JP4514278B2 - Semiconductor control device - Google Patents

Semiconductor control device Download PDF

Info

Publication number
JP4514278B2
JP4514278B2 JP2000074102A JP2000074102A JP4514278B2 JP 4514278 B2 JP4514278 B2 JP 4514278B2 JP 2000074102 A JP2000074102 A JP 2000074102A JP 2000074102 A JP2000074102 A JP 2000074102A JP 4514278 B2 JP4514278 B2 JP 4514278B2
Authority
JP
Japan
Prior art keywords
short
switching elements
current
conductive material
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000074102A
Other languages
Japanese (ja)
Other versions
JP2001268929A (en
Inventor
朗 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2000074102A priority Critical patent/JP4514278B2/en
Publication of JP2001268929A publication Critical patent/JP2001268929A/en
Application granted granted Critical
Publication of JP4514278B2 publication Critical patent/JP4514278B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Rectifiers (AREA)
  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、直列接続されたスイッチング素子が同時に導通することにより直流電圧源から短絡電流が流れたときの保護を安価な導電物と積分器を用いて実現する半導体制御装置に関わるものである。
【0002】
【従来の技術】
インバータ等の半導体制御装置においては、一般に直流電圧源の短絡電流を検出するのに変流器を用いて電流検出を行っていた。以下、図4により従来技術の概要を説明する。
図4中、1は、直流電圧源、2及び3は逆並列ダイオードを備えたスイッチング素子であり、スイッチング素子としてはIGBTやSIサイリスタなどが用いられる。
4は交流出力端子、31は変流器である。スイッチング素子2、3、交流端子4、変流器31は基本インバータを示し、インバータが三相の場合は基本インバータ3組で構成される。
【0003】
32はスイッチング素子2、3用のゲート制御装置である。通常のインバータ動作においては、スイッチング素子2と3は同時に導通することがないように制御されるが、何らかの原因でスイッチング素子2と3が同時に導通すると直流電圧源1からスイッチング素子2、変流器31、スイッチング素子3を経て閉回路が構成され、短絡電流が流れる。
このような短絡電流はスイッチング素子2や3を破損させる可能性があるため、変流器31で電流を検出し、この電流値が所定値よりも大きいと短絡電流が流れているものと判断してスイッチング素子2及び3に対してゲートブロックを行い、素子破壊等を未然に防止するのが一般的な制御方法である。
【0004】
【発明が解決しようとする課題】
しかしながら、変流器は一般に高価である。特に、上下二つの素子が導通し、直流電圧源が短絡状態になったときの過大な直流電流に対しても鉄心が飽和しないような変流器となると非常に高価になってしまうという課題があった。
本発明は、このような課題を解決するため導電物と積分器を用いて安価な電源短絡検知を実現するものである。
【0005】
[課題を解決するための手段]その実現のために、本発明では、逆並列ダイオードを備えた第一及び第二のスイッチング素子と導電物より成る直列回路を直流電圧源の両端に、前記第一及び第二のスイッチング素子導通時に順方向に通電する極性に接続した半導体ユニット、前記導電物の両端部から取り出した電流波形の微分波形である電圧を入力とする積分器、該積分器の出力が所定値に達したことを検出する短絡検知器、該短絡検知器が短絡検知したときに前記第一及び第二のスイッチング素子のゲート信号を停止する機能のあるゲート制御装置を備えて構成する。
【0006】
【発明の実施の形態】
以下、その詳細を図によって説明する。図1は、本発明を説明するための回路図であり、5は導電物、6は積分器、7は短絡検知器、8はゲート信号停止装置、9はスイッチング素子用のゲート制御装置である。なお、図4と同一部分には同一符号を付している。
この場合、基本インバータは、スイッチング素子2、3、交流出力端子4と導電物5から構成される。
【0007】
図2は、本発明の動作を説明するための各部の電流波形等を示し、11は、スイッチング素子2、3が同時に導通状態になり直流電圧源1が短絡状態になったときに導電物に流入する電流波形、12は導電物の両端部間に発生する電圧波形である。
13は、導電物の両端部間に発生する電圧波形を入力とする積分器の出力波形である。
すなわち、導電物は必ずなにがしかのインダクタンスを有するため導電物の両端部から取り出した波形は電流波形11の微分波形となる。この電圧を入力とする積分器5の出力電圧は、電流波形11の微分波形を積分することになり、結局、電流波形11が復元されることになる。本発明のポイントはここにある。
【0008】
以下、積分器6の出力が所定値に達すると短絡検知器7が出力を発生し、その結果、ゲート信号停止装置8に出力が与えられてゲートストップに至る部分は従来と同様である。
以上に述べたように、本発明によれば導電物の浮遊のインダクタンスを利用し、積分器と組み合わせることにより高価な変流器を用いることなく直流電圧源の短絡電流を復元することができる。
【0009】
図1では、導電物を逆並列ダイオード2と3の間に挿入したが、接続位置としてはスイッチング素子2のコレクタ側でも、スイッチング素子3のエミッタ側でも良いことは言うまでもない。
導電物としては、銅製の板やアルミ製の板あるいは分流器等が用いられる。
【0010】
図3は、本発明の他の実施例であり、交流をコンバータを介して直流電圧源に供給し、直流電圧源からインバータを介して交流を得る場合を示し、21は直流電圧源、22〜25はスイッチング素子、26、27は導電物、28はインバータである。
なお、導電物の出力が与えられるゲート制御装置は図示を省略したが、導電物26、27の出力が、積分器、短絡検知器を介してゲート信号停止装置に与えられ、ゲートブロックに至る動作は図1の場合と同一である。
【0011】
この場合においてスイッチング素子22と23が同時に導通した場合、直流電圧源21からスイッチング素子22と23を通じて短絡電流が流れるが、この場合にも本発明が適用されることは言うまでもない。
図3では単相のコンバータの場合を示したが、三相の場合にも適用できることは言うまでもない。
【0012】
【発明の効果】
以上に述べたように、本発明では導電物の有する浮遊のインダクタンスを利用し、導電物の両端間に発生する電圧を積分器に入力することにより元の電流波形を復元することができ、短絡電流検出のために高価な変流器を用いる必要がなくなる。
【図面の簡単な説明】
【図1】本発明を説明するための回路図である。
【図2】本発明の各部電流波形等を示す説明図である。
【図3】本発明の他の実施例を示す回路図である。
【図4】従来の技術を説明するための回路図である。
【符号の説明】
1、21 直流電圧源
2、3、22〜25 スイッチング素子
4 交流出力端子
5、26、27 導電物
6 積分器
7 短絡検知器
8 ゲート信号停止装置
9、32 ゲート制御装置
11 直流電圧源の短絡電流波形
12 導電物両端電圧波形
13 積分器出力波形
28 インバータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor control device that realizes protection when a short-circuit current flows from a DC voltage source by simultaneously connecting switching elements connected in series by using an inexpensive conductive material and an integrator.
[0002]
[Prior art]
In semiconductor control devices such as inverters, current detection is generally performed using a current transformer to detect a short-circuit current of a DC voltage source. Hereinafter, the outline of the prior art will be described with reference to FIG.
In FIG. 4, 1 is a DC voltage source, 2 and 3 are switching elements provided with anti-parallel diodes, and IGBTs or SI thyristors are used as the switching elements.
4 is an AC output terminal and 31 is a current transformer. The switching elements 2 and 3, the AC terminal 4, and the current transformer 31 indicate basic inverters, and when the inverter is a three-phase inverter, it is configured with three basic inverters.
[0003]
Reference numeral 32 denotes a gate control device for the switching elements 2 and 3. In normal inverter operation, the switching elements 2 and 3 are controlled so as not to be simultaneously conducted. However, if the switching elements 2 and 3 are simultaneously conducted for some reason, the DC voltage source 1 to the switching element 2 and the current transformer are controlled. 31. A closed circuit is formed through the switching element 3, and a short-circuit current flows.
Since such a short-circuit current may damage the switching elements 2 and 3, the current is detected by the current transformer 31, and if this current value is larger than a predetermined value, it is determined that the short-circuit current is flowing. Thus, it is a general control method to perform gate blocking on the switching elements 2 and 3 to prevent element destruction and the like.
[0004]
[Problems to be solved by the invention]
However, current transformers are generally expensive. In particular, there is a problem that a current transformer that does not saturate the iron core against an excessive direct current when the two upper and lower elements are conductive and the direct current voltage source is short-circuited becomes very expensive. there were.
In order to solve such a problem, the present invention realizes inexpensive power supply short-circuit detection using a conductive material and an integrator.
[0005]
[Means for Solving the Problems] In order to realize this, in the present invention, a series circuit composed of first and second switching elements each including an antiparallel diode and a conductive material is provided at both ends of a DC voltage source. A semiconductor unit connected to a polarity that is energized in a forward direction when the first and second switching elements are turned on; an integrator that receives a voltage that is a differential waveform of a current waveform extracted from both ends of the conductor; and an output of the integrator Comprises a short circuit detector for detecting that a predetermined value has been reached, and a gate control device having a function of stopping the gate signals of the first and second switching elements when the short circuit detector detects a short circuit. .
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The details will be described below with reference to the drawings. FIG. 1 is a circuit diagram for explaining the present invention, in which 5 is a conductive material, 6 is an integrator, 7 is a short circuit detector, 8 is a gate signal stop device, and 9 is a gate control device for a switching element. . The same parts as those in FIG. 4 are denoted by the same reference numerals.
In this case, the basic inverter includes switching elements 2 and 3, an AC output terminal 4, and a conductive material 5.
[0007]
FIG. 2 shows current waveforms and the like of respective parts for explaining the operation of the present invention. Reference numeral 11 denotes a conductive material when the switching elements 2 and 3 are simultaneously turned on and the DC voltage source 1 is short-circuited. An inflowing current waveform, 12 is a voltage waveform generated between both ends of the conductive material.
Reference numeral 13 denotes an output waveform of the integrator that receives a voltage waveform generated between both ends of the conductive material.
That is, since the conductive material always has some inductance, the waveform taken out from both ends of the conductive material is a differential waveform of the current waveform 11. The output voltage of the integrator 5 having this voltage as an input integrates the differential waveform of the current waveform 11, and eventually the current waveform 11 is restored. This is the point of the present invention.
[0008]
Hereinafter, when the output of the integrator 6 reaches a predetermined value, the short circuit detector 7 generates an output, and as a result, the output is given to the gate signal stop device 8 and reaches the gate stop as in the conventional case.
As described above, according to the present invention, the short-circuit current of the DC voltage source can be restored without using an expensive current transformer by utilizing the floating inductance of the conductive material and combining with an integrator.
[0009]
In FIG. 1, the conductive material is inserted between the antiparallel diodes 2 and 3, but it goes without saying that the connection position may be on the collector side of the switching element 2 or on the emitter side of the switching element 3.
As the conductive material, a copper plate, an aluminum plate, a shunt, or the like is used.
[0010]
FIG. 3 shows another embodiment of the present invention, in which AC is supplied to a DC voltage source via a converter, and AC is obtained from the DC voltage source via an inverter. 25 is a switching element, 26 and 27 are conductive materials, and 28 is an inverter.
The gate control device to which the output of the conductive material is given is not shown, but the output of the conductive materials 26 and 27 is given to the gate signal stop device via the integrator and the short-circuit detector, and the operation reaches the gate block. Is the same as in FIG.
[0011]
In this case, when the switching elements 22 and 23 are turned on simultaneously, a short-circuit current flows from the DC voltage source 21 through the switching elements 22 and 23. Needless to say, the present invention is also applied to this case.
Although FIG. 3 shows the case of a single-phase converter, it is needless to say that the present invention can also be applied to a three-phase converter.
[0012]
【The invention's effect】
As described above, in the present invention, a floating inductance of a conductive material is used, and the voltage generated between both ends of the conductive material can be input to the integrator to restore the original current waveform. There is no need to use an expensive current transformer for current detection.
[Brief description of the drawings]
FIG. 1 is a circuit diagram for explaining the present invention.
FIG. 2 is an explanatory diagram showing a current waveform of each part of the present invention.
FIG. 3 is a circuit diagram showing another embodiment of the present invention.
FIG. 4 is a circuit diagram for explaining a conventional technique.
[Explanation of symbols]
1, 21 DC voltage source 2, 3, 22 to 25 Switching element 4 AC output terminals 5, 26, 27 Conductor 6 Integrator 7 Short-circuit detector 8 Gate signal stop device 9, 32 Gate control device
11 Short-circuit current waveform of DC voltage source
12 Voltage waveform across conductor
13 Integrator output waveform
28 Inverter

Claims (1)

逆並列ダイオードを備えた第一及び第二のスイッチング素子と導電物より成る直列回路を直流電圧源の両端に、前記第一及び第二のスイッチング素子導通時に順方向に通電する極性に接続した半導体ユニット、前記導電物の両端部から取り出した電流波形の微分波形である電圧を入力とする積分器、該積分器の出力が所定値に達したことを検出する短絡検知器、該短絡検知器が短絡検知したときに前記第一及び第二のスイッチング素子のゲート信号を停止する機能のあるゲート制御装置を備えたことを特徴とする半導体制御装置。A semiconductor in which a series circuit composed of a first and second switching elements and a conductive material having antiparallel diodes is connected to both ends of a DC voltage source with a polarity that allows current to flow in the forward direction when the first and second switching elements are conductive. A unit, an integrator that receives a voltage that is a differential waveform of a current waveform taken out from both ends of the conductive material, a short-circuit detector that detects that the output of the integrator has reached a predetermined value, and the short-circuit detector A semiconductor control device comprising a gate control device having a function of stopping gate signals of the first and second switching elements when a short circuit is detected.
JP2000074102A 2000-03-16 2000-03-16 Semiconductor control device Expired - Fee Related JP4514278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000074102A JP4514278B2 (en) 2000-03-16 2000-03-16 Semiconductor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000074102A JP4514278B2 (en) 2000-03-16 2000-03-16 Semiconductor control device

Publications (2)

Publication Number Publication Date
JP2001268929A JP2001268929A (en) 2001-09-28
JP4514278B2 true JP4514278B2 (en) 2010-07-28

Family

ID=18592207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000074102A Expired - Fee Related JP4514278B2 (en) 2000-03-16 2000-03-16 Semiconductor control device

Country Status (1)

Country Link
JP (1) JP4514278B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008092713A (en) * 2006-10-04 2008-04-17 Toyo Electric Mfg Co Ltd Inverter device
JP5862232B2 (en) * 2011-11-25 2016-02-16 サンケン電気株式会社 Overvoltage protection circuit
JP5944067B1 (en) * 2015-04-24 2016-07-05 三菱電機株式会社 Power converter
US10491096B2 (en) * 2017-08-22 2019-11-26 General Electric Company System and method for rapid current sensing and transistor timing control

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06217558A (en) * 1993-01-14 1994-08-05 Sanyo Denki Co Ltd Power converter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06217558A (en) * 1993-01-14 1994-08-05 Sanyo Denki Co Ltd Power converter

Also Published As

Publication number Publication date
JP2001268929A (en) 2001-09-28

Similar Documents

Publication Publication Date Title
KR100417837B1 (en) Method and circuit to protect power circuit from short circuit and over current fault
AU2005290575B2 (en) Power supply circuit protecting method and apparatus for the same
US4507724A (en) Pulse width modulated inverter for unbalanced and variable power factor loads
JP3917156B2 (en) Method and circuit configuration for limiting overvoltage
JP2712470B2 (en) Inverter current detection device
US4970635A (en) Inverter with proportional base drive controlled by a current transformer
JPS61260508A (en) Contact weld detector
JP4514278B2 (en) Semiconductor control device
JP3479899B2 (en) Voltage regulator
JP3160414B2 (en) Conversion device
JP3864793B2 (en) PWM cycloconverter and PWM cycloconverter protection method
JPH0624393U (en) IGBT inverter circuit
JPH07107751A (en) Inverter circuit
JP3215164B2 (en) Voltage source inverter device
JPS62221876A (en) Inverter of amplitude modulation type
JP2000312480A (en) Current inverter
JP2641162B2 (en) Thyristor short-circuit detection device
JPH06133534A (en) Semiconductor ac switch
JP2563806B2 (en) Arm short circuit detector
JPH07123729A (en) Inverter device
JPH04308420A (en) Motor controller
JPS59149776A (en) Ground protecting device for power converter
JP2926933B2 (en) Output short-circuit protection method for voltage type inverter
JPS60139128A (en) Ground protecting device for power converter
KR100202599B1 (en) Overcurrent protection of inductive motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100511

R150 Certificate of patent or registration of utility model

Ref document number: 4514278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees