.

【0016】負荷短絡はインバータ回路4の出力側に直
列に設けたセンサ10により直接電流を検出する。通常
時のインバータ回路4の出力電流Iinvは図4に示す
ように正弦波の交流電流となっているが、負荷短絡時の
出力電流I´invは通常時より大電流が流れる。そし
て、この検出した出力電流を比較回路12へ入力し予め
設定した基準値と比較し、検出した値の方が大きい場合
にはIGBT2の動作を停止させる信号を出力する。
When the load is short-circuited, the current is directly detected by the sensor 10 provided in series on the output side of the inverter circuit 4. The output current Iinv of the inverter circuit 4 at the normal time is a sinusoidal alternating current as shown in FIG. 4, but the output current I′inv at the time of load short circuit is larger than that at the normal time. Then, the detected output current is input to the comparison circuit 12 and compared with a preset reference value, and when the detected value is larger, a signal for stopping the operation of the IGBT 2 is output.

【0017】比較回路11及び比較回路12の出力端子
側にはOR回路13が設けられており、比較回路11、
12のどちらかの出力信号を入力すると駆動信号3へI
GBT2の停止信号を出力する。
An OR circuit 13 is provided on the output terminal side of the comparison circuit 11 and the comparison circuit 12, and the comparison circuit 11,
When either of the output signals of 12 is input, I is input to drive signal 3.
The stop signal of GBT2 is output.

【0018】これにより、アーム短絡及び負荷短絡が発
生した場合に確実にIGBT2の動作を停止することが
できる。
This makes it possible to reliably stop the operation of the IGBT 2 when an arm short circuit and a load short circuit occur.

【0019】[0019]

【発明の効果】本発明によれば、アーム短絡はスイッチ
ング素子のそれぞれに取り付けた駆動回路でスイッチン
グ素子に流れる電流を検出し、この電流を第一の比較回
路で比較することにより過電流を検出できる。また、負
荷短絡はインバータの出力側に設けた検出器で出力電流
を検出し、この電流を第二の比較回路で比較することに
より過電流を検出できる。この結果、アーム短絡、負荷
短絡をそれぞれ別々に検出できるため、確実に過電流を
検出してスイッチング素子の破壊を防ぐことができる。
According to the present invention, when an arm short circuit occurs, a drive circuit attached to each switching element detects a current flowing through the switching element, and this current is compared by a first comparison circuit to detect an overcurrent. it can. In the case of load short circuit, an overcurrent can be detected by detecting an output current with a detector provided on the output side of the inverter and comparing this current with a second comparison circuit. As a result, the arm short circuit and the load short circuit can be detected separately, so that it is possible to reliably detect the overcurrent and prevent the switching element from being destroyed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の構成を示す回路図FIG. 1 is a circuit diagram showing a configuration of the present invention.

【図2】IGBTの特性を示す図FIG. 2 is a diagram showing the characteristics of an IGBT.

【図3】インバータの駆動電圧及び正常時とアーム短絡
時の端子間電圧、インバータ電流を示す図
FIG. 3 is a diagram showing a drive voltage of the inverter, a voltage between terminals at a normal time and an arm short circuit, and an inverter current.

【図4】正常時と負荷短絡時のインバータ出力電流を示
す図
FIG. 4 is a diagram showing inverter output current under normal conditions and under load short circuit

【図5】従来のインバータ式X線高電圧装置を示す回路
FIG. 5 is a circuit diagram showing a conventional inverter type X-ray high voltage device.

【符号の説明】[Explanation of symbols]

2 IGBT 3 駆動回路 4 インバータ回路 6 コンデンサ 7 高圧変圧器 8 高圧整流器 9 X線管 10 センサ 11 比較回路 12 比較回路 13 OR回路 2 IGBT 3 Drive circuit 4 Inverter circuit 6 Capacitor 7 High voltage transformer 8 High voltage rectifier 9 X-ray tube 10 Sensor 11 Comparison circuit 12 Comparison circuit 13 OR circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 植村 秀記 千葉県柏市新十余二2番1号 株式会社日 立メディコ柏工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hideki Uemura Inventor Hideki Ueno 2-1 No. 2 Shinjuyo, Kashiwa City, Chiba Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】直流電源と、第一のスイッチング素子と第
二のスイッチング素子の直列接続体とこの直列接続体に
並列に接続した第三のスイッチング素子と第四のスイッ
チング素子の直列接続体と前記第一から第四のスイッチ
ング素子に設けた駆動回路とを備え前記直流電源からの
出力を高周波交流に変換するインバータ回路と、前記駆
動回路で検出した前記スイッチング素子に流れる電流を
入力し基準値と比較して前記スイッチング素子の動作を
停止する信号を出力する比較回路と、前記高周波交流を
昇圧する高圧変圧器と、この高圧変圧器の出力を直流に
整流する高圧整流器と、この整流された直流を印加して
X線を発生するX線管とを有するインバータ式X線高電
圧装置において、上記インバータ回路の出力電流を検出
する検出器と、この検出器で検出された電流と基準値と
を比較し上記スイッチング素子の動作を停止させる信号
を出力する第二の比較回路とを備え、上記比較回路の出
力あるいは前記第二の比較回路の出力によりインバータ
回路の動作を制御することを特徴とするインバータ式X
線高電圧装置。
1. A DC power supply, a series connection body of a first switching element and a second switching element, and a series connection body of a third switching element and a fourth switching element connected in parallel to the series connection body. An inverter circuit that includes a drive circuit provided in each of the first to fourth switching elements and that converts an output from the DC power supply into a high frequency AC, and a reference value by inputting a current flowing in the switching element detected by the drive circuit. A comparator circuit that outputs a signal that stops the operation of the switching element, a high-voltage transformer that steps up the high-frequency alternating current, a high-voltage rectifier that rectifies the output of the high-voltage transformer into direct current, and the rectified In an inverter type X-ray high-voltage device having an X-ray tube for applying a direct current to generate an X-ray, a detector for detecting an output current of the inverter circuit, A second comparison circuit that compares the current detected by the detector with a reference value and outputs a signal that stops the operation of the switching element, and outputs the output of the comparison circuit or the output of the second comparison circuit. Inverter type X characterized by controlling the operation of an inverter circuit
Line high voltage equipment.
JP26778892A 1992-09-11 1992-09-11 Inverter type x-ray high-voltage device Pending JPH0696894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26778892A JPH0696894A (en) 1992-09-11 1992-09-11 Inverter type x-ray high-voltage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26778892A JPH0696894A (en) 1992-09-11 1992-09-11 Inverter type x-ray high-voltage device

Publications (1)

Publication Number Publication Date
JPH0696894A true JPH0696894A (en) 1994-04-08

Family

ID=17449603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26778892A Pending JPH0696894A (en) 1992-09-11 1992-09-11 Inverter type x-ray high-voltage device

Country Status (1)

Country Link
JP (1) JPH0696894A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072460A1 (en) * 2007-12-03 2009-06-11 Hitachi Medical Corporation Inverter device and x-ray high-voltage device using the inverter device
DE102021208271A1 (en) 2020-08-11 2022-02-17 Fuji Electric Co., Ltd. SWITCHING DEVICE AND DETERMINING DEVICE

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072460A1 (en) * 2007-12-03 2009-06-11 Hitachi Medical Corporation Inverter device and x-ray high-voltage device using the inverter device
US8249217B2 (en) 2007-12-03 2012-08-21 Hitachi Medical Corporation Inverter device and X-ray high-voltage device using the inverter device
JP5637688B2 (en) * 2007-12-03 2014-12-10 株式会社日立メディコ Inverter device and X-ray high voltage device using the inverter device
DE102021208271A1 (en) 2020-08-11 2022-02-17 Fuji Electric Co., Ltd. SWITCHING DEVICE AND DETERMINING DEVICE
US11469750B2 (en) 2020-08-11 2022-10-11 Fuji Electric Co., Ltd. Switching apparatus and determination apparatus

Similar Documents

Publication Publication Date Title
US7667941B2 (en) Power supply circuit protecting method and apparatus for the same
US6678180B2 (en) Power semiconductor module
US5166549A (en) Zero-voltage crossing detector for soft-switching devices
JPH09233838A (en) Protective circuit
US6646843B1 (en) Short circuited semiconductor switch detection
JP7026898B2 (en) Inverter circuit, X-ray irradiation device
JPH10164854A (en) Power converter
JPH0696894A (en) Inverter type x-ray high-voltage device
JPH05219752A (en) Short circuit protecting device for power converter
JP2001268933A (en) Overvoltage inhibition circuit of capacitor
JP4514278B2 (en) Semiconductor control device
JPH0624393U (en) IGBT inverter circuit
US20240154538A1 (en) Method for controlling synchronous rectifier for power supply device and apparatus for same
JP3107169B2 (en) Inverter type X-ray high voltage device
JPH0562792A (en) Inverter type x-ray high-voltage device
JP3158816B2 (en) High frequency heating equipment
JP3183144B2 (en) Power supply for magnetron drive
KR20040020205A (en) Protection circuit of inverter for lcd back-light
JPH0279621A (en) Method for detecting abnormality of insulation gate type bipolar transistor
JPH08251944A (en) Method and circuit for controlling current type inverter
JPS59185157A (en) Chopper device
JPH0935886A (en) No-load detection protecting device for neon inverter transformer
JPH06217558A (en) Power converter
JPS60167679A (en) Switching power source
JPH04190678A (en) Voltage type pwm inverter device