JPH0695091B2 - Quantitative analysis method using GC / MS - Google Patents

Quantitative analysis method using GC / MS

Info

Publication number
JPH0695091B2
JPH0695091B2 JP27993689A JP27993689A JPH0695091B2 JP H0695091 B2 JPH0695091 B2 JP H0695091B2 JP 27993689 A JP27993689 A JP 27993689A JP 27993689 A JP27993689 A JP 27993689A JP H0695091 B2 JPH0695091 B2 JP H0695091B2
Authority
JP
Japan
Prior art keywords
substance
sensitivity
standard
weight
relative weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27993689A
Other languages
Japanese (ja)
Other versions
JPH03142358A (en
Inventor
智 三原
公博 原田
徹 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ogawa and Co Ltd
Original Assignee
Ogawa and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ogawa and Co Ltd filed Critical Ogawa and Co Ltd
Priority to JP27993689A priority Critical patent/JPH0695091B2/en
Publication of JPH03142358A publication Critical patent/JPH03142358A/en
Publication of JPH0695091B2 publication Critical patent/JPH0695091B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガスクロマトグラフ/マススペクトロメーター
(GC/MS)を用いた定量分析法に関する。
[Detailed Description of the Invention] [Field of industrial application] The present invention relates to a quantitative analysis method using a gas chromatograph / mass spectrometer (GC / MS).

さらに詳しくは、本発明は被検物質のGCの保持特性
(P)からGC/MSによる相対重量感度(R)を近似的に
求める方法および上記方法によって得られたRを用いて
混合試料における被検物質の重量パーセントを求める定
量分析法に関するものである。
More specifically, the present invention relates to a method for approximating the relative weight sensitivity (R) by GC / MS from the retention property (P) of GC of a test substance and the R obtained by the above method to detect the target in a mixed sample. The present invention relates to a quantitative analysis method for obtaining a weight percentage of a test substance.

本発明の方法は多数の被検物質からなる混合試料の定量
分析に特に有用であり、香料、食品、医薬品等の産業分
野において広く利用される。
The method of the present invention is particularly useful for quantitative analysis of a mixed sample composed of a large number of test substances, and is widely used in industrial fields such as fragrances, foods and pharmaceuticals.

〔従来技術およびその問題点〕[Prior art and its problems]

混合試料中の各成分の分離や成分の数およびそれらの相
対的な成分重量比はGC/MSを用いて知ることができる。
しかし、GC/MSを用いる場合には測定機種、カラムの劣
化、スプリット比(キャピラリーガスクロマトグラフの
場合)など、クロマトグラフの条件によってピークの面
積強度が変化する。従って定量分析のためには、該当す
るクロマト条件下での注入量と面積強度との関係(検量
線)を全ての成分の標品についてその都度求め、然る
後、定量しようとする試料をクロマトにかけて各成分の
面積強度を求め、上記検量線を用いて成分重量比を計算
しなければならない。
The separation of each component in the mixed sample, the number of components, and their relative component weight ratios can be known using GC / MS.
However, when GC / MS is used, the peak area intensity changes depending on the chromatographic conditions such as the measurement model, column deterioration, split ratio (in the case of a capillary gas chromatograph). Therefore, for quantitative analysis, the relationship (calibration curve) between the injection amount and area intensity under the relevant chromatographic conditions is determined for each standard of each component, and then the sample to be quantified is chromatographed. It is necessary to calculate the area intensity of each component over the course of time and to calculate the component weight ratio using the above calibration curve.

従って試料中の成分の数が多い場合は上記従来法による
定量分析は困難であった。特に香料のように成分の種類
が5000を超えるような試料の定量分析は実際上不可能で
あった。
Therefore, when the number of components in the sample is large, it is difficult to carry out the quantitative analysis by the above conventional method. In particular, quantitative analysis of samples with more than 5000 kinds of components such as fragrances was practically impossible.

そこでGC/MSの面積強度比から求めた各成分の面積パー
セントを近似的に重量パーセントとしていた。しかしな
がらこの方法によって得られる値は極めて誤差の大きい
ものであった。
Therefore, the area percent of each component obtained from the area intensity ratio of GC / MS is approximately used as the weight percent. However, the value obtained by this method had an extremely large error.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、多数の成分からなる混合試料の正確でか
つ簡単な定量分析法を提供すべく鋭意研究を重ねた結
果、ガスクロマトグラフの保持特性(P)とガスクロマ
トグラフ/マススペクトロメーターによる相対重量感度
(R)の間に、同族体あるいはそれらの誘導体について
良好な相関関係があることを見い出した。
The inventors of the present invention have conducted extensive studies to provide an accurate and simple quantitative analysis method for a mixed sample composed of a large number of components. As a result, the retention characteristics (P) of the gas chromatograph and the relative characteristics of the gas chromatograph / mass spectrometer are compared. It has been found that there is a good correlation between the weight sensitivity (R) for homologues or their derivatives.

本発明はこの知見に基づいて完成されたものであり、本
発明は以下に示す近似的相対重量感度の決定方法および
それを用いた定量分析法からなる。
The present invention has been completed based on this finding, and the present invention comprises a method for determining approximate relative weight sensitivity and a quantitative analysis method using the method described below.

1)2種以上の標準物質について、一定条件下でガスク
ロマトグラフ(GC)の保持特性(P)およびガスクロマ
トグラフ/マススペクトロメーター(GC/MS)による相
対重量感度(R)(基準物質の一定重量当りの感度を1.
00とした場合の標準物質の感度)を測定し、各標準物質
のPに対応する相対重量感度(R)の実測値をグラフ上
にプロットし、該プロットから検量線を作成し、次いで
被検物質のPを測定し、前記検量線から上記Pに対応す
る相対重量感度を求めることを特徴とする被検物質の近
似的相対重量感度(Ra)の決定方法。
1) Retention characteristics (P) of gas chromatograph (GC) and relative weight sensitivity (R) by gas chromatograph / mass spectrometer (GC / MS) (constant weight of reference substance) for two or more standard substances Sensitivity per hit is 1.
(Sensitivity of standard substance when 00 is set), measured values of relative weight sensitivity (R) corresponding to P of each standard substance are plotted on a graph, a calibration curve is prepared from the plot, and then the test curve is prepared. A method for determining an approximate relative weight sensitivity (Ra) of a test substance, which comprises measuring P of a substance and determining a relative weight sensitivity corresponding to the above P from the calibration curve.

2)保持特性(P)として保持指標(I)を用いる1項
に記載の決定方法。
2) The determination method according to item 1, wherein the retention index (I) is used as the retention characteristic (P).

3)検量線の作成に当たり、各標準物質について、極性
カラムを用いた場合のGCの保持指標(IP)および相対重
量感度(R)と、非極性カラムを用いた場合のGCの保持
指標(INP)および相対重量感度(R)とをそれぞれ測
定し、各標準物質のINPとそれに対応するRをグラフ上
にプロットし、他方、IPとINPの差(ΔI)の大小によ
り標準物質を2つ以上のグループに分け、同一グループ
に属する標準物質の上記プロットから検量線をそれぞれ
グループ毎に作成し、次いで被検物質のINPおよびΔI
を求め、ΔIから該被検物質が属するグループを決定
し、該グループの検量線から上記INPに対応する被検物
質の相対重量感度を求めることを特徴とする2項に記載
の決定方法。
3) In preparing the calibration curve, for each standard substance, the GC retention index ( IP ) and relative weight sensitivity (R) when a polar column was used, and the GC retention index when a non-polar column was used ( I NP) and relative weight sensitivity (R) and was measured, and plotted I NP and R corresponding to that of each standard on the graph, while the standard depending on the magnitude of the difference between I P and I NP (ΔI) The substances are divided into two or more groups, calibration curves are created for each group from the above plots of standard substances belonging to the same group, and then I NP and ΔI of the test substance
The determination method according to item 2, wherein the group to which the test substance belongs is determined from ΔI, and the relative weight sensitivity of the test substance corresponding to the I NP is determined from the calibration curve of the group.

4)2種以上の極性カラムおよび非極性カラムをそれぞ
れ使用して2つ以上のΔIを求め、それらを算術平均し
て得られる▲▼を前記のΔIとして用いることを特
徴とする3項に記載の決定方法。
4) Use of two or more types of polar columns and non-polar columns to determine two or more ΔIs, and arithmetically averaging them to use ▲ ▼ as the above-mentioned ΔI. How to determine.

5)基準物質がヘプタン酸エチルである2乃至4項に記
載の決定方法。
5) The determination method according to any one of 2 to 4, wherein the reference substance is ethyl heptanoate.

6)2種以上の被検物質を含む混合試料についてGCによ
り各被検物質の面積強度比を測定し、これらを1乃至5
項のいずれかの項に記載の決定方法で得た近似的相対重
量感度(Ra)でそれぞれ除して各被検物質の重量比を算
出し、次いでその値を全被検物質の重量比の和で除し、
その商に100を乗ずることを特徴とする全被検物質にお
ける各被検物質の重量パーセントを求める定量分析法。
6) The area intensity ratio of each test substance was measured by GC for a mixed sample containing two or more test substances,
Calculate the weight ratio of each test substance by dividing each by the approximate relative weight sensitivity (Ra) obtained by the determination method described in any of the items, and then calculate the value of the weight ratio of all test substances. Divide by sum,
Multiplying the quotient by 100, a quantitative analysis method for determining the weight percentage of each test substance in all test substances.

本発明の方法において、標準物質のガスクロマトグラフ
の保持特性およびGC/MSによる相対重量感度(R)は常
法に従って一定条件下で測定される。
In the method of the present invention, the gas chromatographic retention property of the standard substance and the relative weight sensitivity (R) by GC / MS are measured under a constant condition according to a conventional method.

保持特性としては、保持指標(I)の他、保持時間、オ
ーブン温度、保持容量等を用いることができるが、保持
指標を用いるのが最も好ましい。
As the holding property, holding time, oven temperature, holding capacity and the like can be used in addition to the holding index (I), but it is most preferable to use the holding index.

保持指標(Retention Index)は1958年Kovatsによって
提案されたものであり、クロマトグラフにおける保持値
の標準化法として最も優れた値とされている。物質Xの
保持指標は次の式で定義される。
The Retention Index was proposed by Kovats in 1958 and is considered to be the best value as a standardization method for retention values in chromatographs. The retention index of the substance X is defined by the following formula.

X :Iを求めたい物質 stph. :固定相液体 T:温度 Vg(X):化合物Xの比保持容量 Vg(pZ):炭素数Zのn-パラフィンの比保持容量 Vg(pZ+1):炭素数Z+1のn-パラフィンの比保 持容量 t′:調整保持時間 オーブン温度をリニアーに昇温させる場合には、次の式
で保持指標を求めることもできる(J.Chromatogr.11,46
3(1963))。
X: substance for which I is desired stph .: stationary phase liquid T: temperature Vg (X): specific retention capacity of compound X Vg (p Z ): specific retention capacity of n-paraffin having carbon number Z Vg (p Z + 1 ): Specific retention capacity of n-paraffin with carbon number Z + 1 t 'R: when raising the temperature of the adjusted holding time the oven temperature to linear can also be determined retention indices by the following formula (J.Chromatogr.11,46
3 (1963)).

相対重量感度(R)は基準物質(例えばヘプタン酸エチ
ル)の一定重量当たりのGC/MSの感度を1.00とした場合
の、ある物質の感度をいう。標準物質の中でその保持指
標および相対重量感度がそれぞれそれらの平均的な値を
示す化合物を選んで基準物質とする。
The relative weight sensitivity (R) means the sensitivity of a certain substance when the sensitivity of GC / MS per constant weight of a reference substance (eg ethyl heptanoate) is 1.00. Among the standard substances, a compound whose retention index and relative weight sensitivity show their respective average values is selected as a reference substance.

標準物質の種類は、2種以上であれば特に限定はないが
多い程望ましく、また化学構造上できるだけ多くの種類
から選択するのが望ましい。測定によって得られた各標
準物質のPおよびそれに対応するRをグラフ上にプロッ
トし、該プロットから全物質に共通な検量線を作成す
る。検量線は1本だけ作成しても定量分析をすることか
できるが、標準物質をいくつかのグループに分け、各グ
ループ毎に検量線を作成すると分析結果の精度を格段に
高めることができる。標準物質のグループ分けは各標準
物質についての極性カラムを用いた場合のGCの保持指標
(IP)と非極性カラムを用いた場合の保持指標(INP
との差(ΔI)の大小によって行われる。例えば、標準
物質をΔIの値によって、0〜149(グループA);150
〜499(グループB);500〜799(グループC);800以上
(グループD)の4つのグループに分け各グループ毎に
前記検量線を作成する。極性カラムとしては例えばCarb
owax 20M(小川香料社製),Reoplex400(ガスクロ工業
社製),Silar-10C(chrompac社製)等を用いることがで
き、非極性カラムとしてはOV-101(小川香料社製),Squ
alane(chrompac社製),OV-1(ガスクロ工業社製),SE-
30(chrompac社製)等が用いられるがこれらに限定され
ない。2種以上の極性カラムおよび非極性カラムをそれ
ぞれ使用して2つ以上のΔIを求め、それらを算術平均
して得られる▲▼を前記ΔIとして用いるとより精
度の高い結果が得られる。被検物質のRを求める際に
は、被検物質の2種の保持指標IPおよびINPを測定し、
前記ΔIを算出し、ΔIから該被検物質が属するグルー
プを決定し、該グループの検量線から上記INPに対応す
るRを読み取り、これを近似的相対重量感度(Ra)とす
る。
The type of standard substance is not particularly limited as long as it is two or more, but it is preferable that there are many types, and it is desirable to select from as many types as possible in terms of chemical structure. P of each standard substance obtained by the measurement and R corresponding thereto are plotted on a graph, and a calibration curve common to all substances is created from the plot. Even if only one calibration curve is created, quantitative analysis can be performed, but if the standard substances are divided into several groups and a calibration curve is created for each group, the accuracy of the analysis results can be significantly improved. The standard substances are divided into groups by the retention index (I P ) of GC when using a polar column and the retention index (I NP ) when using a non-polar column for each standard substance.
And the difference (ΔI) with For example, the standard substance is 0 to 149 (group A); 150 depending on the value of ΔI.
~ 499 (group B); 500-799 (group C); 800 or more (group D) are divided into four groups, and the calibration curve is prepared for each group. As a polar column, for example, Carb
owax 20M (manufactured by Ogawa Fragrance Co., Ltd.), Reoplex400 (manufactured by Gaskuro Industrial Co., Ltd.), Silar-10C (manufactured by Chrompac Co., Ltd.), etc. can be used, and as a non-polar column, OV-101 (manufactured by Ogawa Fragrance Co., Ltd.), Squ
alane (made by chrompac), OV-1 (made by Gas Black Industry), SE-
30 (manufactured by chrompac) and the like are used, but not limited thereto. More accurate results can be obtained by using two or more kinds of polar columns and non-polar columns respectively to obtain two or more ΔI and arithmetically averaging them to obtain ΔI as the ΔI. When obtaining R of a test substance, two retention indexes I P and I NP of the test substance are measured,
The ΔI is calculated, the group to which the test substance belongs is determined from ΔI, the R corresponding to the above INP is read from the calibration curve of the group, and this is taken as the approximate relative weight sensitivity (Ra).

ガスクロマトグラフにより得られた混合試料の各成分の
面積強度比を測定し、上記方法によって得られたRaでそ
れぞれ除して各成分の重量比を算出し、次いでその値を
全成分の重量比の和で除し、その商に100を乗ずること
によって各成分の重量パーセントを求めることができ
る。
The area intensity ratio of each component of the mixed sample obtained by the gas chromatograph was measured, and the weight ratio of each component was calculated by dividing by Ra obtained by the above method, and then the value was calculated as the weight ratio of all components. The weight percent of each component can be determined by dividing by the sum and multiplying the quotient by 100.

次に実施例を示して本発明の方法をさらに具体的に説明
する。
Next, the method of the present invention will be described more specifically with reference to examples.

〔実施例〕〔Example〕

表1に示した13種の標準物質の各同一重量を混合し、GC
/MSを測定した。ヘプタン酸エチルを基準物質とし、基
準物質のピーク面積(A0)に対する標準物質のピーク面
積(A)の比(A/A0)はその化合物の相対重量感度
(R)とした。
Mix the same weight of each of the 13 standards listed in Table 1 and
/ MS was measured. Ethyl heptanoate was used as the reference substance, and the ratio (A / A 0 ) of the peak area (A) of the reference substance to the peak area (A 0 ) of the reference substance was defined as the relative weight sensitivity (R) of the compound.

他方、極性カラムおよび非極性カラムにおける各標準物
質の保持指標を測定した。
On the other hand, the retention index of each standard substance in the polar column and the non-polar column was measured.

装置として日立クロマトデータ処理装置D-2500を装備し
た日立M80B GC/MSシステム(日立製作所社製)を用い
た。
A Hitachi M80B GC / MS system (manufactured by Hitachi, Ltd.) equipped with a Hitachi Chromatographic Data Processor D-2500 was used as the device.

GC/MS条件は、極性カラムとしてCW20Mフューズドシリカ
キャピラリーカラム(48m×0.3mmi.d.,スプリット比1/2
8)、非極性カラムとしてOV-101フューズドシリカキャ
ピラリーカラム(50m×0.22mmi.d.,スプリット比1/41)
を用いた。試料は、0.1μl注入した。オーブン温度は8
0℃から210℃まで毎分2℃の速度で昇温させた。ピーク
面積強度は、MSのイオン化室においてGCで分離された成
分に電子を照射し、生じる全てのイオン電流を、D-2500
で積算して求めた。
The GC / MS conditions were as follows: CW20M fused silica capillary column (48m × 0.3mm i.d., split ratio 1/2)
8), OV-101 fused silica capillary column as non-polar column (50m × 0.22mm i.d., split ratio 1/41)
Was used. The sample was injected at 0.1 μl. Oven temperature is 8
The temperature was raised from 0 ° C to 210 ° C at a rate of 2 ° C per minute. The peak area intensity is determined by irradiating the components separated by GC in the ionization chamber of MS with electrons and measuring all the ion currents generated by D-2500.
It was calculated by adding up.

標準物質の保持指標は(3)の式に従って昇温条件下で
求めた。
The retention index of the standard substance was determined according to the formula (3) under the temperature rising condition.

極性カラムによる保持指標ICW-20Mと非極性カラムによ
る保持指標I0V-101の差Δ1の値によって標準物質を次
の4つのグループに分類した。グループ ΔI A 0〜149 B 150〜499 C 500〜799 D 800以上 標準物質のIOV-101に対する相対重量感度(R)をグラ
フ上にプロットし、各グループごとに検量線A-Dを作成
した(第1図)。
The standard substances were classified into the following four groups according to the difference Δ1 between the retention index I CW-20M on the polar column and the retention index I 0V-101 on the non-polar column. Group ΔI A 0 to 149 B 150 to 499 C 500 to 799 D 800 and above Relative weight sensitivity (R) of the standard substance to I OV-101 was plotted on the graph, and a calibration curve AD was created for each group (No. (Fig. 1).

表2に示す20種の相対重量感度(R)が未知の被検物質
の混合試料をGCにかけ、それらの保持指標ICW-20Mおよ
びIOV-101をそれぞれ測定し、その差ΔIを求めた。Δ
Iから当該物質が属するグループを決め、そのIOV-101
に対応する近似的相対重量温度(Ra)を第1図の検量線
から求めた。結果を表2に示す。
A mixed sample of 20 types of test substances whose relative weight sensitivities (R) are unknown shown in Table 2 was subjected to GC, and their retention indices I CW-20M and I OV-101 were measured, and the difference ΔI was determined. . Δ
The group to which the substance belongs is determined from I, and the I OV-101
The approximate relative weight temperature (Ra) corresponding to was calculated from the calibration curve in FIG. The results are shown in Table 2.

表2において、重量%(実測)は、混合試料作成時に秤
量した各被検物質の重量から算出した重量%、重量%
(ピーク面積)はGC/MSのピーク面積から算出した重量
%、重量%(R)は、検量線から求められたRaから算出
した重量%をそれぞれ意味する。D1は重量%(ピーク面
積)を重量%(実測)で除した値、D2は重量%(R)を
重量%(実測)で除した値である。従ってD1およびD2
1.00に近い程、定量分析の誤差が少ないことを示してい
る。表2に記載されているように、D1の標準誤差は0.2
8、変動係数は0.29であるのに対してD2は、それぞれ0.1
0および0.10であり、本発明の方法による定量分析が、
従来のピーク面積に基づいた定量分析に比べて格別に優
れていることが明らかである。
In Table 2, weight% (actual measurement) is weight% calculated from the weight of each test substance weighed when the mixed sample was prepared, and weight%.
The (peak area) means the weight% calculated from the peak area of GC / MS, and the weight% (R) means the weight% calculated from Ra obtained from the calibration curve. D 1 is a value obtained by dividing wt% (peak area) by wt% (actual measurement), and D 2 is a value obtained by dividing wt% (R) by wt% (actual measurement). Therefore D 1 and D 2 are
The closer to 1.00, the smaller the error in the quantitative analysis. As shown in Table 2, the standard error of D 1 is 0.2.
8, the coefficient of variation is 0.29, while D 2 is 0.1
0 and 0.10, the quantitative analysis by the method of the present invention,
It is clearly superior to conventional quantitative analysis based on peak area.

【図面の簡単な説明】[Brief description of drawings]

第1図は標準物質の保持指標に対する重量感度をグラフ
上にプロットして作成された検量線を示す。 第1図において、枠で囲まれた数字はΔI(極性カラム
による保持指標と非極性カラムによる保持指標の差)を
示す。
FIG. 1 shows a calibration curve prepared by plotting the weight sensitivity of the standard substance against the retention index on a graph. In FIG. 1, the numbers surrounded by a frame indicate ΔI (difference between the retention index by the polar column and the retention index by the non-polar column).

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】2種以上の標準物質について、一定条件下
でガスクロマトグラフ(GC)の保持特性(P)およびガ
スクロマトグラフ/マススペクトロメーター(GC/MS)
による相対重量感度(R)(基準物質の一定重量当りの
感度を1.00とした場合の標準物質の感度)を測定し、各
標準物質のPに対応する相対重量感度(R)の実測値を
グラフ上にプロットし、該プロットから検量線を作成
し、次いで被検物質のPを測定し、前記検量線から上記
Pに対応する相対重量感度を求めることを特徴とする被
検物質の近似的相対重量感度(Ra)の決定方法。
1. Retention characteristics (P) of a gas chromatograph (GC) and a gas chromatograph / mass spectrometer (GC / MS) for two or more standard substances under certain conditions.
The relative weight sensitivity (R) (sensitivity of the standard substance when the sensitivity per constant weight of the reference substance is set to 1.00) is measured, and the measured value of the relative weight sensitivity (R) corresponding to P of each standard substance is graphed. Plotted on the above, a calibration curve is created from the plot, then P of the test substance is measured, and the relative weight sensitivity corresponding to the above P is determined from the calibration curve. Weight sensitivity (Ra) determination method.
【請求項2】保持特性(P)として保持指標(I)を用
いる請求項1に記載の決定方法。
2. The determination method according to claim 1, wherein the retention index (I) is used as the retention characteristic (P).
【請求項3】検量線の作成に当たり、各標準物質につい
て、極性カラムを用いた場合のGCの保持指標(IP)およ
び相対重量感度(R)と、非極性カラムを用いた場合の
GCの保持指標(INP)および相対重量感度(R)とをそ
れぞれ測定し、各標準物質のINPとそれに対応するRを
グラフ上にプロットし、他方、IPとINPの差(ΔI)の
大小により標準物質を2つ以上のグループに分け、同一
グループに属する標準物質の上記プロットから検量線を
それぞれグループ毎に作成し、次いで被検物質のINP
よびΔIを求め、ΔIから該被検物質が属するグループ
を決定し、該グループの検量線から上記INPに対応する
被検物質の相対重量感度を求めることを特徴とする請求
項2に記載の決定方法。
3. When preparing a calibration curve, for each standard substance, the GC retention index (I P ) and relative weight sensitivity (R) when a polar column was used, and when using a non-polar column
The retention index (I NP ) and relative weight sensitivity (R) of GC were measured respectively, and I NP of each standard substance and its corresponding R were plotted on the graph, while the difference between I P and I NP (ΔI ), The standard substances are divided into two or more groups, and a calibration curve is prepared for each group from the above plots of the standard substances belonging to the same group. Then, I NP and ΔI of the test substance are calculated, and determination method according to claim 2, wherein the determination of the relative weight sensitivity of the test substance to determine the group to which the test substance belongs, corresponding to the I NP from the calibration curve of the group.
【請求項4】2種以上の極性カラムおよび非極性カラム
をそれぞれ使用して2つ以上のΔIを求め、それらを算
術平均して得られる▲▼を前記のΔIとして用いる
ことを特徴とする請求項3に記載の決定方法。
4. A method in which two or more types of ΔI are obtained by using two or more types of polar columns and non-polar columns respectively, and ▲ ▼ obtained by arithmetically averaging them is used as the above-mentioned ΔI. The determination method according to item 3.
【請求項5】基準物質がヘプタン酸エチルである請求項
2乃至4に記載の決定方法。
5. The determination method according to claim 2, wherein the reference substance is ethyl heptanoate.
【請求項6】2種以上の被検物質を含む混合試料につい
てGCにより各被検物質の面積強度比を測定し、これらを
請求項1乃至5のいずれかの項に記載の決定方法で得た
近似的相対重量感度(Ra)でそれぞれ除して各被検物質
の重量比を算出し、次いでその値を全被検物質の重量比
の和で除し、その商に100を乗ずることを特徴とする全
被検物質における各被検物質の重量パーセントを求める
定量分析法。
6. The area intensity ratio of each test substance is measured by GC on a mixed sample containing two or more test substances, and these are obtained by the determination method according to any one of claims 1 to 5. Calculate the weight ratio of each test substance by dividing it by the approximate relative weight sensitivity (Ra), then divide that value by the sum of the weight ratios of all test substances, and multiply the quotient by 100. A quantitative analysis method for obtaining the weight percentage of each test substance in all the test substances to be characterized.
JP27993689A 1989-10-30 1989-10-30 Quantitative analysis method using GC / MS Expired - Lifetime JPH0695091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27993689A JPH0695091B2 (en) 1989-10-30 1989-10-30 Quantitative analysis method using GC / MS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27993689A JPH0695091B2 (en) 1989-10-30 1989-10-30 Quantitative analysis method using GC / MS

Publications (2)

Publication Number Publication Date
JPH03142358A JPH03142358A (en) 1991-06-18
JPH0695091B2 true JPH0695091B2 (en) 1994-11-24

Family

ID=17617979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27993689A Expired - Lifetime JPH0695091B2 (en) 1989-10-30 1989-10-30 Quantitative analysis method using GC / MS

Country Status (1)

Country Link
JP (1) JPH0695091B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284371A (en) * 2005-03-31 2006-10-19 Shimadzu Corp Method of analyzing mass

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4590091B2 (en) * 2000-11-24 2010-12-01 大陽日酸株式会社 Gas analyzer
JP2006292446A (en) * 2005-04-07 2006-10-26 Shimadzu Corp Gas chromatograph device
JP4507962B2 (en) * 2005-04-14 2010-07-21 株式会社島津製作所 Gas chromatograph
US8078427B2 (en) 2006-08-21 2011-12-13 Agilent Technologies, Inc. Calibration curve fit method and apparatus
JP4953175B2 (en) * 2007-03-20 2012-06-13 財団法人北九州産業学術推進機構 Method for improving quantitative accuracy in chromatograph / mass spectrometer
US20110310544A1 (en) * 2010-06-23 2011-12-22 Arthur Larsen Coupling Systems for Removably Coupling a Support Beam to an Electronic Device and Methods of Making and Using the Same
CN102458069A (en) * 2010-10-28 2012-05-16 鸿富锦精密工业(深圳)有限公司 Electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284371A (en) * 2005-03-31 2006-10-19 Shimadzu Corp Method of analyzing mass
JP4506538B2 (en) * 2005-03-31 2010-07-21 株式会社島津製作所 Mass spectrometry method

Also Published As

Publication number Publication date
JPH03142358A (en) 1991-06-18

Similar Documents

Publication Publication Date Title
Tiscione et al. Ethanol analysis by headspace gas chromatography with simultaneous flame-ionization and mass spectrometry detection
Tanaka et al. Development of a liquid chromatography/time‐of‐flight mass spectrometric method for the simultaneous determination of trichothecenes, zearalenone and aflatoxins in foodstuffs
Jain Direct blood-injection method for gas chromatographic determination of alcohols and other volatile compounds
Lindeman et al. Use of a conventional mass spectrometer as a detector for gas chromatography
Haefelfinger Limits of the internal standard technique in chromatography
Parker et al. Gas chromatographic determination of ethyl alcohol in blood for medicolegal purposes. Separation of other volatiles from blood or aqueous solution.
Murata Analysis of triglycerides by gas chromatography/chemical ionization mass spectrometry
Bai et al. Complex mixture quantification without calibration using gas chromatography and a comprehensive carbon reactor in conjunction with flame ionization detection
CN111398487A (en) Application method of retention index in gas chromatography-tandem mass spectrometry analysis of tobacco flavor components
JPH0695091B2 (en) Quantitative analysis method using GC / MS
Stackler et al. Quantitative determination of ethanol in wine by gas chromatography
US3896659A (en) Method for determining the ethanol content of alcoholic beverages
Goodman et al. High-precision gas chromatography-combustion isotope ratio mass spectrometry at low signal levels
Alm et al. Simultaneous gas chromatographic analysis of drugs of abuse on two fused-silica columns of different polarities
Webb et al. Mass spectrometric and chemiluminescent detection of picogram amounts of N-nitrosodimethylamine
Snedden et al. Determination of volatile constituents of human blood and tissue specimens by quantitative high-resolution mass spectrometry
Liebich et al. Identification of dihydrothiazoles in urine of male mice
Needham et al. Electron-capture, capillary column gas chromatographic determination of low-molecular-weight diols in serum
Olynyk et al. Simultaneous Qualitative and Quantitative Analyses, I. Precision Study of Compounds Amenable to the Inert Gas-Purge-and-Trap Method
Chau et al. Electron capture gas chromatographic methodology for the quantitation of polychlorinated biphenyls: survey and compromise
CN111398486A (en) Method for rapidly determining acquisition time window in gas chromatography-tandem mass spectrometry dynamic multi-reaction monitoring mode analysis method
Ranasinghe et al. Application of gas chromatography/electron capture negative chemical ionization high-resolution mass spectrometry for analysis of DNA and protein adducts
CN114577950A (en) Method for determining anti-infective drugs in cosmetics
Gurka et al. Quantitation capability of a directly linked gas chromatography/Fourier transform infrared/mass spectrometry system
Onuska et al. Identification and determination of polychlorinated biphenyls by high-resolution gas chromatography