JPH0695490B2 - Manufacturing method of annular permanent magnet for magnetron excitation - Google Patents

Manufacturing method of annular permanent magnet for magnetron excitation

Info

Publication number
JPH0695490B2
JPH0695490B2 JP19305388A JP19305388A JPH0695490B2 JP H0695490 B2 JPH0695490 B2 JP H0695490B2 JP 19305388 A JP19305388 A JP 19305388A JP 19305388 A JP19305388 A JP 19305388A JP H0695490 B2 JPH0695490 B2 JP H0695490B2
Authority
JP
Japan
Prior art keywords
ferrite
molded product
permanent magnet
annular permanent
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19305388A
Other languages
Japanese (ja)
Other versions
JPH0244631A (en
Inventor
伊藤  猛
Original Assignee
松下電子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下電子工業株式会社 filed Critical 松下電子工業株式会社
Priority to JP19305388A priority Critical patent/JPH0695490B2/en
Publication of JPH0244631A publication Critical patent/JPH0244631A/en
Publication of JPH0695490B2 publication Critical patent/JPH0695490B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、マグネトロンの一対の磁極片間に磁界を生じ
させるために前記磁極片の外端面上に設けられる環状永
久磁石の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an annular permanent magnet provided on an outer end surface of a magnetic pole piece in order to generate a magnetic field between the pair of magnetic pole pieces. .

従来の技術 一般に、電子レンジ等のマイクロ波加熱機器に組み込ま
れるマグネトロンは、その一対の磁極片間に磁界を生じ
させるための環状永久磁石を含む磁気回路部材と一体に
構成される。これを第3図により説明すると、マグネト
ロンの陽極筒体1は、その内周面から陰極2へ向かって
突出した多数の陽極ベイン3を有し、すり鉢状の第1お
よび第2の磁極片4,5が、陽極筒体1の両開口端部に径
小端面同士が向き合うように設けられている。そして、
第1の磁極片4をフランジ部で覆う関係に陽極筒体1に
封着された鳩目状の第1の金属管6の径小端部に、マイ
クロ波出力端子7がセラミック環8を介して突設されて
いる。また、第2の磁極片5をフランジ部で覆う関係に
陽極筒体1に封着された鳩目状の第2の金属管9の径小
端部に、陰極端子導出用のステム10が封着されている。
2. Description of the Related Art In general, a magnetron incorporated in a microwave heating device such as a microwave oven is integrally formed with a magnetic circuit member including an annular permanent magnet for generating a magnetic field between the pair of magnetic pole pieces. This will be described with reference to FIG. 3. The anode cylinder 1 of the magnetron has a large number of anode vanes 3 protruding from its inner peripheral surface toward the cathode 2, and has a mortar-shaped first and second magnetic pole piece 4. , 5 are provided at both open end portions of the anode cylinder 1 so that the small-diameter end faces face each other. And
The microwave output terminal 7 is provided on the small-diameter end portion of the eyelet-shaped first metal tube 6 sealed to the anode cylinder 1 so as to cover the first magnetic pole piece 4 with the flange portion through the ceramic ring 8. It is projected. Further, the stem 10 for leading out the cathode terminal is sealed to the small-diameter end portion of the eyelet-shaped second metal tube 9 sealed to the anode cylinder 1 so as to cover the second magnetic pole piece 5 with the flange portion. Has been done.

このように構成されたマグネトロンの第1の金属管6を
包囲する関係に第1の磁極片4の外端面上に設けられた
第1の環状永久磁石11は、第2の金属管9を包囲する関
係に第2の磁極片5の外端面上に設けられた第2の環状
永久磁石12および両永久磁石11,12の外端面側磁極同士
を磁気的に結合する枠状継鉄13とともに管外磁気回路を
構成している。なお、陽極筒体1の外周面には多数の放
熱ファン14が多段にとりつけられており、陰極端子導出
用ステム10および同ステムの陰極端子に接続されてLCフ
ィルタ回路を構成するチョークコイルおよびコンデンサ
が、シールドケース15内に収容されている。
The first annular permanent magnet 11 provided on the outer end face of the first magnetic pole piece 4 so as to surround the first metal tube 6 of the magnetron thus configured surrounds the second metal tube 9. The second annular permanent magnet 12 provided on the outer end face of the second magnetic pole piece 5 and the frame-like yoke 13 for magnetically coupling the outer end face side magnetic poles of both permanent magnets 11, 12 with the pipe. It constitutes the external magnetic circuit. A large number of heat radiating fans 14 are attached to the outer peripheral surface of the anode cylinder 1 in multiple stages, and a choke coil and a capacitor are connected to the cathode terminal lead-out stem 10 and the cathode terminal of the stem to form an LC filter circuit. However, it is housed in the shield case 15.

第1および第2の環状永久磁石11,12は、いわゆる等方
性フェライト磁石であって、通常、バリウムフェライト
(BaFe12O19)またはストロンチュームフェライト(SrF
e12O19)の微粉末を磁場内で円環状に加圧成型し、得ら
れたフェライト成型品に焼結処理および着磁処理を施し
て得られる。
The first and second annular permanent magnets 11 and 12 are so-called isotropic ferrite magnets, and are usually barium ferrite (BaFe 12 O 19 ) or strontium ferrite (SrF).
It is obtained by press-molding a fine powder of e 12 O 19 ) into a ring shape in a magnetic field, and subjecting the obtained ferrite molded product to a sintering treatment and a magnetizing treatment.

かかるフェライト磁石は45mm〜75mmの外径と、15mm〜35
mmの内径と、8mm〜20mmの厚さとを有し、その磁化方向
は図中に矢印で示すように中心軸に対し傾斜している。
この磁化方向は、フェライト成型品の結晶配向で決ま
り、この結晶配向は前記加熱成型の段階で与えられた磁
場で決まる。磁化方向がそれぞれの磁極片側でつぼむ方
向へ傾斜しているので、第1および第2の磁極片間にお
ける作用空間に高磁束密度の磁界を生じさせることがで
きる。
Such ferrite magnets have an outer diameter of 45 mm to 75 mm and a diameter of 15 mm to 35 mm.
It has an inner diameter of mm and a thickness of 8 mm to 20 mm, and its magnetization direction is inclined with respect to the central axis as indicated by an arrow in the figure.
This magnetization direction is determined by the crystal orientation of the ferrite molded product, and this crystal orientation is determined by the magnetic field given at the stage of the heat molding. Since the magnetization direction is inclined in the direction in which the magnetic pole pieces are closed, it is possible to generate a magnetic field having a high magnetic flux density in the action space between the first and second magnetic pole pieces.

第4図は前記加圧成型の要部を示すもので、受け台16の
上部に設けられている円筒状の下部パンチ17は、受け台
16および上部パンチ18が図示矢印の方向へ移動したこと
によって、図示のようにダイス19の中央孔に入り込んで
いる。すなわち、下部パンチ17の頂面ため成型面上にあ
るフェライト微粉末20は、成型金型たる下部パンチ17の
平坦な上面と上部パンチ18の平坦な下面との間で加圧成
型される。なお、下部パンチ17の中央部にはフェライト
微粉末20を円環状に成型するためのダイス棒21が突出し
ており、上部パンチ18の周囲およびダイス19の下面に
は、電磁コイル22,23が設けられている。両電磁コイル2
2,23は、鉄等の磁性体からなる受け台16、下部パンチ1
7、上部パンチ18および支柱24,25とともに磁気回路を構
成しており、この磁気回路によって、加圧成型中のフェ
ライト微粉末20に磁場が与えられる。この磁場の磁界分
布を適当ならしめることによって、フェライト成型品の
結晶配向を中心軸に対し傾斜したものとなし得るのであ
り、その後に施す着磁処理によって磁化方向が前述のよ
うに傾斜する。
FIG. 4 shows the main part of the pressure molding. The cylindrical lower punch 17 provided on the upper part of the pedestal 16 is a pedestal.
As the 16 and the upper punch 18 move in the direction of the arrow in the figure, they enter the center hole of the die 19 as shown in the figure. That is, the ferrite fine powder 20 on the molding surface for the top surface of the lower punch 17 is pressure-molded between the flat upper surface of the lower punch 17 and the flat lower surface of the upper punch 18, which are molding dies. A die rod 21 for molding the ferrite fine powder 20 into an annular shape projects in the center of the lower punch 17, and electromagnetic coils 22 and 23 are provided around the upper punch 18 and on the lower surface of the die 19. Has been. Both electromagnetic coils 2
2,23 is a pedestal 16 made of a magnetic material such as iron, a lower punch 1
7. A magnetic circuit is configured with the upper punch 18 and the struts 24, 25, and this magnetic circuit applies a magnetic field to the ferrite fine powder 20 under pressure molding. By making the magnetic field distribution of this magnetic field appropriate, the crystal orientation of the ferrite molded product can be made to be tilted with respect to the central axis, and the magnetization direction subsequently applied causes the magnetization direction to be tilted as described above.

発明が解決しようとする課題 しかし、このような方法で等方性フェライト磁石の結晶
配向を中心軸に対し傾斜させると、フェライト成型品の
下面と上面とで結晶方位が異なることに基づく収縮率の
上下不同で、焼結処理後のフェライト成型品が第5図の
(a)に示すものとならず、同図の(b)に示すように
結晶配向度の高い方へ反ってしまう。そこで、フェライ
ト成型品の両面を研摩して同図の(c)に示すように表
裏両面の平行度を高め、かつ、所定厚さに揃えているの
であるが、ここに少なからぬ労力を要するのみならず、
15〜20%程度材料を無駄にする。そのうえ、結晶配向度
の高い方の一端面をも削り落とすことになるので、効率
低下も大きい。
However, when the crystal orientation of the isotropic ferrite magnet is tilted with respect to the central axis by such a method, the shrinkage ratio based on the difference in crystal orientation between the lower surface and the upper surface of the ferrite molded product The ferrite molded product after the sintering treatment is not the same as the one shown in FIG. 5 (a), but it is warped to the higher crystal orientation degree as shown in FIG. 5 (b). Therefore, both sides of the ferrite molded product are polished to increase the parallelism between the front and back sides and have a predetermined thickness as shown in (c) of the figure, but this requires a considerable amount of labor. Not
Waste about 15 to 20% of material. In addition, since one end face having a higher degree of crystal orientation is also scraped off, the efficiency is greatly reduced.

課題を解決するための手段 本発明によると、フェライト微粉末を磁場内で加圧成型
し、結晶配向が中心軸に対して傾斜した円環状のフェラ
イト成型品を得る第1段階と、このフェライト成型品に
焼結処理を施す第2段階とを備え、前記第2段階を経る
ことによって前記フェライト成型品に生じる反りを相殺
せしめるための逆方向の反りを、前記第1段階における
成型金型の上部パンチおよび下部パンチの各成型面に有
せしめる。
Means for Solving the Problems According to the present invention, the first stage of obtaining an annular ferrite molded product in which a fine ferrite powder is pressure-molded in a magnetic field and the crystal orientation is inclined with respect to the central axis, and this ferrite molding A second step of subjecting the product to a sintering treatment, and a warp in the opposite direction for canceling the warp that occurs in the ferrite molded product by passing through the second step, the upper part of the molding die in the first step. It is provided on each molding surface of the punch and the lower punch.

作用 このように構成すると、焼結処理後のフェライト成型品
に生じる反りを相殺するに足る変形(逆向きの反り)が
焼結処理前のフェライト成型品に前もって与えられるこ
とになるので、焼結処理によってフェライト成型品に生
じた反りでもって、偏平度の高い焼結フェライト成型品
が得られ、研摩処理を必要としなくなる。
Function With this configuration, the deformation (reverse warpage) sufficient to offset the warpage that occurs in the ferrite molded product after the sintering process is given to the ferrite molded product before the sintering process in advance. Due to the warpage generated in the ferrite molded product by the treatment, a sintered ferrite molded product having a high flatness can be obtained, and the polishing treatment is not necessary.

実施例 つぎに、本発明を図示の実施例により説明する。Example Next, the present invention will be described with reference to the illustrated example.

第1図に示す構成が第4図に示した構成と異なるところ
は、下部パンチ26の頂部の成型面26aが凹の球面状また
はこれに近似した形状に反っていて、上部パンチ27の底
部の成型面27aが凸の球面状またはこれに近似した形状
に反っている点であり、その他の構成には変わりがな
い。ただし、両成型面26a,27aの反りの程度は、焼結処
理によって生じる前記反りの程度に応じて決定されてい
る。
1 differs from the structure shown in FIG. 4 in that the molding surface 26a at the top of the lower punch 26 has a concave spherical shape or a shape similar to this, and the bottom surface of the upper punch 27 is The molding surface 27a is curved in a convex spherical shape or a shape similar thereto, and other configurations are the same. However, the degree of warpage of both molding surfaces 26a, 27a is determined according to the degree of warpage caused by the sintering process.

このように構成すると、加圧成型機からとり出された第
2図(a)のフェライト成型品が、焼結処理を経ること
によって同図(b)の偏平品となる。
According to this structure, the ferrite molded product of FIG. 2 (a) taken out from the pressure molding machine becomes the flat product of FIG. 2 (b) by undergoing the sintering process.

発明の効果 以上のように本発明によると、焼結処理後のフェライト
成型品に両面研摩を施す要がなくなり、また、たとえ研
摩処理を施してもその量は少なくてすむ。しかも、素材
の利用率を高め得るのみならず、研摩処理時に生じやす
い割れや欠けの発生もなく、かつまた、配向度の高い一
端面を厚く削り落とす無駄もないなど、コスト面および
特性面で頗る優れた効果を得ることができる。
EFFECTS OF THE INVENTION As described above, according to the present invention, there is no need to perform double-side polishing on a ferrite molded product after sintering, and even if polishing is performed, the amount thereof can be small. Moreover, not only can the utilization rate of the material be increased, but there are no cracks or chips that are likely to occur during the polishing process, and there is no waste of thickly scraping off one end face with a high degree of orientation. The excellent effect can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の製造方法において用いられる加圧成型
機の要部の側断面図、第2図の(a),(b)は加圧成
型後および焼結処理後の各フェライト成型品の側断面
図、第3図はマグネトロンとその付属部品との一部破断
側面図、第4図は従来の環状永久磁石の製造において用
いられてきた加圧成型機の一部分の側断面図、第5図の
(a),(b),(c)は従来の環状永久磁石の製造方
法を適用した場合の加圧成型後、焼結処理後および研摩
処理後の各フェライト成型品の側断面図である。 20……フェライト微粉末、21……ダイス棒22,23……電
磁コイル、26……下部パンチ、27上部パンチ、26a,27a
……成型面。
FIG. 1 is a side sectional view of a main part of a pressure molding machine used in the manufacturing method of the present invention, and FIGS. 2 (a) and 2 (b) are ferrite molded products after pressure molding and after sintering. 3 is a side sectional view of the magnetron and its accessory parts, and FIG. 4 is a side sectional view of a part of a pressure molding machine used in the manufacture of conventional annular permanent magnets. 5 (a), (b), and (c) are side cross-sectional views of each ferrite molded product after pressure molding, sintering treatment, and polishing treatment when the conventional annular permanent magnet manufacturing method is applied. Is. 20 …… Fine ferrite powder, 21 …… Die rod 22,23 …… Electromagnetic coil, 26 …… Lower punch, 27 Upper punch, 26a, 27a
…… Molding surface.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】フェライト微粉末を磁場内で加圧成型し、
結晶配向が中心軸に対して傾斜した円環状のフェライト
成型品を得る第1段階と、このフェライト成型品に焼結
処理を施す第2段階とを備え、前記第2段階を経ること
によって前記フェライト成型品に生じる反りを相殺せし
めるための逆方向への反りを、前記第1段階における成
型金型の上部パンチおよび下部パンチの各成型面に有せ
しめることを特徴とするマグネトロン励振用環状永久磁
石の製造方法。
1. A ferrite fine powder is pressure-molded in a magnetic field,
The ferrite has a first step of obtaining an annular ferrite molded product whose crystal orientation is tilted with respect to the central axis, and a second step of subjecting this ferrite molded product to a sintering treatment. A warping in the opposite direction for canceling the warpage generated in the molded product is provided in each molding surface of the upper punch and the lower punch of the molding die in the first step, and the magnetron exciting annular permanent magnet of Production method.
JP19305388A 1988-08-02 1988-08-02 Manufacturing method of annular permanent magnet for magnetron excitation Expired - Fee Related JPH0695490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19305388A JPH0695490B2 (en) 1988-08-02 1988-08-02 Manufacturing method of annular permanent magnet for magnetron excitation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19305388A JPH0695490B2 (en) 1988-08-02 1988-08-02 Manufacturing method of annular permanent magnet for magnetron excitation

Publications (2)

Publication Number Publication Date
JPH0244631A JPH0244631A (en) 1990-02-14
JPH0695490B2 true JPH0695490B2 (en) 1994-11-24

Family

ID=16301401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19305388A Expired - Fee Related JPH0695490B2 (en) 1988-08-02 1988-08-02 Manufacturing method of annular permanent magnet for magnetron excitation

Country Status (1)

Country Link
JP (1) JPH0695490B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278311A (en) * 2005-03-29 2006-10-12 Lg Electronics Inc Magnetron

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4899888B2 (en) * 2007-01-23 2012-03-21 パナソニック株式会社 Panel structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278311A (en) * 2005-03-29 2006-10-12 Lg Electronics Inc Magnetron

Also Published As

Publication number Publication date
JPH0244631A (en) 1990-02-14

Similar Documents

Publication Publication Date Title
JPH02139907A (en) Manufacture of pole anisotropic rare earth magnet
US4048542A (en) Permanent magnets of different magnetic materials for magnetrons
JPH0695490B2 (en) Manufacturing method of annular permanent magnet for magnetron excitation
US4564489A (en) Method and holder for the manufacture of annular cores
KR101640469B1 (en) Method for manufacturing single-pole only usable magnet
CN101632140B (en) Permanent magnet having improved field quality and apparatus employing the same
GB2196479A (en) Method and apparatus for the manufacture of rare earth transition metal alloy magnets
JP4000517B2 (en) Microwave plasma processing equipment
US3075131A (en) Deflection yoke core for cathode ray tubes
JPH03265102A (en) Diametrical anisotropic cylindrical permanent magnet and manufacture thereof
US4280078A (en) Magnetron
JPS63219548A (en) Production of permanent magnet
JPS61140125A (en) Metal mold structure for press of magnetic powder
US4056800A (en) Magnetic field aligning means
JPH0332893B2 (en)
JPH0353445Y2 (en)
JPH0586460A (en) Target for sputtering and its manufacture
SU557777A3 (en) Switching device
JPH04249842A (en) Electron lens
JP2909475B2 (en) ECR plasma generator
JPS5928541A (en) Manufacture of sintered type anisotropic permanent magnet
JP2000299214A (en) Dust core and manufacture thereof
JPS6137901A (en) Molding apparatus of anisotropic ferrite magnet
JPS6437811A (en) Voice coil type yoke frame and manufacture thereof
FR2441459A1 (en) Electromagnetic chuck using two dovetailed magnetic fields - is assembled from stack of pressed and sintered flat segments held together by tie rods

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees