JPH0696431A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH0696431A
JPH0696431A JP24241192A JP24241192A JPH0696431A JP H0696431 A JPH0696431 A JP H0696431A JP 24241192 A JP24241192 A JP 24241192A JP 24241192 A JP24241192 A JP 24241192A JP H0696431 A JPH0696431 A JP H0696431A
Authority
JP
Japan
Prior art keywords
film
substrate
magnetic
underlayer
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24241192A
Other languages
Japanese (ja)
Inventor
Masahiro Tobiyo
飛世  正博
Hidetoshi Hagiwara
英俊 萩原
Kohei Ito
康平 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP24241192A priority Critical patent/JPH0696431A/en
Publication of JPH0696431A publication Critical patent/JPH0696431A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To control grain diameter and to obtain high coercive force by interposing a metal film based on at least one of Cu, Rh, Pd, Ag, Ir, Pt and Au between a nonmagnetic substrate and an underlayer of Cr, etc. CONSTITUTION:A metal film 12 based on Cu, Rh, Pd, Ag, Ir, Pt or Au is interposed between a glass substrate 11 and a Cr underlayer 13. A magnetic layer 14 of a Co-based alloy such as CoCrTa and a protective film 15 of SiO2, etc., are formed on the Cr underlayer 13 to produce a thin film magnetic disk. The metal film 12 prevents oxygen, etc., from the substrate 11 from reaching the Cr underlayer 13 and brings such crystal orientation that the (110) face of Cr is made liable to epitaxialgrow in a direction parallel to the surface of the substrate. The (110) face can be made parallel to the surface of the substrate and crystal growth fit to attain high coercive force can be carried out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガラスやセラミック、
カーボン等の非磁性基板上に磁性膜等を形成した磁気記
録媒体に関するものである。
The present invention relates to glass, ceramics,
The present invention relates to a magnetic recording medium in which a magnetic film or the like is formed on a non-magnetic substrate such as carbon.

【0002】[0002]

【従来の技術】コンピュター用磁気ディスク装置では、
近年その大容量化が強く求められているが、大容量化を
図るためには磁気記録媒体における記録密度を高めるこ
とが必要である。記録密度を高めるためには、磁気ヘッ
ドの低浮上量化を可能とするために平滑な表面を有する
基板、および磁気記録媒体の高保磁力化が求められてい
る。従来磁気記録媒体用の基板としてはアルミ基板が用
いられているが、より平滑性に優れた基板としてガラス
やセラミック、カーボン等の非磁性基板を用いることが
検討されている。アルミ基板を用いた場合は通常数10
μmのNiPめっき層を設け、その上にCr下地膜、磁
性膜、保護膜を積層する。しかしガラスやセラミック、
カーボン基板等の場合はその上に直接Cr下地、磁性膜
を形成すると高い保磁力が得られないことが多い。この
理由はまだ明確にはなっていないが基板から発生する酸
素、水等のガスの影響により下地のCr膜の結晶成長が
アルミ基板上のNiP上に成膜させた場合とは異なるた
め、Cr上に成膜される磁性膜の結晶成長にも影響を及
ぼし高保磁力を得るためには望ましくない結晶成長が起
きるためと考えられている。これらの問題を解決するた
め基板上にTi、Mo、Zr、Al、Mn、W、Si等
の金属やSiO2、Al23、TiN、AlNのような
酸化物や窒化物の非磁性膜(以下この膜を中間膜とし
た)を形成し、その上にCr下地膜、磁性膜、保護膜を
順に積層し、保磁力を若干向上させた磁気記録媒体が提
案されている。(特開平2−29923号)
2. Description of the Related Art In a magnetic disk drive for computers,
In recent years, there has been a strong demand for higher capacity, but in order to increase the capacity, it is necessary to increase the recording density of the magnetic recording medium. In order to increase the recording density, a substrate having a smooth surface and a high coercive force of the magnetic recording medium are required to enable the magnetic head to have a low flying height. Conventionally, an aluminum substrate has been used as a substrate for a magnetic recording medium, but it has been considered to use a non-magnetic substrate such as glass, ceramic, or carbon as a substrate having more excellent smoothness. When an aluminum substrate is used, it is usually several tens.
A NiP plating layer having a thickness of μm is provided, and a Cr underlayer film, a magnetic film, and a protective film are laminated on the NiP plating layer. But glass and ceramic,
In the case of a carbon substrate or the like, if a Cr underlayer or magnetic film is directly formed on it, a high coercive force cannot be obtained in many cases. Although the reason for this has not been clarified yet, the crystal growth of the underlying Cr film is different from the case of forming the film on NiP on the aluminum substrate due to the influence of gases such as oxygen and water generated from the substrate. It is considered that this also affects the crystal growth of the magnetic film to be formed thereon and causes undesirable crystal growth in order to obtain a high coercive force. In order to solve these problems, a non-magnetic film of a metal such as Ti, Mo, Zr, Al, Mn, W or Si, or an oxide or nitride such as SiO 2 , Al 2 O 3 , TiN or AlN is formed on the substrate. There has been proposed a magnetic recording medium in which a film (hereinafter, this film is referred to as an intermediate film) is formed, and a Cr underlayer film, a magnetic film, and a protective film are laminated in that order to improve the coercive force slightly. (JP-A-2-29923)

【0003】[0003]

【発明が解決しようとする課題】上記従来技術に記載し
たように、ガラス等の非磁性基板を使用した磁気記録媒
体において高い保磁力を得るために望ましいCrの結晶
成長を促すためにTi、Mo、Zr、Al、Mn、W、
Si、Nb、Ta、Y、Hf、希土類元素等の金属やS
iO2、Al23、TiN、AlNのような酸化物や窒
化物の非磁性中間膜を形成すれば、1000Oe程度ま
で保磁力を高くすることができる。しかし最近の高記録
密度化に対応するためには1400Oe以上の保磁力が
必要である。磁気記録媒体の保磁力は磁性膜の結晶の配
向性や結晶粒径あるいは微細組織に関係しているが、磁
性膜の結晶粒径や結晶配向はその下地のCr膜の結晶配
向や結晶粒径に、同様にCr膜はその下地の中間膜の結
晶粒径や結晶配向に大きく影響されると考えられる。し
たがってCr膜の下地である中間膜の結晶粒径や結晶配
向が保磁力に及ぼす影響は大きく適切な材料を選ぶこと
が必要である。本発明の目的は、従来知られている中間
膜よりも高い保磁力を得ることができる適切な材料を選
ぶことによりCr下地膜とそれに続く磁性膜の結晶配
向、結晶粒径を制御し1400Oe以上の高い保磁力を
得ることにある。
As described in the above-mentioned prior art, in order to obtain a high coercive force in a magnetic recording medium using a non-magnetic substrate such as glass, Ti, Mo to promote crystal growth of Cr desirable. , Zr, Al, Mn, W,
Metals such as Si, Nb, Ta, Y, Hf, rare earth elements, and S
The coercive force can be increased up to about 1000 Oe by forming a non-magnetic intermediate film of oxide or nitride such as iO 2 , Al 2 O 3 , TiN and AlN. However, a coercive force of 1400 Oe or more is required to cope with the recent increase in recording density. The coercive force of the magnetic recording medium is related to the crystal orientation, crystal grain size, or microstructure of the magnetic film, but the crystal grain size and crystal orientation of the magnetic film depend on the crystal orientation and crystal grain size of the underlying Cr film. Similarly, it is considered that the Cr film is greatly affected by the crystal grain size and crystal orientation of the underlying intermediate film. Therefore, the crystal grain size and crystal orientation of the intermediate film, which is the base of the Cr film, have a great influence on the coercive force, and it is necessary to select an appropriate material. The object of the present invention is to control the crystal orientation and the crystal grain size of the Cr underlayer and the subsequent magnetic layer by selecting an appropriate material capable of obtaining a higher coercive force than that of the conventionally known intermediate film, and to control the crystal grain size of 1400 Oe or more. To obtain a high coercive force.

【0004】[0004]

【課題を解決するための手段】本発明は上記目的を達成
するため、ガラスやセラミック、カーボン等の非磁性基
板上にCr等の下地膜と磁性膜と保護膜を積層させてな
る磁気記録媒体において、非磁性基板とCr等の下地膜
との間にCu,Rh,Pd,Ag,Ir,Pt,Auの
少なくとも一種を主成分とする金属膜を設けた。これら
の金属は基板からの酸素などが下地のCr膜にまで到達
するのを防ぐ役割を果たすとともに、Crの(110)
面が基板面に平行な方向にエピタキシャル成長しやすい
ような結晶配向をとる。すなわち、これらの金属はすべ
てfcc構造を有し、ガラス基板等の非晶質の上に成膜
した場合、基板に平行にfcc金属の(111)面が成
長する。このfcc(111)面に対してbcc構造の
Crの(110)面がエピタキシャル成長する。これは
bcc(110)面とfcc(111)面の原子数密度
と原子配列が近いことによると考えられる。このように
Crの(110)面が強く配向することによりCoのC
軸がより膜面に平行に配向し、保磁力を高めることがで
きる。
In order to achieve the above object, the present invention is a magnetic recording medium comprising a non-magnetic substrate such as glass, ceramics, carbon or the like, on which a base film such as Cr, a magnetic film and a protective film are laminated. In the above, a metal film containing at least one of Cu, Rh, Pd, Ag, Ir, Pt and Au as a main component was provided between the non-magnetic substrate and the underlying film such as Cr. These metals play a role in preventing oxygen and the like from the substrate from reaching the underlying Cr film, and at the same time, the Cr (110)
The crystal orientation is such that the surface easily grows epitaxially in the direction parallel to the substrate surface. That is, all of these metals have an fcc structure, and when deposited on an amorphous material such as a glass substrate, the (111) plane of the fcc metal grows parallel to the substrate. The (110) plane of Cr having the bcc structure is epitaxially grown on this fcc (111) plane. It is considered that this is because the atomic number densities of the bcc (110) plane and the fcc (111) plane are close to the atomic arrangement. In this way, the strong orientation of the (110) plane of Cr causes the C of Co to grow.
The axis is oriented more parallel to the film surface, and the coercive force can be increased.

【0005】[0005]

【作用】基板上に設けられたCu,Rh,Pd,Ag,
Ir,Pt,Auの中間膜はまず基板から発生する酸素
等のガスが下地のCrに拡散するのを防ぐ作用があり、
かつCrの(110)面の配向を強め結果的に磁性膜の
C軸を基板面に中間膜を用いなかった場合に比べてより
平行に揃えることができ高保磁力を得るのに望ましい結
晶成長を実現できるものと考えられる。
[Function] Cu, Rh, Pd, Ag provided on the substrate,
The intermediate film of Ir, Pt, and Au has a function of preventing a gas such as oxygen generated from the substrate from diffusing into Cr as the base,
In addition, the orientation of the (110) plane of Cr is strengthened, and as a result, the C axis of the magnetic film can be made more parallel to that in the case where no intermediate film is used on the substrate surface, and crystal growth desirable for obtaining high coercive force can be achieved. It is thought that it can be realized.

【0006】[0006]

【実施例】以下、本発明を実施例に基づいて詳細に説明
する。 (実施例1)図1は本発明の一実施例となる磁気記録媒
体の断面図をしめしたものである。図において11は化
学強化ガラス、あるいは結晶化ガラス、セラミック等の
ガラス基板、12は前記基板の両面に設けたCu,R
h,Pd,Ag,Ir,Pt,Auのうち1種を主成分
とする金属膜、13はCr下地層、14はCoCrT
a、CoNiCr、CoCrPtなどのCo基合金磁性
層、15はC、SiO2、ZrO2等からなる保護膜、1
6は潤滑剤である。特徴は、下地Cr膜とガラスあるい
はセラミック基板の間に、fcc構造を有する金属膜1
2を設け、酸素等が拡散してCr膜の正常な結晶成長が
阻害されるのを防ぎ、その上さらにエピタキシャル成長
によってCr(110)を強く配向させた点にある。外
径95mm、内径25mm、厚さ1.27mmのガラス
基板を洗浄後、DCマグネトロンスパッタ装置を用い、
2×10ー7Torr以下に排気後、ガラス基板を300
℃において10分間加熱後、Arガスを導入し、放電時
のガス圧を10mTorrに保持し、投入電力500
W、成膜速度180A/分の条件により中間膜、下地
膜、磁性膜、保護膜の順に連続して形成し薄膜磁気ディ
スクを作成した。下地Cr膜の膜厚を1000A、磁性
膜のCoCrTaを500A,中間膜としてAuを選び
膜厚を100Aから3000Aまで変化させたところ、
表1のような磁気特性が得られた。
EXAMPLES The present invention will be described in detail below based on examples. (Embodiment 1) FIG. 1 is a sectional view of a magnetic recording medium according to an embodiment of the present invention. In the figure, 11 is a glass substrate made of chemically strengthened glass, crystallized glass, ceramics or the like, and 12 is Cu, R provided on both sides of the substrate.
A metal film containing one of h, Pd, Ag, Ir, Pt, and Au as a main component, 13 is a Cr underlayer, and 14 is CoCrT.
a, a Co-based alloy magnetic layer such as CoNiCr or CoCrPt, 15 a protective film made of C, SiO 2 , ZrO 2 or the like, 1
6 is a lubricant. The feature is that the metal film 1 having the fcc structure is provided between the underlying Cr film and the glass or ceramic substrate.
2 is provided to prevent oxygen and the like from diffusing and prevent normal crystal growth of the Cr film from being disturbed. Furthermore, Cr (110) is strongly oriented by epitaxial growth. After cleaning a glass substrate with an outer diameter of 95 mm, an inner diameter of 25 mm, and a thickness of 1.27 mm, using a DC magnetron sputtering device,
After evacuation below 2 × 10 over 7 Torr, a glass substrate 300
After heating for 10 minutes at ℃, Ar gas was introduced, the gas pressure during discharge was maintained at 10 mTorr, and the input power was 500.
An intermediate film, a base film, a magnetic film, and a protective film were successively formed in this order under the conditions of W and a film forming rate of 180 A / min to prepare a thin film magnetic disk. When the film thickness of the underlying Cr film was 1000 A, CoCrTa of the magnetic film was 500 A, and Au was selected as the intermediate film, the film thickness was changed from 100 A to 3000 A.
The magnetic characteristics shown in Table 1 were obtained.

【0007】[0007]

【表1】 Auの膜厚が0A(オンク゛ストローム)のとき、すなわち中間膜
がないときは保磁力は490Oeでたいへん低いが、中
間膜の膜厚を厚くしていくと急激に保磁力は増大し、中
間膜が300Aのときには1450Oeを得ることがで
きる。また保磁力角形比S*も中間膜の存在により0.6
8から0.82に改善される。 オージェ電子分光法に
より、膜の深さ方向の元素分析を行った結果、中間膜が
ない場合は酸素がCrに拡散しているのに対し、中間膜
を用いた場合は酸素は中間膜に拡散しているものの、C
r膜には含まれていないことがわかった。これより中間
膜にはガラスからの酸素がCrに拡散するのを防ぐ効果
があることがわかる。またX線回折によりガラス基板上
のAu膜は(111)面が基板面に平行に配向しその上
のCr膜は(110)配向がAu膜がないときに比べて
強くなっていることがわかった。 (実施例2)実施例1と同様に、ガラス基板上に種々の
中間膜、下地Cr膜、磁性膜、保護膜の順に形成し磁気
特性を測定した。中間膜の膜厚は500A一定とした。
磁性膜はCoCrPt膜を500A成膜した。
[Table 1] When the film thickness of Au is 0 A (angstrom), that is, when there is no intermediate film, the coercive force is 490 Oe, which is very low. At 300 A, 1450 Oe can be obtained. Also, the coercive force squareness ratio S * is 0.6 due to the presence of the interlayer film.
It is improved from 8 to 0.82. As a result of elemental analysis in the depth direction of the film by Auger electron spectroscopy, oxygen diffuses into Cr when there is no intermediate film, whereas oxygen diffuses into the intermediate film when an intermediate film is used. C
It was found that it was not contained in the r film. This shows that the intermediate film has an effect of preventing oxygen from the glass from diffusing into Cr. Also, it was found by X-ray diffraction that the (111) plane of the Au film on the glass substrate was oriented parallel to the substrate surface, and the Cr film on it had a stronger (110) orientation than when there was no Au film. It was (Example 2) As in Example 1, various intermediate films, a base Cr film, a magnetic film, and a protective film were formed in this order on a glass substrate, and the magnetic characteristics were measured. The film thickness of the intermediate film was fixed at 500A.
As the magnetic film, a CoCrPt film of 500 A was formed.

【0008】[0008]

【表2】 本実施例よりCu,Rh,Pd,Ag,Ir,Pt,A
uの金属膜の金属元素を中間膜として用いることによ
り、保磁力が大幅に改善されていることがわかる。 (実施例3)実施例1と同様に、ガラス基板上に中間
膜、下地Cr膜、磁性膜、保護膜の順に形成し磁気特性
を測定した。磁性膜はCoNiCr膜を500A成膜
し、Cr下地膜およびPd中間膜の膜厚を変化させた。
[Table 2] From this example, Cu, Rh, Pd, Ag, Ir, Pt, A
It can be seen that the coercive force is significantly improved by using the metal element of the metal film of u as the intermediate film. (Example 3) As in Example 1, an intermediate film, a base Cr film, a magnetic film, and a protective film were formed in this order on a glass substrate, and the magnetic characteristics were measured. As the magnetic film, a CoNiCr film of 500 A was formed, and the film thickness of the Cr underlayer film and the Pd intermediate film was changed.

【0009】[0009]

【表3】 上記の実施例で明らかなように、下地Crの膜厚が50
0A以上の場合は、中間膜を設けることにより1000
Oe以上の高保磁力を得ることができる。
[Table 3] As is clear from the above example, the thickness of the Cr underlayer is 50.
In the case of 0 A or more, 1000 is obtained by providing an intermediate film.
A high coercive force of Oe or more can be obtained.

【0010】[0010]

【発明の効果】本発明によって、従来知られている中間
膜よりも高い保磁力を得ることができる適切な材料を選
ぶことによりCr下地膜とそれに続く磁性膜の結晶配
向、結晶粒径を制御し1400Oe以上の高い保磁力を
得ることができる。
According to the present invention, the crystal orientation and the crystal grain size of the Cr underlayer and the subsequent magnetic layer are controlled by selecting an appropriate material capable of obtaining a higher coercive force than the conventionally known intermediate film. A high coercive force of 1400 Oe or more can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の磁気記録媒体の部分断面図で
ある。
FIG. 1 is a partial cross-sectional view of a magnetic recording medium according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11 非磁性基板 12 中間膜 13 Cr下地膜 14 磁性膜 11 non-magnetic substrate 12 intermediate film 13 Cr underlayer film 14 magnetic film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ガラスやセラミック、カーボン等の非磁
性基板上にCr等の下地膜と磁性膜と保護膜を積層させ
てなる磁気記録媒体において、非磁性基板とCr等の下
地膜との間にCu,Rh,Pd,Ag,Ir,Pt,A
uの少なくとも1種が主成分である金属膜を設けたこと
を特徴とする磁気記録媒体。
1. A magnetic recording medium comprising a non-magnetic substrate such as glass, ceramics, carbon, etc., on which a base film such as Cr, a magnetic film and a protective film are laminated, and between the non-magnetic substrate and the base film such as Cr. Cu, Rh, Pd, Ag, Ir, Pt, A
A magnetic recording medium comprising a metal film containing at least one of u as a main component.
JP24241192A 1992-09-11 1992-09-11 Magnetic recording medium Pending JPH0696431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24241192A JPH0696431A (en) 1992-09-11 1992-09-11 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24241192A JPH0696431A (en) 1992-09-11 1992-09-11 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH0696431A true JPH0696431A (en) 1994-04-08

Family

ID=17088733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24241192A Pending JPH0696431A (en) 1992-09-11 1992-09-11 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0696431A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0535962U (en) * 1991-10-17 1993-05-18 株式会社フジタ Green cutting machine
JPH0535963U (en) * 1991-10-17 1993-05-18 株式会社フジタ Green cutting machine
US5900323A (en) * 1995-02-20 1999-05-04 Fujitsu Limited Magnetic recording medium and magnetic recording drive
WO2000060583A1 (en) * 1999-03-31 2000-10-12 Hitachi, Ltd. Magnetic recording medium and magnetic storage device
US6277484B1 (en) 1998-05-15 2001-08-21 Fujitsu Limited Magnetic recording media and method of producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0535962U (en) * 1991-10-17 1993-05-18 株式会社フジタ Green cutting machine
JPH0535963U (en) * 1991-10-17 1993-05-18 株式会社フジタ Green cutting machine
US5900323A (en) * 1995-02-20 1999-05-04 Fujitsu Limited Magnetic recording medium and magnetic recording drive
US6277484B1 (en) 1998-05-15 2001-08-21 Fujitsu Limited Magnetic recording media and method of producing the same
WO2000060583A1 (en) * 1999-03-31 2000-10-12 Hitachi, Ltd. Magnetic recording medium and magnetic storage device
US7115329B1 (en) 1999-03-31 2006-10-03 Hitachi Global Storage Technologies Japan, Ltd. Magnetic recording medium and magnetic storage device

Similar Documents

Publication Publication Date Title
US7183011B2 (en) Magnetic recording medium
USRE41282E1 (en) Perpendicular magnetic recording medium and a method of manufacturing the same
US6794028B2 (en) Perpendicular magnetic recording medium and a method of manufacturing the same
US5658659A (en) Magnetic alloy and method for manufacturing same
WO2010064724A1 (en) Magnetic disk and method for manufacturing same
US20070009654A1 (en) Method of producing a magnetic recording medium and a magnetic recording medium formed thereby
JP2005190517A (en) Perpendicular magnetic recording medium and magnetic storage device
US6767651B2 (en) Magnetic recording medium, method for manufacturing a magnetic recording medium and magnetic recording device
US6277484B1 (en) Magnetic recording media and method of producing the same
KR100362257B1 (en) Bicrystal cluster magnetic recording medium
JP4716534B2 (en) Magnetic recording medium
JPH0696431A (en) Magnetic recording medium
US20020098389A1 (en) High coercivity chp structural Co-based aloy longitudinal recording media and method for its fabrication
US6682833B1 (en) Magnetic recording medium and production process thereof
JP2809049B2 (en) Magnetic recording media
JPH05135343A (en) Magnetic recording medium
JPH09305968A (en) Manufacture of magnetic recording medium
JP3682132B2 (en) Method for manufacturing magnetic recording medium
US6826825B2 (en) Method for manufacturing a magnetic recording medium
JPH0581637A (en) Magnetic recording medium
JP2853529B2 (en) Magnetic recording medium substrate and magnetic recording medium using the same
JP4589478B2 (en) Magnetic recording medium
JP3901755B2 (en) Magnetic recording medium
JPH06243452A (en) Magnetic recording medium
JPH11339244A (en) Magnetic recording medium and production thereof