JPH069654B2 - Method for producing catalytic combustion catalyst - Google Patents

Method for producing catalytic combustion catalyst

Info

Publication number
JPH069654B2
JPH069654B2 JP60098078A JP9807885A JPH069654B2 JP H069654 B2 JPH069654 B2 JP H069654B2 JP 60098078 A JP60098078 A JP 60098078A JP 9807885 A JP9807885 A JP 9807885A JP H069654 B2 JPH069654 B2 JP H069654B2
Authority
JP
Japan
Prior art keywords
catalyst
weight
parts
carrier
catalytic combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60098078A
Other languages
Japanese (ja)
Other versions
JPS61257239A (en
Inventor
淳 北川
昭英 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60098078A priority Critical patent/JPH069654B2/en
Publication of JPS61257239A publication Critical patent/JPS61257239A/en
Publication of JPH069654B2 publication Critical patent/JPH069654B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は接触燃焼触媒に関するものである。The present invention relates to a catalytic combustion catalyst.

(従来の技術) 触媒を用いて燃料と酸素の反応を促進する接触燃焼法
は、従来の炎燃焼法と比較して(1)低温度で完全燃焼
が可能であり、(2)広範囲の燃料/空気比で安定燃焼
が可能であり、(3)サーマルNOxの発生が少い等の
特徴がある為、特に近年注目されている。
(Prior Art) A catalytic combustion method that uses a catalyst to promote the reaction between fuel and oxygen is (1) capable of complete combustion at a low temperature, and (2) a wide range of fuel. Since it is possible to perform stable combustion at an air / air ratio and (3) there is little generation of thermal NOx, it has been particularly noted in recent years.

接触燃焼を行うには、一般に耐熱性触媒担体上に酸化反
応に活性な触媒成分を担持した触媒を使用するが、その
代表的なものはBET比表面積の大きなアルミナ系担体
に白金および/またはパラジュウム等の貴金属を担持し
たものである。然しこれらの接触燃焼触媒には、100
0℃を越えるような高温使用条件の下では、(1)アル
ミナ等担体のBET比表面積が細孔の融着により急激に
低下する、(2)微細に分散した活性成分が集合するこ
とにより活性点が減少する、(3)担体と活性成分の結
合により活性成分の不活性化が生ずる、などの原因によ
り触媒活性が低下する欠点があった。さらに、貴金属系
触媒では触媒コストが高くなる欠点があった。これらの
欠点を解決するため、熱的に安定な触媒担体又は触媒が
これまで多数探索されている。転移性アルミナの安定化
方法として、特開昭48− 14600号は、酸化ランタン、酸
化セリウムなどの希土類酸化物を添加し、約1000℃以下
の温度で焼成することにより、α−アルミナへの転移を
阻害し、転移による収縮を減少することを提案している
が、同方法は触媒の活性の向上にはつながらなず、むし
ろランタン及び/又はセリウムなどの酸化物により安定
化しないものの方が活性が高いことを示している。
In order to carry out catalytic combustion, a catalyst in which a catalyst component active in an oxidation reaction is supported on a heat-resistant catalyst carrier is generally used, and a typical one is platinum and / or palladium on an alumina carrier having a large BET specific surface area. It carries a noble metal such as. However, these catalytic combustion catalysts have 100
Under high temperature use conditions such as exceeding 0 ° C., (1) the BET specific surface area of the carrier such as alumina is sharply decreased by fusion of pores, and (2) it is active due to aggregation of finely dispersed active ingredients. There is a drawback that the catalytic activity is lowered due to such factors as the decrease of the number of points and (3) the inactivation of the active ingredient due to the binding between the carrier and the active ingredient. Further, the noble metal catalyst has a drawback that the catalyst cost becomes high. To solve these drawbacks, a large number of thermally stable catalyst carriers or catalysts have been searched for. As a method of stabilizing transferable alumina, Japanese Patent Laid-Open No. 48-14600 discloses that a rare earth oxide such as lanthanum oxide or cerium oxide is added, and calcined at a temperature of about 1000 ° C. or less to transfer to α-alumina. However, this method does not lead to an improvement in the activity of the catalyst, but rather the one that is not stabilized by oxides such as lanthanum and / or cerium is more active. Is high.

特開昭58−216741号には、アルミナ、シリカ、ランタニ
ドを用いるアルミナ触媒が開示されているが、熱安定性
の向上はアルミナにシリカを加えることのみによって行
われていて、ランタニドは単に酸性度の低下を目的とす
るものである。因みに、アルミナ−シリカ−ランタニド
の焼成は、約500℃で行われている。
JP-A-58-216741 discloses an alumina catalyst using alumina, silica and lanthanide, but the thermal stability is improved only by adding silica to alumina, and the lanthanide is simply acidic. The purpose is to reduce Incidentally, the firing of alumina-silica-lanthanide is performed at about 500 ° C.

ジャーナル オブ キャタリスッ第86巻第2号(1984
年)に掲載されたH.C.YaoとY.F.Yu.Yaoの論
文は、セリアのアルミナ担体付貴金属触媒への添加は、
(1)酸素貯蔵能力の増大、(2)アルミナ担体のBE
T比表面積の熱によるロスの改善、(3)活性貴金属の
微細な分散状態の安定化、(4)酸素不足状態でのCO
による水性ガスシフト反応の増大、などの理由から一般
に行われていると述べているが、セリア添加後の熱処理
は800℃以下に限定していて、高温度での熱処理はセリ
ア添加の前述の諸効果を減退すると記述している。
Journal of Catharisu Vol. 86, No. 2 (1984
H. C. Yao and Y. F. Yu.Yao's paper shows that the addition of ceria to an alumina-supported noble metal catalyst is
(1) Increased oxygen storage capacity, (2) BE of alumina carrier
Improvement of loss of T specific surface area due to heat, (3) stabilization of finely dispersed active noble metal, (4) CO under oxygen-deficient state
However, the heat treatment after adding ceria is limited to 800 ° C or less, and the heat treatment at a high temperature is limited to the above-mentioned various effects of adding ceria. Is described as diminishing.

特公昭59− 41775号はハニカムなどの単一体不活性担体
を用いた貴金属触媒に関するものであるが、セリア、促
進剤及び活性アルミナの混合物を 900〜1200℃で表面積
を75m2/g以上に保ちながら予備仮焼したものと、白金
属金属又はその化合物と混ぜ合せた後、単一不活性担体
上に被覆する触媒の製造方法を提案している。然し、前
述のYaoとYu Yaoの記述に記されている如く、 900〜
1200℃の高温域に於て熱処理を行い、しかも表面積を75
m2/g以上に保つことは極めて精密な処理を必要とする
操作であり、熱処理による効果を充分に達成し得ない惧
れがある。
Japanese Examined Patent Publication No. 59-41775 relates to a noble metal catalyst using a single-body inert carrier such as a honeycomb, but a surface area of 75 m 2 / g or more is maintained at 900 to 1200 ° C with a mixture of ceria, a promoter and activated alumina. However, a method for producing a catalyst is proposed, in which the precalcined product is mixed with a white metal metal or its compound and then coated on a single inert carrier. However, as described in the description of Yao and Yu Yao above, 900 ~
Heat treatment is performed in the high temperature range of 1200 ℃, and the surface area is 75
Maintaining m 2 / g or more is an operation requiring extremely precise treatment, and there is a fear that the effect of heat treatment may not be sufficiently achieved.

特公昭60−7537号はセリウム−ランタン−無機多孔性担
体を 700℃以上の温度で焼成して優れた耐久性を有する
触媒担体を得ようとするものであるが、焼成温度が1200
℃以上になると担体のBET比表面積が低下して触媒効
果が低下するので好ましくないと記していて、実際に実
施例では焼成温度はすべて1000℃以下にとどめている。
Japanese Examined Patent Publication No. 60-7537 is intended to obtain a catalyst carrier having excellent durability by calcining a cerium-lanthanum-inorganic porous carrier at a temperature of 700 ° C. or higher.
It is described as unfavorable because the BET specific surface area of the carrier is lowered and the catalytic effect is lowered when the temperature is higher than 0 ° C, and the firing temperature is actually kept at 1000 ° C or lower in the examples.

本発明者等の発明に係る特願昭59−279767号(特開昭61
−157345号)には、アルミナ担体に特定の割合でランタ
ンとシリカを添加することによるアルミナ担体の耐熱性
の向上を提案しているが、苛酷な接触燃焼反応条件で使
用する触媒においてはさらに耐熱性を向上し、触媒の耐
久性を改善し、併せて触媒コストを低下し、その結果接
触燃焼が適用される場を広めることが特に望まれてい
た。
Japanese Patent Application No. 59-279767 relating to the invention of the present inventors
No. 157345) proposes to improve the heat resistance of the alumina carrier by adding lanthanum and silica in a specific ratio to the alumina carrier, but it is more heat resistant in the catalyst used under severe catalytic combustion reaction conditions. It has been particularly desired to improve the properties of the catalyst, improve the durability of the catalyst, and reduce the cost of the catalyst, thereby widening the field to which the catalytic combustion is applied.

(発明が解決しようとする問題点) 前述した如き接触燃焼触媒の諸問題がある為、耐熱性又
は耐久性に優れ然も安価な接触燃焼触媒が従来要望され
ていた。
(Problems to be Solved by the Invention) Because of the various problems of the catalytic combustion catalyst as described above, there has conventionally been a demand for a catalytic combustion catalyst which is excellent in heat resistance or durability but inexpensive.

(問題点を解決するための手段) 本発明の目的はアルミナ、アルミナ−シリカなどの耐熱
性触媒担体を用いた接触燃焼触媒を改善し、さらに耐熱
性が高く然も安価な触媒を提供するにある。
(Means for Solving Problems) An object of the present invention is to improve a catalytic combustion catalyst using a heat-resistant catalyst carrier such as alumina or alumina-silica, and to provide a catalyst having high heat resistance and still being inexpensive. is there.

本発明者等はこの目的を達成するため、アルミナ等の耐
熱性触媒担体へのランタン化合物とセリウム化合物の添
加効果について鋭意研究を重ねてきたが、その結果耐熱
性触媒担体に先づ第一の酸化触媒成分としてランタン化
合物を添加し約 500〜1000℃の温度範囲で第一次の熱処
理を行い、次に第二の酸化触媒成分としてセリウム化合
物を添加し約1000〜1300℃の温度範囲で第二次の熱処理
を行って得られた触媒は、75m2/g以下のような低比表
面積のものでさえ耐熱性に優れ、然も接触燃焼触媒とし
ても優れた働きをすることを見出し、本発明を完成する
に至った。
In order to achieve this object, the present inventors have made extensive studies on the effect of adding a lanthanum compound and a cerium compound to a heat resistant catalyst carrier such as alumina, but as a result, the first method was first applied to the heat resistant catalyst carrier. A lanthanum compound is added as an oxidation catalyst component and a first heat treatment is performed in a temperature range of about 500 to 1000 ° C, and then a cerium compound is added as a second oxidation catalyst component and a first temperature is adjusted in a temperature range of about 1000 to 1300 ° C. It was found that the catalyst obtained by the second heat treatment has excellent heat resistance even if it has a low specific surface area of 75 m 2 / g or less, and it also functions as a catalytic combustion catalyst. The invention was completed.

本発明の触媒の耐熱性担体としては、アルミナ、シリ
カ、チタニヤ、ジルコニヤなど従来の耐熱性担体として
用いられていた総ての担体が使用できるが、アルミナ、
シリカ−アルミナを主とするものが望ましい。また、マ
グネシウム、カルシウム、ストロンチウム及び/又はバ
リウムの酸化物などを増強剤としてこれらに加えても良
い。
As the heat-resistant carrier of the catalyst of the present invention, alumina, silica, titania, all the carriers that have been used as conventional heat-resistant carriers such as zirconia can be used, alumina,
Those mainly containing silica-alumina are preferable. In addition, magnesium, calcium, strontium and / or barium oxide or the like may be added to these as an enhancer.

ランタン化合物としては、硝酸ランタン、炭酸ランタ
ン、塩化ランタン、弗化ランタン、炭酸ランタン、しゅ
う酸ランタン、酢酸ランタン、アセチルアセトンランタ
ン、酸化ランタン等の他、各種のランタニド元素を含ん
だ混合希土塩類等も使用できる。添加にあたっては、通
常この分野で利用される沈澱法、共沈法、混練法、含浸
法及びこれらの組合せ等の何れの方法も使用できる。
Examples of the lanthanum compound include lanthanum nitrate, lanthanum carbonate, lanthanum chloride, lanthanum fluoride, lanthanum carbonate, lanthanum oxalate, lanthanum acetate, acetylacetone lanthanum, lanthanum oxide, and mixed rare earth salts containing various lanthanide elements. Can be used. In addition, any method such as a precipitation method, a coprecipitation method, a kneading method, an impregnation method and a combination thereof which are generally used in this field can be used.

ランタン化合物添加後の熱処理は約 500〜1000℃が望ま
しい。担体−ランタン化合物の混合粉体の状態で熱処理
し、次いで成形して担体とするか、成形したものを熱処
理して担体とする。
The heat treatment after adding the lanthanum compound is preferably about 500 to 1000 ° C. The mixed powder of the carrier-lanthanum compound is heat-treated and then molded into a carrier, or the molded product is heat-treated into a carrier.

ランタン化合物の添加量は担体 100重量部に対しLa
に換算して約1〜40重量部、特に約1〜20重量部で
あることが好ましい。この場合前述の特願昭59−279767
号に記述した如く、アルミナ担体の代りにアルミナ 100
重量部に対しシリカ約 0.5〜15重量部を含むシリカ−ア
ルミナを担体として使用することが一段と好ましい。
The amount of lanthanum compound added is La 2 with respect to 100 parts by weight of the carrier.
It is preferably about 1 to 40 parts by weight, especially about 1 to 20 parts by weight, calculated as O 3 . In this case, the aforementioned Japanese Patent Application No. 59-279767
As described in No. 1, instead of the alumina carrier, alumina 100
It is even more preferred to use silica-alumina as the carrier, which contains about 0.5 to 15 parts by weight of silica per part by weight.

添加するセリウム化合物としては、ランタン化合物の場
合と同様な各種の塩類をその他の化合物が使用できる。
As the cerium compound to be added, various kinds of salts similar to the case of the lanthanum compound can be used as other compounds.

セリウム化合物添加後の第二次熱処理は、約1000℃を越
える高温で行う。ランタン化合物添加による予備的な安
定化を行うことの効果により、第二次熱処理でのこのよ
うな高温での熱処理の触媒活性への影響は少く、その結
果として貴金属の添加を行わなくても充分活性の高い優
れた接触燃焼触媒が得られる。第二次熱処理の温度の上
限は約1300℃が好ましい。
The second heat treatment after the addition of the cerium compound is performed at a high temperature exceeding about 1000 ° C. Due to the effect of preliminary stabilization by adding a lanthanum compound, the heat treatment at such a high temperature in the secondary heat treatment has little influence on the catalytic activity, and as a result, addition of noble metal is sufficient. An excellent catalytic combustion catalyst with high activity can be obtained. The upper limit of the temperature of the second heat treatment is preferably about 1300 ° C.

セリウム化合物の添加量は、担体 100重量部に対してC
eOに換算して約5〜40重量部が初期活性の上からも
又耐熱性の上からも好ましく、約5重量部以下でも約40
重量部以上でも触媒の初期活性が低くなり、耐熱性につ
いても劣るものとなる。
The addition amount of the cerium compound is C based on 100 parts by weight of the carrier.
Approximately 5 to 40 parts by weight in terms of eO 2 is preferable from the viewpoint of initial activity and heat resistance.
If it is more than 1 part by weight, the initial activity of the catalyst will be low and the heat resistance will be poor.

本発明者等は白金及び/又はパラジウム等の貴金属を用
いることなしに、活性と耐熱性に優れた安価な接触燃焼
触媒を見出したが、白金等の貴金属を本発明の触媒に添
加すると本発明の触媒の性質、特に低温活性の改善に役
立つことをも見出した。然も、従来考えられていたよう
な大量の貴金属を用いることなく、全触媒重量の約 0.3
%以下特に 0.05 %以下の小量の貴金属の添加でも本発
明触媒の性質の改善に役立つことを見出した。このよう
な貴金属の添加は微量なので、安価な接触燃焼触媒とい
う目的を必ずしも逸脱するものではない。なお貴金属を
含む触媒を反応の前段に用い、貴金属を含まない安価な
触媒を後段の反応に用いることは、系全体としての触媒
の価格を低下させることに寄与する。
The present inventors have found an inexpensive catalytic combustion catalyst excellent in activity and heat resistance without using a precious metal such as platinum and / or palladium. However, when a precious metal such as platinum is added to the catalyst of the present invention, the present invention It was also found to be useful for improving the properties of the catalysts, especially low temperature activity. However, without using a large amount of noble metal as was previously considered, about 0.3% of the total catalyst weight.
It has been found that the addition of small amounts of noble metals, up to%, in particular up to 0.05%, also helps to improve the properties of the catalysts of the invention. Since the addition of such a noble metal is minute, it does not necessarily deviate from the purpose of an inexpensive catalytic combustion catalyst. The use of a catalyst containing a noble metal in the first stage of the reaction and the use of an inexpensive catalyst containing no noble metal in the second stage of the reaction contributes to a reduction in the cost of the catalyst as a whole system.

(作用) 本発明の触媒は特に耐熱性に優れており、最高温度 700
〜1400℃に達するような接触燃焼反応のための触媒とし
て特に好適である。この触媒は安価で然も優れた耐久性
と活性をもつことに特色をもつ接触燃焼触媒であり、従
来触媒の耐熱性及び価格の点で制約のあった領域への適
用が可能である。
(Function) The catalyst of the present invention is particularly excellent in heat resistance and has a maximum temperature of 700
It is particularly suitable as a catalyst for catalytic combustion reactions such as reaching ~ 1400 ° C. This catalyst is a catalytic combustion catalyst that is inexpensive and still has excellent durability and activity, and can be applied to areas where the heat resistance and price of conventional catalysts are limited.

(実施例) 次に本発明を例につきさらに詳細に説明するが、本発明
はこれらにのみ限定されるものではない。
(Example) Next, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto.

実施例1 水酸化アルミニウム 100g(Alとして61g)を
とり、これを 450℃で5時間仮焼し、次いでコロイダル
シリカ12.5g(SiOとして 2.5gを含有)を加え、
室温で3時間混練した。これを 550℃で5時間仮焼後、
12〜24メッシュに粉砕し、シリカ4重量%でアルミナ96
重量%のシリカ−アルミナ担体(以下担体Aという)を
得た。
Example 1 100 g of aluminum hydroxide (61 g as Al 2 O 3 ) was taken and calcined at 450 ° C. for 5 hours, then 12.5 g of colloidal silica (containing 2.5 g as SiO 2 ) was added,
The mixture was kneaded at room temperature for 3 hours. After calcining this at 550 ℃ for 5 hours,
Grinded to 12-24 mesh, alumina 4% by weight silica 96
A weight% silica-alumina carrier (hereinafter referred to as carrier A) was obtained.

担体A40gを硝酸ランタン水溶液(Laとして
4gを含有)中に投入し、含浸したものを 400℃で乾燥
した。この含浸乾燥の操作を4回繰り返し、硝酸ランタ
ンの全量を含浸した後、 900℃で10時間焼成(一次焼
成)した。
40 g of the carrier A was put into a lanthanum nitrate aqueous solution (containing 4 g as La 2 O 3 ) and the impregnated product was dried at 400 ° C. This operation of impregnation and drying was repeated 4 times to impregnate the whole amount of lanthanum nitrate, and then, firing was performed at 900 ° C. for 10 hours (primary firing).

得たるLaを含む一次焼成品を硝酸セリウム水溶
液(CeOとして4g含有)中に投入し、含浸したも
のを 400℃で乾燥した。この含浸乾燥の操作を4回繰り
返し、硝酸ランタン全量を含浸した後、1250℃で10時間
焼成(二次焼成)した。かくて得た触媒は、シリカ−ア
ルミナ担体 100重量部に対してLa10重量部と、
CeO10重量部とを含んでいた(この触媒を触媒Aと
称する)。
The obtained primary fired product containing La 2 O 3 was put into an aqueous cerium nitrate solution (containing 4 g of CeO 2 ), and the impregnated product was dried at 400 ° C. This operation of impregnation and drying was repeated four times to impregnate the entire amount of lanthanum nitrate, and then, firing was performed at 1250 ° C. for 10 hours (secondary firing). The catalyst thus obtained was 10 parts by weight of La 2 O 3 with respect to 100 parts by weight of silica-alumina carrier,
And 10 parts by weight of CeO 2 (this catalyst is referred to as catalyst A).

比較例1 一次焼成を行わない他は、実施例1と全く同様な方法に
より、触媒を製造した(この触媒を触媒aと称する)。
Comparative Example 1 A catalyst was produced by the same method as in Example 1 except that the primary calcination was not performed (this catalyst is referred to as catalyst a).

実施例2 実施例1により製造した触媒Aを 300gとり、塩化パラ
ジウム溶液(Pdとして 0.15 を含有)に含浸し、この
含浸物を 400℃で乾燥した後、1200℃で10時間焼成し、
Pdを 0.05 %含む触媒(触媒B)を得た。
Example 2 300 g of the catalyst A produced according to Example 1 was taken and impregnated with a palladium chloride solution (containing 0.15 as Pd), and the impregnated product was dried at 400 ° C. and then calcined at 1200 ° C. for 10 hours,
A catalyst containing 0.05% of Pd (Catalyst B) was obtained.

比較例2 触媒Aの代りに触媒aを用い、実施例2と同様な操作に
より触媒(触媒b)を製造した。
Comparative Example 2 A catalyst (catalyst b) was produced in the same manner as in Example 2, except that the catalyst a was used in place of the catalyst A.

実施例3 内径15mmのアルミナ製反応管に12〜24メッシュに揃えた
触媒10ccを充填し、ヒーターにて反応器外温を 900℃に
保ち、次いでH 3.0容積%、CH 2.0容積%、残余
が空気から成る燃料ガスを 300/時の割合で挿入し
た。その後、反応器内の最高温度を1250℃に保つように
反応器外の温度を調節しながら、接触燃焼反応試験を実
施した。実施例1及び2と比較例1及び2の触媒につい
て試験した結果は、次の第1表に示す通りであった。
Example 3 A reaction tube made of alumina having an inner diameter of 15 mm was filled with 10 cc of a catalyst prepared in 12 to 24 mesh, and the external temperature of the reactor was kept at 900 ° C. with a heater, and then H 2 3.0% by volume, CH 4 2.0% by volume, Fuel gas consisting of air as the balance was inserted at a rate of 300 / hr. Then, a catalytic combustion reaction test was conducted while adjusting the temperature outside the reactor so that the maximum temperature inside the reactor was maintained at 1250 ° C. The results of testing the catalysts of Examples 1 and 2 and Comparative Examples 1 and 2 were as shown in Table 1 below.

前掲の第1表から判るように、本発明による実施例1の
触媒A及び実施例2の触媒Bは、対応する比較例1の触
媒a及び比較例2の触媒bに比べて、明らかに耐久性が
優れている。
As can be seen from Table 1 above, the catalyst A of Example 1 and the catalyst B of Example 2 according to the present invention are clearly more durable than the corresponding catalyst a of Comparative Example 1 and catalyst b of Comparative Example 2. It has excellent properties.

実施例4〜8と比較例3 実施例1と同様な操作により、アルミナ−シリカ担体 1
00重量部に10重量部のLaを担持し、 900℃で焼
成した一次焼成品を製造した。次いで、硝酸セリウムの
含浸量を変えた他は全く実施例1と同様にして担体 100
重量部に対するCeO量が夫々、2重量部(比較例
3)、5重量部(実施例4)、15重量部(実施例5)、
20重量部(実施例6)、30重量部(実施例7)及び40重
量部(実施例8)となるように硝酸セリウムを含浸し、
乾燥後1200℃で10時間焼成して触媒C,D,E,F.G
及びHを夫々製造した。
Examples 4 to 8 and Comparative Example 3 By the same operation as in Example 1, the alumina-silica carrier 1
10 parts by weight of La 2 O 3 was carried on 00 parts by weight, and a primary-fired product was produced by firing at 900 ° C. Then, a carrier 100 was prepared in the same manner as in Example 1 except that the impregnation amount of cerium nitrate was changed.
The CeO 2 amount with respect to parts by weight is 2 parts by weight (Comparative Example 3), 5 parts by weight (Example 4), 15 parts by weight (Example 5), respectively.
20 parts by weight (Example 6), 30 parts by weight (Example 7) and 40 parts by weight (Example 8) were impregnated with cerium nitrate,
After drying, it was calcined at 1200 ° C. for 10 hours to obtain catalysts C, D, E, F. G
And H were produced respectively.

実施例9 比較例3を実施例4〜8の触媒(触媒C〜H)を用い、
実施例3と同様な試験を行った。結果を次の第2表に示
す。
Example 9 Comparative Example 3 was carried out using the catalysts of Examples 4 to 8 (catalysts C to H).
The same test as in Example 3 was performed. The results are shown in Table 2 below.

前掲の第2表から判るように、本発明の接触燃焼触媒は
CHの燃焼性が極めて良好である。
As can be seen from Table 2 above, the catalytic combustion catalyst of the present invention has extremely good CH 4 flammability.

実施例10〜15 実施例6の触媒Fを用い、実施例2と同様な方法により
塩化パラジウムを含浸し、 400℃にて乾燥後、1150℃で
10時間焼成して、パラジウムを夫々 0.01 重量%(実施
例10)、 0.03 重量%(実施例11)、 0.05 重量%(実
施例12)、 0.08 重量%(実施例13)、 0.10 重量%
(実施例14)及び 0.15 重量%(実施例15)を含む触媒
I,J,K,L,M及びNを夫々製造した。
Examples 10 to 15 Using catalyst F of Example 6, palladium chloride was impregnated in the same manner as in Example 2, dried at 400 ° C, and then dried at 1150 ° C.
After being calcined for 10 hours, 0.01% by weight of palladium (Example 10), 0.03% by weight (Example 11), 0.05% by weight (Example 12), 0.08% by weight (Example 13) and 0.10% by weight, respectively
Catalysts I, J, K, L, M and N containing (Example 14) and 0.15 wt% (Example 15) were prepared, respectively.

実施例16 電気炉にて触媒F,I〜Nを1300℃ 100時間熱処理し、
実施例3と同じアルミナ性反応管に触媒を夫々充填し
た。次いで、水素 1.0容量%、酸素 0.6容量%及び窒素
98.4容量%のガスを導入しつつ、反応質外温を 120℃/
時間の割合で室温から次第に昇温し、水素の着火する温
度を試験した。試験の結果を次の第3表に示す。
Example 16 Heat treatment of catalysts F, I to N in an electric furnace at 1300 ° C. for 100 hours,
The same alumina reaction tube as in Example 3 was filled with the catalyst. Then 1.0% by volume hydrogen, 0.6% by volume oxygen and nitrogen
While introducing 98.4% by volume of gas, the external temperature of the reactant is 120 ° C /
The temperature at which hydrogen ignites was tested by gradually increasing the temperature from room temperature at a rate of time. The results of the tests are shown in Table 3 below.

前掲の第3表から判るように、本発明の接触燃焼触媒は
水素の燃焼性が極めて良好であった。
As can be seen from Table 3 above, the catalytic combustion catalyst of the present invention had extremely good hydrogen flammability.

(発明の効果) かくて、本発明によれば耐熱性と耐久性に優れ然も安価
な接触燃焼触媒を得ることができる。従って、本発明は
産業上極めて有用である。
(Effects of the Invention) Thus, according to the present invention, it is possible to obtain a catalytic combustion catalyst which is excellent in heat resistance and durability but is inexpensive. Therefore, the present invention is extremely useful industrially.

以上、本発明を特定の例及び数値につき説明したが、本
発明の広汎な精神と視野を逸脱することなく本発明の種
々な変更と修正が可能なこと勿論である。
Although the present invention has been described with reference to specific examples and numerical values, it is needless to say that various changes and modifications of the present invention can be made without departing from the broad spirit and scope of the present invention.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−160536(JP,A) 特開 昭59−98730(JP,A) 特開 昭59−52529(JP,A) 特開 昭58−133831(JP,A) ─────────────────────────────────────────────────── --- Continuation of the front page (56) References JP 59-160536 (JP, A) JP 59-98730 (JP, A) JP 59-52529 (JP, A) JP 58- 133831 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】耐熱性触媒担体100重量部に第一の酸化
触媒成分としてLa2O3 に換算して1〜40重量部のラン
タン化合物を添加し、500〜1000℃の温度範囲で
第一次熱処理を行い、次に第二の酸化触媒成分としてCe
O2に換算して5〜40重量部のセリウム化合物を添加
し、1000〜1300℃の温度範囲で第二次熱処理を
行うことを特徴とする接触燃焼触媒の製造方法。
1. A lanthanum compound of 1 to 40 parts by weight in terms of La 2 O 3 as a first oxidation catalyst component is added to 100 parts by weight of a heat-resistant catalyst carrier, and the first lanthanum compound is added in a temperature range of 500 to 1000 ° C. Next heat treatment is performed, and then Ce as the second oxidation catalyst component
A method for producing a catalytic combustion catalyst, comprising adding 5 to 40 parts by weight of a cerium compound in terms of O 2 and performing a second heat treatment in a temperature range of 1000 to 1300 ° C.
【請求項2】耐熱性触媒担体100重量部に第一の酸化
触媒成分としてLa2O3 に換算して1〜40重量部のラン
タン化合物を添加し、500〜1000℃の温度範囲で
第一次熱処理を行い、次に第二の酸化触媒成分としてCe
O2に換算して5〜40重量部のセリウム化合物を添加
し、1000〜1300℃の温度範囲で第二次熱処理を
行い、さらに耐熱性触媒担体100重量部に対し0.3
重量部以下の貴金属元素を第三の酸化触媒成分として担
持させることを特徴とする接触燃焼触媒の製造方法。
2. A lanthanum compound of 1 to 40 parts by weight in terms of La 2 O 3 as a first oxidation catalyst component is added to 100 parts by weight of a heat-resistant catalyst carrier, and the first lanthanum compound is added in a temperature range of 500 to 1000 ° C. Next heat treatment is performed, and then Ce as the second oxidation catalyst component
The cerium compound is added in an amount of 5 to 40 parts by weight in terms of O 2 , and the second heat treatment is performed in the temperature range of 1000 to 1300 ° C., and 0.3 to 100 parts by weight of the heat resistant catalyst carrier.
A method for producing a catalytic combustion catalyst, comprising supporting a noble metal element by weight or less as a third oxidation catalyst component.
JP60098078A 1985-05-10 1985-05-10 Method for producing catalytic combustion catalyst Expired - Lifetime JPH069654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60098078A JPH069654B2 (en) 1985-05-10 1985-05-10 Method for producing catalytic combustion catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60098078A JPH069654B2 (en) 1985-05-10 1985-05-10 Method for producing catalytic combustion catalyst

Publications (2)

Publication Number Publication Date
JPS61257239A JPS61257239A (en) 1986-11-14
JPH069654B2 true JPH069654B2 (en) 1994-02-09

Family

ID=14210311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60098078A Expired - Lifetime JPH069654B2 (en) 1985-05-10 1985-05-10 Method for producing catalytic combustion catalyst

Country Status (1)

Country Link
JP (1) JPH069654B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4839146A (en) * 1987-04-15 1989-06-13 General Motors Corporation Catalyst for simultaneous NO decomposition and CO oxidation under cycled operating conditions

Also Published As

Publication number Publication date
JPS61257239A (en) 1986-11-14

Similar Documents

Publication Publication Date Title
US5492878A (en) Catalyst for cleaning exhaust gas with alumina, ceria, zirconia, nickel oxide, alkaline earth oxide, and noble metal catalyst, and method for preparing
US5075276A (en) Catalyst for purification of exhaust gases
EP0337809B1 (en) Catalyst for purifying exhaust gas and method for production thereof
JP2911466B2 (en) Exhaust gas purification catalyst for internal combustion engine, method for producing the same, and exhaust gas purification method
EP1053779B1 (en) Catalytic converter for cleaning exhaust gas
US5849659A (en) Exhaust gas purifying catalyst
KR100218204B1 (en) Catalyst carrier having high heat resistance
US4316822A (en) Catalyst for purifying exhaust gases
US5972830A (en) High heat-resistant catalyst with a porous ceria support
EP1742733B1 (en) Production process for an exhaust gas purifying catalyst
JPS6146175B2 (en)
JP2007301526A (en) Catalyst for cleaning exhaust gas and its manufacturing method
JPH0557022B2 (en)
US7632776B2 (en) Exhaust gas purifying catalyst and production process thereof
CN113042045B (en) Exhaust gas purifying catalyst
JP3827838B2 (en) Exhaust gas purification catalyst
EP1006081A1 (en) Catalytic converter for automotive pollution control, and oxygen-storing cerium complex oxide used therefor
JP2930975B2 (en) Method for producing combustion catalyst
JPH02265648A (en) Exhaust gas purification catalyst
JPH069654B2 (en) Method for producing catalytic combustion catalyst
JP3872153B2 (en) Exhaust gas purification catalyst
JP3556839B2 (en) Oxygen storage cerium-based composite oxide
JP2698302B2 (en) Exhaust gas purification catalyst
JPH0582258B2 (en)
JP2001232199A (en) Exhaust gas cleaning catalyst