JPH0696478B2 - Single crystal automatic growth method - Google Patents

Single crystal automatic growth method

Info

Publication number
JPH0696478B2
JPH0696478B2 JP1223748A JP22374889A JPH0696478B2 JP H0696478 B2 JPH0696478 B2 JP H0696478B2 JP 1223748 A JP1223748 A JP 1223748A JP 22374889 A JP22374889 A JP 22374889A JP H0696478 B2 JPH0696478 B2 JP H0696478B2
Authority
JP
Japan
Prior art keywords
single crystal
zone
high frequency
frequency current
anode voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1223748A
Other languages
Japanese (ja)
Other versions
JPH02275794A (en
Inventor
茂樹 大谷
高穂 田中
芳夫 石沢
Original Assignee
科学技術庁無機材質研究所長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科学技術庁無機材質研究所長 filed Critical 科学技術庁無機材質研究所長
Publication of JPH02275794A publication Critical patent/JPH02275794A/en
Priority to US07/891,914 priority Critical patent/US5690732A/en
Publication of JPH0696478B2 publication Critical patent/JPH0696478B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/28Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1004Apparatus with means for measuring, testing, or sensing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • General Induction Heating (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は単結晶育成法に係り、より詳しくは、高周波誘
導加熱を利用してフローティング・ゾーン法(以下、
「FZ法」という)により単結晶を自動育成する方法に関
するものである。
Description: TECHNICAL FIELD The present invention relates to a single crystal growth method, and more specifically, a floating zone method (hereinafter,
"FZ method") for the automatic growth of single crystals.

(従来の技術) 高周波誘導加熱によるFZ法は、ルツボを使用せず、試料
自身が発熱体となるため、高融点物質の単結晶育成に最
適な方法である。
(Prior Art) The FZ method by high-frequency induction heating is an optimal method for growing a single crystal of a high melting point substance because a sample itself becomes a heating element without using a crucible.

現在、熱電子放射材であるLaB6(融点2600℃)単結晶が
この方法により育成され、広く実用に供せられている。
また、電界電子放射材として注目されているTiC(融点3
100℃)単結晶もこの方法により育成されている。最近
では、過酷な使用条件に耐える材料への要求と共に、ま
すます、高周波加熱FZ法による単結晶の育成法が重要と
なってきている。
Currently, a LaB 6 (melting point 2600 ° C) single crystal, which is a thermionic emission material, is grown by this method and is widely put to practical use.
In addition, TiC (melting point 3
(100 ° C) single crystal is also grown by this method. Recently, along with the demand for materials that can withstand the harsh conditions of use, the growing method of single crystals by the high frequency heating FZ method is becoming more and more important.

(発明が解決しようとする課題) ところで、高周波加熱FZ法により単結晶を育成する場合
には、融帯が加熱と共にその形状が変化するため、融帯
形状を制御しなければ、高品質の単結晶を得ることが困
難である。
(Problems to be Solved by the Invention) By the way, when a single crystal is grown by the high frequency heating FZ method, the shape of the zone changes as the zone is heated. It is difficult to obtain crystals.

しかしながら、従来のFZ法による単結晶育成法では、引
上法による単結晶育成におけるロードセルのような、結
晶の成長状態をうまく検出できる装置がないため、実験
者が直接目で融帯形状を観察しながら、加熱電力を適正
値になるように手動で制御し、単結晶を育成せざるを得
なかった。そのため、手動で温度を制御するのでは緩や
かな温度制御が難しく、単結晶の品質を低下させてい
た。また、育成される結晶の品質のバラツキも生じさせ
ていた。
However, in the conventional single crystal growth method by the FZ method, there is no device that can detect the growth state of the crystal well, such as the load cell in the single crystal growth by the pulling method, so the experimenter directly observes the zone shape. However, the heating power had to be manually controlled so as to have an appropriate value to grow a single crystal. Therefore, it is difficult to control the temperature gently by manually controlling the temperature, which deteriorates the quality of the single crystal. Moreover, the quality of the grown crystal also varies.

本発明は、上記従来技術の欠点を解消し、高周波誘導加
熱によるFZ法で単結晶を育成するに際し、単結晶をスム
ーズに温度制御しながら自動育成できる方法を提供する
ことを目的とするものである。
The present invention eliminates the above-mentioned drawbacks of the prior art, and when growing a single crystal by the FZ method by high frequency induction heating, an object thereof is to provide a method capable of automatically growing the single crystal while smoothly controlling the temperature. is there.

(課題を解決するための手段) 本発明者らは、前記目的を達成すべく鋭意研究を重ねた
結果、スムーズな単結晶育成には、融帯の形状を一定に
保つことが重要であり、その融帯形状の変化は、適正加
熱電力からのずれにより生じ、融帯を加熱している高周
波電流と陽極電圧の相関により判定できることを見い出
したのである。その結果、単結晶育成中の高周波電流と
陽極電圧を読み取り、融帯形状をコンピューターで判断
し、加熱電力を制御することにより、単結晶を全く自動
的に育成できることが可能となった。
(Means for Solving the Problems) The inventors of the present invention have conducted extensive studies to achieve the above object, and it is important to keep the shape of the melt zone constant for smooth single crystal growth. It has been found that the change in the shape of the zone is caused by the deviation from the appropriate heating power and can be determined by the correlation between the high frequency current heating the zone and the anode voltage. As a result, it became possible to grow the single crystal completely automatically by reading the high frequency current and the anodic voltage during the growth of the single crystal, judging the zone shape by the computer, and controlling the heating power.

或いはまた、融帯形状の変化は、融帯を加熱している高
周波電流の変化によっても判定でき、したがって、単結
晶育成中の高周波電流の変化から融帯形状の変化をコン
ピューターで判断し、加熱電力を制御することにより、
単結晶を全く自動的に育成できることも可能となった。
Alternatively, the change in the zone shape can also be determined by the change in the high-frequency current heating the zone, and therefore, the change in the zone shape is determined by the computer from the change in the high-frequency current during single crystal growth, and heating is performed. By controlling the power,
It has become possible to grow single crystals completely automatically.

以上の知見に基づいて、FZ法による単結晶自動育成法の
発明を完成したものである。
Based on the above knowledge, the invention of the single crystal automatic growth method by the FZ method has been completed.

すなわち、本発明に係る単結晶自動育成法は、高周波誘
導加熱を利用してFZ法により単結晶を育成する方法にお
いて、高周波発振管の陽極電圧と高周波電流を比較する
ことにより、融帯形状を判断し、判断結果に基づいて加
熱電力を制御すること、或いは育成中の高周波電流の変
化から融帯形状の変化を判断し、判断結果に基づいて加
熱電力を制御すること、更にはこれらを併用して加熱電
力を制御することを特徴とするものである。
That is, the single crystal automatic growth method according to the present invention, in the method of growing a single crystal by the FZ method utilizing high frequency induction heating, by comparing the anode voltage of the high frequency oscillator tube and the high frequency current, the zone shape Judgment, controlling heating power based on the judgment result, or judging the change of the zone shape from the change of high-frequency current during growth, and controlling the heating power based on the judgment result. Then, the heating power is controlled.

以下に本発明を更に詳細に説明する。The present invention will be described in more detail below.

(作用) 第1図は本発明法に用いるFZ法自動単結晶育成炉の一例
の概念図である。
(Operation) FIG. 1 is a conceptual diagram of an example of the FZ method automatic single crystal growing furnace used in the method of the present invention.

図中、1は上軸、1′は下軸、2、2′はホルダー、3
は焼結棒、3′は融帯、4は育成した単結晶、5は高周
波ワークコイル、6、7はそれぞれ陽極電圧を高周波電
流の測定器、8はコンピューター、9は高周波発振機
(発振管)、10は演算部、11は制御部を示している。
In the figure, 1 is an upper shaft, 1'is a lower shaft, 2 and 2'is a holder, 3
Is a sintered rod, 3'is a melt zone, 4 is a grown single crystal, 5 is a high frequency work coil, 6 and 7 are anode voltage measuring instruments for high frequency current, 8 is a computer, 9 is a high frequency oscillator (oscillation tube). ), 10 is a calculation unit, and 11 is a control unit.

このような構成において、まず、単結晶育成用の原料焼
結棒3を上軸1にホルダー2を介してセットし、その下
部に初期融帯形成材として単結晶又は焼結棒をホルダー
2′を介して固定支持する。次いで、数気圧のAr、He等
の不活性ガスを育成炉に充填後、初期融帯形成材の端を
高周波コイル5からの誘導加熱により溶融させ、融帯
3′を形成させ、上軸1と下軸1′を下方にゆっくり移
動(0.2〜5cm/hr)を開始し、単結晶を育成し始める。
ここまでは、従来の育成方法と同じである。
In such a structure, first, a raw material sintering rod 3 for growing a single crystal is set on the upper shaft 1 via a holder 2, and a single crystal or a sintering rod is placed below the holder 2'as an initial zone forming material. Fixedly supported via. Next, after filling the growth furnace with an inert gas such as Ar or He at a few atmospheres, the end of the initial zone forming material is melted by induction heating from the high frequency coil 5 to form a zone 3 ', and the upper shaft 1 Then, the lower shaft 1'is slowly moved downward (0.2 to 5 cm / hr) to start growing a single crystal.
Up to this point, it is the same as the conventional growing method.

融帯移動開始後、5mm程度移動し、本発明法により単結
晶自動育成を行う。但し、育成時の融帯の形状は、第1
図の3′に示す形が理想的であり、その形は焼結棒3と
育成されている結晶4の移動速度比に依存する。そのた
め、5mm程度融帯移動すれば、定常的な融帯形となるた
め、それ以降、本発明法を適用する。
After starting the movement of the melt zone, the zone is moved about 5 mm and the single crystal is automatically grown by the method of the present invention. However, the shape of the ligament when growing is the first
The shape shown in 3'of the figure is ideal, and the shape depends on the moving speed ratio between the sintered rod 3 and the crystal 4 being grown. Therefore, if the zone is moved by about 5 mm, a regular zone shape is obtained, and hence the method of the present invention is applied thereafter.

予備実験により、予め、被加熱物(融帯)の形状が変化
しない時の高周波電流と発振管の陽極電圧の関係を求め
た。その結果、両者はほぼ比例関係(A/Vα=一定)に
あることが判明した。したがって、単結晶育成中に両者
の比をとり、融帯形状をコンピューターで適正か否かを
判断して、加熱電力を制御すれば、常に適正な融帯形状
を保つことができる。
By a preliminary experiment, the relationship between the high-frequency current and the anode voltage of the oscillation tube when the shape of the object to be heated (melting zone) did not change was obtained in advance. As a result, it was found that the two have a nearly proportional relationship (A / Vα = constant). Therefore, if the ratio of the two zones is taken during the growth of the single crystal, the computer determines whether the zone shape is appropriate, and the heating power is controlled, the zone shape can always be maintained properly.

単結晶育成時に加熱電力が適正値よりも高ければ、融帯
の長さが広くなり、焼結棒3の密度が100%でないた
め、融帯3′が細くなり、ワークコイル5と融帯間のイ
ンピーダンスが小さくなり、高周波電流が多く流れ出
す。一方、逆に、加熱電力が適正値よりも低ければ、逆
の変化が現れる。したがって、測定器6、7で検出した
高周波電流と陽極電圧を演算部10にて両者の比を求め、
その比から、融帯形状を設定値と比較して適否を判断
し、コンピューター8の制御部11にて加熱電力を制御す
るのである。
If the heating power is higher than the appropriate value during the growth of the single crystal, the length of the melt zone becomes wide and the density of the sintered rod 3 is not 100%. The impedance of becomes small, and a large amount of high-frequency current flows out. On the other hand, conversely, if the heating power is lower than the proper value, the reverse change appears. Therefore, the high frequency current and the anode voltage detected by the measuring instruments 6 and 7 are calculated by the arithmetic unit 10 to obtain a ratio of the two,
Based on the ratio, the zone shape is compared with the set value to determine suitability, and the control unit 11 of the computer 8 controls the heating power.

以上が本発明による第1の融帯形状制御方式である。The above is the first zone control method according to the present invention.

また、単結晶育成時に融帯3′が細くなればコイル5と
融帯間のインピーダンスが小さくなり、高周波電流が多
く流れ出す。一方、逆に融帯3′が太くなれば、高周波
電流が小さくなる。したがって、高周波電流を測定器6
で検出し、その変化から融帯形状の変化を演算部10にて
判断し、コンピューター8の制御部11にて加熱電力を制
御してもよい。
Further, when the melt zone 3'is thin during the growth of the single crystal, the impedance between the coil 5 and the melt zone becomes small, and a large amount of high-frequency current flows out. On the other hand, conversely, if the melt zone 3'is thicker, the high frequency current becomes smaller. Therefore, the high frequency current is measured by the measuring device 6.
Alternatively, the calculation unit 10 may determine the change in the zone shape from the change, and the control unit 11 of the computer 8 may control the heating power.

実際に単結晶を自動育成する場合、どれだけ高周波電流
が変化すれば、どれだけ加熱電力を制御するのが適切で
あるかは、単結晶の材質に依存しているため、手動状態
での単結晶育成の予備実験の結果に基づき、単結晶の材
質毎に決め、それをプログラムの中に反映させておく。
When actually growing a single crystal, how much high-frequency current changes and how much heating power should be controlled appropriately depend on the material of the single crystal. Based on the results of preliminary experiments for crystal growth, it is decided for each single crystal material and reflected in the program.

以上が本発明による第2の融帯形状制御方式である。The above is the second zone control method according to the present invention.

更に、これら第1の融帯形状制御方式と第2の融帯形状
制御方式とを併用すれば、より効果的に適正な融帯形状
を保つことができる。
Furthermore, if the first zone shape control method and the second zone shape control method are used together, an appropriate zone shape can be more effectively maintained.

いずれの方式の場合においても、安定して自動育成を行
うには、焼結棒3の融帯3′へのスムーズな溶け込みが
大切であり、これがスムーズでないと、そのために融帯
形状が変化し、高周波電流が変化し、スムーズな加熱電
力制御が不可能となる。したがって、まっすぐで一様な
太さの焼結棒の作成が重要である。
In any of the methods, it is important to smoothly melt the sintered rod 3 into the melt zone 3'for stable automatic growth. If this is not smooth, the shape of the melt zone will change. The high-frequency current changes, and smooth heating power control becomes impossible. Therefore, it is important to make a sintered rod having a straight and uniform thickness.

コンピューター8は、上記のように、適正加熱電力への
電力制御能力を有するが、このほかに、設定陽極電圧に
陽極電圧を保持する出力安定化能力を備えている。すな
わち、測定器7にて陽極電圧を検出して設定値と比較
し、その結果を高周波発振機(発振管)9にフィードバ
ック制御する出力安定化方式に依っている。この場合、
測定器7としてはデジタル式が望ましい。また更には、
高周波発振機(発振管)9のフィラメント電源12として
定電圧電源を用いてフィラメント電圧を一定化すれば、
より効果的である。
As described above, the computer 8 has the power control capability for the proper heating power, but additionally has the output stabilization capability for holding the anode voltage at the set anode voltage. That is, it depends on the output stabilization method in which the measuring device 7 detects the anode voltage, compares it with a set value, and feedback-controls the result to the high-frequency oscillator (oscillation tube) 9. in this case,
The measuring device 7 is preferably a digital type. Furthermore,
If the filament voltage is made constant by using a constant voltage power source as the filament power source 12 of the high frequency oscillator (oscillation tube) 9,
More effective.

本発明法によれば、融帯形状が一定に保たれるため、育
成される結晶の径が一様になる利点もある。
According to the method of the present invention, the shape of the melted zone is kept constant, so that there is an advantage that the diameter of the grown crystal becomes uniform.

(実施例) 次に本発明の一実施例を示す。(Example) Next, an example of the present invention will be described.

実施例1 本例はV8C7単結晶の育成の例である。Example 1 This example is an example of growing a V 8 C 7 single crystal.

V8C7単結晶育成には、融帯組成をC/V=0.97、原料焼結
棒の組成をC/V=0.877に制御するのがよいことを予備実
験により確かめた。
Preliminary experiments confirmed that it is preferable to control the zone composition to C / V = 0.97 and the composition of the raw material sintered rod to C / V = 0.877 for growing V 8 C 7 single crystal.

まず、炭化バナジウム粉末に、結合剤として樟脳を少量
加えて混合した後、冷間型押しによって1×1×20cm3
の角柱を成形した。これを1000気圧のアバープレスした
後、円柱形に成形し、真空中2000℃で焼結棒を作製し
た。
First, a small amount of camphor as a binder was added to vanadium carbide powder and mixed, followed by cold embossing to produce 1 × 1 × 20 cm 3
The prism was molded. This was bar-pressed at 1000 atm, then formed into a cylindrical shape, and a sintered rod was produced at 2000 ° C. in vacuum.

次いで、この焼結棒をFZ育成炉の上軸にホルダーを介し
て固定し、下軸には炭化バナジウム単結晶〈100〉を固
定し、両者間に炭素円盤(約0.05g)を挾んだ。育成炉
に7気圧のHeを充填した後、高周波加熱により黒鉛円盤
周辺を溶かし、初期融帯を形成し、1cm/hrで焼結棒を融
帯に溶け込ませ、0.75cm/hrで単結晶育成を開始した。
Then, this sintered rod was fixed to the upper shaft of the FZ growth furnace via a holder, and the vanadium carbide single crystal <100> was fixed to the lower shaft, and a carbon disk (about 0.05 g) was sandwiched between them. . After filling the growth furnace with 7 atm of He, the surroundings of the graphite disk are melted by high frequency heating to form the initial melt zone, the sintered rod is melted into the melt zone at 1 cm / hr, and the single crystal is grown at 0.75 cm / hr. Started.

約0.05cm融帯を移動した後、本発明を適用し、自動育成
を行った。育成加熱条件は、陽極電圧5KV、高周波電流1
90Aとした。加熱電力制御条件は、高周波電流と陽極電
圧の比(A/V)が0.1%変化した時、陽極電圧を数ボルト
変化させ、単結晶を自動育成した。
After moving the zone of about 0.05 cm, the present invention was applied to carry out automatic growth. Growth heating conditions are: anode voltage 5KV, high frequency current 1
90A. Regarding the heating power control condition, when the ratio of high frequency current to anode voltage (A / V) changed by 0.1%, the anode voltage was changed by several volts and single crystals were grown automatically.

得られた炭化バナジウム単結晶は、一様な直径(0.85c
m)で、長さが6.5cmであった。分析の結果、始端部、中
央部、終端部の炭素含有量はそれぞれ17.13wt%、17.12
wt%、17.08Wt%であり、組成にして、それぞれC/V=0.
877、0.876、0.874であった。炭化バナジウム単結晶は
クラックの生じ易い結晶として知られているが、本発明
法で育成した単結晶は全くクラックがなかった。これ
は、本発明により、単結晶が一様な太さで、急激な温度
変化もなく育成されたためと考えられる。
The obtained vanadium carbide single crystal has a uniform diameter (0.85c
m) and the length was 6.5 cm. As a result of analysis, the carbon contents at the beginning, the center, and the end were 17.13 wt% and 17.12, respectively.
wt% and 17.08Wt%, and C / V = 0.
It was 877, 0.876 and 0.874. The vanadium carbide single crystal is known as a crystal that easily cracks, but the single crystal grown by the method of the present invention had no cracks at all. This is considered to be because the single crystal was grown by the present invention with a uniform thickness and without a sudden temperature change.

実施例2 本例はTiC0.96単結晶の育成の例である。Example 2 This example is an example of growing a TiC 0.96 single crystal.

この炭化チタン単結晶育成には、融帯組成をC/Ti=1.
3、原料焼結棒の組成をC/Ti=0.99に制御するのがよい
ことを予備実験により確かめた。
To grow this titanium carbide single crystal, the zone composition is C / Ti = 1.
3. It was confirmed by preliminary experiments that the composition of the raw material sintered rod should be controlled to C / Ti = 0.99.

まず、炭化チタン粉末に、結合剤として樟脳を少量加え
て混合した後、冷間型押しによって1×1×20cm3の角
柱を成形した。これを1000気圧のラバープレスした後、
円柱形に成形し、真空中2000℃で焼結棒を作製した。
First, a small amount of camphor as a binder was added to and mixed with titanium carbide powder, and then cold stamped to form a 1 × 1 × 20 cm 3 prism. After rubber pressing this to 1000 bar,
It was molded into a cylindrical shape, and a sintered rod was produced at 2000 ° C. in vacuum.

次いで、この焼結棒をFZ育成炉の上軸にホルダーを介し
て固定し、下軸には炭化チタン単結晶〈100〉を固定
し、両者間に炭素円盤(約0.05g)を挾んだ。育成炉に
7気圧のHeを充填した後、高周波加熱により黒鉛円盤周
辺を溶かし、初期融帯を形成し、1.2cm/hrで焼結棒を融
帯に溶け込ませ、1.0cm/hrで単結晶育成を開始した。
Then, this sintered rod was fixed to the upper shaft of the FZ growth furnace via a holder, the titanium carbide single crystal <100> was fixed to the lower shaft, and a carbon disk (about 0.05 g) was sandwiched between them. . After filling the growth furnace with He at 7 atm, the vicinity of the graphite disk was melted by high frequency heating to form the initial melt zone, and the sintered rod was melted into the melt zone at 1.2 cm / hr, and the single crystal at 1.0 cm / hr. The cultivation has started.

約0.5cm融帯を移動した後、本発明法を適用し、自動育
成を開始した。その時の育成加熱条件は、陽極電圧6.06
9KV、高周波電流216.1Aであった。TiC単結晶育成の場
合、加熱電力が適正値よりも高ければ、融帯の長さが広
くなり、焼結棒の密度が100%でないため、融帯が細く
なり、ワークコイルと融帯間のインピーダンスが小さく
なり、高周波電流が多く流れ出す。一方、逆に、加熱電
力が適正値よりも低ければ、逆の変化が現れる。したが
って、自動育成中の加熱電力の制御条件は、高周波電流
が0.2A変化した時、この変化を打ち消すように陽極電圧
を9V変化させた。
After moving the zone of about 0.5 cm, the method of the present invention was applied to start automatic growth. At that time, the growth heating condition was an anode voltage of 6.06.
It was 9KV and high frequency current 216.1A. In the case of TiC single crystal growth, if the heating power is higher than the appropriate value, the length of the melt zone becomes wide and the density of the sintered rod is not 100%, so the melt zone becomes thin and the gap between the work coil and the melt zone Impedance becomes small and a lot of high frequency current starts to flow. On the other hand, conversely, if the heating power is lower than the proper value, the reverse change appears. Therefore, as the control condition of the heating power during the automatic growth, when the high frequency current changed by 0.2 A, the anode voltage was changed by 9 V so as to cancel this change.

また、次の制御を併用した。The following controls were also used together.

すなわち、高周波電流と陽極電圧の比から融帯形状を5
分おきに検出し、その比の値が、自動育成を始めた時の
比の値(=216.1/6.069)より0.02以上変化した時、陽
極電圧を5V変化させた。すなわち、比の値が0.02以上大
きくなった時(融帯が細くなった時)、陽極電圧を5V下
げた。また逆の場合には、陽極電圧を5V上げた。
That is, from the ratio of the high frequency current and the anode voltage
It was detected every minute, and when the ratio value changed by 0.02 or more from the ratio value (= 216.1 / 6.069) at the time of starting the automatic growth, the anode voltage was changed by 5V. That is, when the ratio value increased by 0.02 or more (when the melt zone became thin), the anode voltage was lowered by 5V. In the opposite case, the anode voltage was increased by 5V.

このような加熱電力制御を行うことにより、5時間30分
の安定な融帯移動が自動的に行われ、得られたTiC0.96
単結晶は、一様な直径(0.9cm)で、長さが6cmであっ
た。単結晶の品質は、手動での育成と比較してバラツキ
が小さく、良質のものが得られた。これは、本発明によ
り、単結晶が一様な太さで、急激な温度変化もなく育成
されたためと考えられる。
By performing such heating power control, stable zone transfer for 5 hours and 30 minutes was performed automatically, and the obtained TiC 0.96
The single crystal had a uniform diameter (0.9 cm) and a length of 6 cm. The quality of the single crystal was smaller than that of the manual growth, and a good quality was obtained. This is considered to be because the single crystal was grown by the present invention with a uniform thickness and without a sudden temperature change.

実施例3 本例はLaB6単結晶の育成の例である。Example 3 This example is an example of growing a LaB 6 single crystal.

LaB6粉末を、実施例2の場合と同様にして、焼結し、直
径約1cm、長さ20cmの焼結棒を作製した。これをFZ育成
炉の上軸下軸にBNホルダーを介して固定した。育成炉に
8気圧のHeを充填した後、高周波加熱により初期融帯を
形成した。融帯移動は、焼結棒と育成される単結晶を下
方に1cm/hrの速度で移動することにより行った。
LaB 6 powder was sintered in the same manner as in Example 2 to prepare a sintered rod having a diameter of about 1 cm and a length of 20 cm. This was fixed to the upper and lower shafts of the FZ growth furnace via a BN holder. After filling the growing furnace with He at 8 atm, the initial zone was formed by high frequency heating. The zone transfer was performed by moving the sintered rod and the grown single crystal downward at a speed of 1 cm / hr.

約0.5cm融帯を移動した後、本発明法を適用して、自動
育成を開始した。その時の育成加熱条件は、陽極電圧5.
609KV、高周波電流200.7Aであった。
After moving the zone of about 0.5 cm, the method of the present invention was applied to start automatic growth. At that time, the heating conditions for the growth are anode voltage 5.
It was 609KV and high frequency current 200.7A.

LaB6単結晶育成の場合、実施例2のTiCの場合に比較し
て、融帯が落下し易く、小さな高周波電流の変化で加熱
電力を調整する必要があった。すなわち、高周波電流が
0.1A増加した時、陽極電圧を4V下げた。また高周波電流
が0.1A減少した時(融帯が太くなった時)、融帯が落下
し易いため、同様に陽極電圧を3.5V下げた。そのため、
加熱電力は、融帯移動に伴い減少した。これは、蒸発に
よる融帯組成の変化のため、融帯の融点が融帯移動に伴
い低下したためである。5時間の自動育成終了時の加熱
条件は、5.474V、195.2Aであった。
In the case of growing a LaB 6 single crystal, the melt zone was more likely to drop than in the case of TiC of Example 2, and it was necessary to adjust the heating power with a small change in the high frequency current. That is, the high frequency current
When 0.1A was increased, the anode voltage was lowered by 4V. In addition, when the high frequency current decreased by 0.1 A (when the zone became thicker), the zone tended to fall, so the anode voltage was similarly lowered by 3.5V. for that reason,
The heating power decreased as the zone moved. This is because the melting zone composition changed due to evaporation, so that the melting point of the zone decreased as the zone moved. The heating conditions at the end of the automatic growth for 5 hours were 5.474V and 195.2A.

このようにして、直径8mm、長さ5.5cmのLaB6単結晶が得
られた。手動で育成された単結晶では、融帯が落下し気
味で育成されるため、表面はスムーズでないが、自動育
成された単結晶は、細かい加熱電力制御が行われるた
め、表面が非常にスムーズである。品質は、実施例2の
TiCと同様に、バラツキが小さく、良質のものであっ
た。
In this way, a LaB 6 single crystal having a diameter of 8 mm and a length of 5.5 cm was obtained. With a manually grown single crystal, the surface is not smooth because the melting zone falls and grows slightly, but with the automatically grown single crystal, fine heating power control is performed, so the surface is very smooth. is there. The quality of the second embodiment
Similar to TiC, the variation was small and the quality was good.

(発明の効果) 以上説明したように、本発明によれば、高周波誘導加熱
によるFZ法で単結晶を育成するに際し、高周波発振管の
陽極電圧と高周波電流を比較することにより、融帯形状
を判断し、或いは高周波電流の変化から融帯形状の変化
を判断し、判断結果に基づいて加熱電力を制御するの
で、単結晶をスムーズに温度制御しながら自動育成で
き、高品質の単結晶が安価に得られる。
(Effect of the invention) As described above, according to the present invention, when growing a single crystal by the FZ method by high frequency induction heating, by comparing the anode voltage of the high frequency oscillator tube and the high frequency current, Judgment or change of the zone shape from the change of high frequency current, and heating power is controlled based on the result of judgment, so single crystal can be grown automatically with smooth temperature control, and high quality single crystal is cheap Can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明法に用いるFZ法自動単結晶育成炉の一例
の概念図である。 1……上軸、1′……下軸、2、2′……ホルダー、3
……焼結棒、3′……融帯、4……育成した単結晶、5
……高周波ワークコイル、6……高周波電流測定器、7
……陽極電圧測定器、8……コンピューター、9……高
周波発振機(発振管)、10……演算部、11……制御部、
12……発振管フィラメント電源。
FIG. 1 is a conceptual diagram of an example of an FZ method automatic single crystal growth furnace used in the method of the present invention. 1 ... Upper shaft, 1 '... Lower shaft, 2, 2' ... Holder, 3
...... Sintered rod, 3 '... Melting band, 4 ... Grown single crystal, 5
…… High frequency work coil, 6 …… High frequency current measuring instrument, 7
…… Anode voltage measuring instrument, 8 …… Computer, 9 …… High-frequency oscillator (oscillation tube), 10 …… Computing section, 11 …… Control section,
12 ... Oscillator filament power supply.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】高周波誘導加熱を利用してフローティング
・ゾーン法により単結晶を育成する方法において、高周
波発振管の陽極電圧と高周波電流を比較することによ
り、融帯形状を判断し、判断結果に基づいて加熱電力を
制御することを特徴とする単結晶自動育成法。
1. A method for growing a single crystal by a floating zone method using high-frequency induction heating, wherein a fusion zone shape is determined by comparing an anode voltage of a high-frequency oscillation tube with a high-frequency current, and the determination result is obtained. A single crystal automatic growth method characterized by controlling heating power based on the above.
【請求項2】高周波発振管の陽極電圧と高周波電流との
比較は、陽極電圧と高周波電流の比により行う請求項1
に記載の方法。
2. The comparison between the anode voltage and the high frequency current of the high frequency oscillator tube is made by the ratio of the anode voltage and the high frequency current.
The method described in.
【請求項3】高周波誘導加熱を利用してフローティング
・ゾーン法により単結晶を育成する方法において、育成
中の高周波電流の変化から融帯形状の変化を判断し、判
断結果に基づいて加熱電力を制御することを特徴とする
単結晶自動育成法。
3. A method for growing a single crystal by a floating zone method using high frequency induction heating, wherein a change in a zone shape is judged from a change in a high frequency current during the growth, and heating power is supplied based on the result of the judgment. A single crystal automatic growth method characterized by controlling.
【請求項4】請求項3に記載の方法において、高周波発
振管の陽極電圧と高周波電流を比較することにより、融
帯形状を判断し、判断結果に基づいて加熱電力を制御す
る方式を併用することを特徴とする単結晶自動育成法。
4. The method according to claim 3, further comprising a method of determining the shape of the melted zone by comparing the anode voltage of the high frequency oscillation tube with the high frequency current and controlling the heating power based on the determination result. A single crystal automatic growth method characterized by the above.
JP1223748A 1989-01-26 1989-08-30 Single crystal automatic growth method Expired - Lifetime JPH0696478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/891,914 US5690732A (en) 1989-01-26 1992-06-01 Method of automatically growing a single crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-17076 1989-01-26
JP1707689 1989-01-26

Publications (2)

Publication Number Publication Date
JPH02275794A JPH02275794A (en) 1990-11-09
JPH0696478B2 true JPH0696478B2 (en) 1994-11-30

Family

ID=11933890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1223748A Expired - Lifetime JPH0696478B2 (en) 1989-01-26 1989-08-30 Single crystal automatic growth method

Country Status (2)

Country Link
US (1) US5690732A (en)
JP (1) JPH0696478B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2976013B2 (en) * 1995-12-21 1999-11-10 科学技術庁無機材質研究所長 Rare earth hexaboride electron emitting material
US6200383B1 (en) * 1999-05-03 2001-03-13 Evergreen Solar, Inc. Melt depth control for semiconductor materials grown from a melt
ES2290517T3 (en) * 2002-10-18 2008-02-16 Evergreen Solar Inc. METHOD AND APPARATUS FOR GLASS GROWTH.
US6814802B2 (en) * 2002-10-30 2004-11-09 Evergreen Solar, Inc. Method and apparatus for growing multiple crystalline ribbons from a single crucible

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK142586B (en) * 1977-07-07 1980-11-24 Topsil As Apparatus for zone melting of a semiconductor rod.
US4220839A (en) * 1978-01-05 1980-09-02 Topsil A/S Induction heating coil for float zone melting of semiconductor rods
JPS6041036B2 (en) * 1982-08-27 1985-09-13 財団法人 半導体研究振興会 GaAs floating zone melting grass crystal production equipment

Also Published As

Publication number Publication date
JPH02275794A (en) 1990-11-09
US5690732A (en) 1997-11-25

Similar Documents

Publication Publication Date Title
JPH0696478B2 (en) Single crystal automatic growth method
Epelbaum et al. Edge‐Defined Film‐Fed (EFG) Growth of Rare‐Earth Orthovanadates REVO4 (RE= Y, Gd): Approaches to Attain High‐Quality Shaped Growth
JPH0696477B2 (en) High frequency power supply output stabilization device and automatic single crystal growth device using this device
Otani et al. Automatic crystal growth of refractory metals (Mo, Ta, W) by the float zone technique
JP3832527B2 (en) Single crystal manufacturing method
JPS635360B2 (en)
JPH07513B2 (en) Single crystal growth method
JPH085742B2 (en) Single crystal growth method
JPH0761892A (en) Single crystal growing system
JPH05270992A (en) Lithium niobate single crystal free from optical damage
JPS5812240B2 (en) Method for producing hafnium carbide crystals
EP0106547B1 (en) A method of manufacturing an oxide single crystal
JPH06345583A (en) Method and device for producing single crystal
JPS6356198B2 (en)
JPH04300281A (en) Production of oxide single crystal
JPS606915B2 (en) Growth method of titanium carbide single crystal
JP2003063894A (en) Single crystal of lithium tantalate and method for producing the same
Burshtein et al. Programming of crystal diameter in Czochralski growth by a cooling plot: application to InSb
JP2861626B2 (en) Method of discriminating crystal phase of grown single crystal
JPS60246294A (en) Method for growing single crystal
JPS59116189A (en) Method for controlling shape of single crystal
JPH0524992A (en) Method for growing lanthanum hexaboride single crystal
JPH0867593A (en) Method for growing single crystal
JPS5812239B2 (en) Method for manufacturing zirconium carbide crystals
JPH026381A (en) Apparatus for pulling up single crystal

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term