JPH0695050A - Faraday rotor for nonreciprocal optical device and its production - Google Patents

Faraday rotor for nonreciprocal optical device and its production

Info

Publication number
JPH0695050A
JPH0695050A JP27502092A JP27502092A JPH0695050A JP H0695050 A JPH0695050 A JP H0695050A JP 27502092 A JP27502092 A JP 27502092A JP 27502092 A JP27502092 A JP 27502092A JP H0695050 A JPH0695050 A JP H0695050A
Authority
JP
Japan
Prior art keywords
substrate
faraday rotator
films
film
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27502092A
Other languages
Japanese (ja)
Inventor
Mitsunori Saito
光憲 斉藤
Katsumi Takahashi
勝美 高橋
Yoshihiro Konno
良博 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP27502092A priority Critical patent/JPH0695050A/en
Publication of JPH0695050A publication Critical patent/JPH0695050A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To miniaturize the sectional area of a ray direction and to microminiaturize the Faraday rotor by previously forming plural grooves of a desired shape and size on a substrate surface, growing and packing R1RIG films therein and cutting out the films orthogonally with the longitudinal direction thereof. CONSTITUTION:The plural rectangular groove parts having >=20mum width and depth are previously formed by etching or grinding, etc., on the surface of the wafer-shaped substrate 1 consisting of garnet single crystal. The films of liquid epitaxial crystals are formed in these groove parts up to the positions where the thicknesses of the films formed therein correspond to the original substrate surface and the liquid epitaxial crystal films are removed down to the substrate surface. The liquid epitaxial Bi substd. rare earth garnet crystals grown in the remaining groove parts are cut in the direction approximately orthogonal with the longitudinal direction of the remaining groove parts in order to obtain the length at which the Faraday rotating angle necessary for the nonreciprocal optical device is obtainable and the cut faces are optically polished in order to form incident and exit faces for rays. Antireflection films 3 are formed on these surfaces. Then, the full-surface antireflection film is formed on the R1RIG parts and the reliability is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバ通信等に用
いられる光伝送用送信モジュールや光伝送用ファイバ間
に搭載される非相反光学装置もしくは各種光磁気効果を
利用するセンサ等に搭載されるファラデー回転子に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is mounted on a transmission module for optical transmission used for optical fiber communication or the like, a non-reciprocal optical device mounted between optical transmission fibers, or a sensor utilizing various magneto-optical effects. Faraday rotator.

【0002】[0002]

【従来の技術】半導体レーザを信号光源とする光通信の
進歩に伴い、これまでは不可能であった数百メガヘルツ
を越える高速高密度な信号伝送が実用化され、かつ最近
の光増幅技術の目ざましい進展によって、光電変換の必
要なく膨大な情報伝達が光ファイバを経路として可能に
なり、今後は技術的高度化と平行して、構成システムの
経済的低価格化の要求が高まっている。これらの光通信
システムにおいて、信号安定化のため用いられる反射戻
り光遮断用光アイソレータが不可欠な構成部品として認
識され、各種の市販光アイソレータが適用されている。
しかし、半導体レーザをはじめとする各種の部品が需要
の拡大と共に低価格化が促進しているが、光アイソレー
タがなお価格が高く、システム全体の原価低減を妨げて
いる。
2. Description of the Related Art With the progress of optical communication using a semiconductor laser as a signal light source, high-speed and high-density signal transmission exceeding several hundreds of megahertz, which has been impossible up to now, has been put into practical use, and a recent optical amplification technology has been developed. Due to the remarkable progress, a huge amount of information can be transmitted through the optical fiber without the need for photoelectric conversion, and in the future, along with the technical sophistication, the demand for economical cost reduction of the constituent system is increasing. In these optical communication systems, a reflected return light blocking optical isolator used for signal stabilization has been recognized as an indispensable component, and various commercially available optical isolators have been applied.
However, although various components such as a semiconductor laser are being promoted to be low in price along with the expansion of demand, the price of the optical isolator is still high, which prevents cost reduction of the entire system.

【0003】光アイソレータの構成部品は基本的には、
2個の偏光素子(偏光子、検光子)、ファラデー回転
子、永久磁石および外装ホルダから構成される。これら
の部品において、偏光素子およびファラデー回転子が原
価の大半を占有している。特にファラデー回転子は高価
である。現在光アイソレータに利用されているファラデ
ー回転子はフローティングゾーン結晶成長法によるイッ
トリウム鉄ガーネット:YIG(Y3Fe512)および希
土類元素の一部をBiで置換したBi置換希土類鉄ガーネッ
ト:BiRIG(ただし鉄の一部をGa,Al,Ca,Mg,Ti,
Zr等他の物質と置換することもあるが簡略化してBiRI
Gとする)がある。
The components of an optical isolator are basically
It is composed of two polarizing elements (polarizer and analyzer), Faraday rotator, permanent magnet and exterior holder. In these components, polarizing elements and Faraday rotators dominate the cost. In particular, the Faraday rotator is expensive. Faraday rotators currently used in optical isolators are yttrium iron garnet: YIG (Y 3 Fe 5 O 12 ) produced by a floating zone crystal growth method and Bi-substituted rare earth iron garnet: BiRIG (BiRIG) in which a part of the rare earth element is replaced with Bi. However, part of iron is Ga, Al, Ca, Mg, Ti,
It may be replaced with other substances such as Zr, but it is simplified and BiRI
There is G).

【0004】光アイソレータが開発された当初、バルク
YIG結晶がほとんどの光アイソレータに採用された。
これは、それ以前から用いられていたガラス製ファラデ
ー回転子に比較すれば格段の小形化が達成され、かつ光
学特性も優れた性能を有し、光アイソレータの需要拡大
に寄与してきた。一方、Biを置換することがファラデー
回転能を増大する効果が確認されて以来、様々な製法が
試みられてきたが、現在、液相エピタキシャル成長法
(LPE法)が一般化した。当初は基板上に数μmの膜
厚まで光アイソレータ用ファラデー回転子として製造拡
大が図られ、量産性,経済性から今後も期待されている
材料である。
At the beginning of the development of optical isolators, bulk YIG crystals were used in most optical isolators.
Compared with the Faraday rotator made of glass, which has been used before that, it has been remarkably miniaturized and has excellent optical characteristics, which has contributed to the expansion of demand for optical isolators. On the other hand, various production methods have been attempted since it was confirmed that the substitution of Bi has the effect of increasing the Faraday rotation ability, but the liquid phase epitaxial growth method (LPE method) is now generalized. Initially, the production was expanded as a Faraday rotator for optical isolators up to a film thickness of several μm on the substrate, and it is a material that is expected from the viewpoint of mass productivity and economy.

【0005】[0005]

【発明が解決しようとする課題】しかし、LPE法によ
るBiRIGの問題点は成長膜厚が大きくなるにしたがっ
て結晶性が劣化し、ピット,偏析,ひび割れ等が誘起さ
れ、光学特性が維持できなくなる。こうした欠陥が発生
するのは成膜条件にも依存するが、経験的に膜厚が300
μm前後から少しづつ発生し、次第に膜面全域に拡大す
る傾向が認められている。現在市販されているLPE法
によるBiRIGのファラデー回転能はおおよそ2000度/c
m程度であり、ファラデー回転角45度の磁気光学旋光子
を光学非相反部に適用する場合、必要な膜厚は、1310nm
の波長帯域ではおよそ200μm、1550nmの長波長帯域では
約400μm程度になる。
However, the problem with BiRIG by the LPE method is that the crystallinity deteriorates as the growth film thickness increases, and pits, segregation, cracks, etc. are induced, making it impossible to maintain the optical characteristics. The occurrence of such defects depends on the film forming conditions, but empirically the film thickness is 300
It has been observed that there is a gradual generation from around μm and a gradual expansion to the entire film surface. The Faraday rotation of BiRIG by the LPE method currently on the market is approximately 2000 degrees / c.
When a magneto-optical rotator with a Faraday rotation angle of 45 degrees is applied to the optical nonreciprocal part, the required film thickness is 1310 nm.
The wavelength band is about 200 μm, and the long wavelength band of 1550 nm is about 400 μm.

【0006】実際には前述した結晶欠陥部分を除外して
均質結晶部分を選別して利用しているため、ファラデー
回転子の歩留りは、厚膜が必要な1550nm帯域用ファラデ
ー回転子において低く、結果としてファラデー回転子の
原価低減化を妨げていた。しかも現在採用されているL
PE法によるBiRIG膜は、図2の様に基板面を必要な
寸法に碁盤目状に裁断する方式が採用されている。2イ
ンチの基板にLPE膜を形成し、2mm角のファラデー回
転子を作製するとき、裁断装置のブレード厚みも加味し
て約290個程度であり、複数の育成炉を並列採用しても
低価格化に反映する生産能力,生産方式ではない。
In practice, since the above-mentioned crystal defect portion is excluded and the homogeneous crystal portion is selected and used, the yield of the Faraday rotator is low in the Faraday rotator for the 1550 nm band, which requires a thick film. As a result, it has been an obstacle to the cost reduction of the Faraday rotator. Moreover, the currently adopted L
For the BiRIG film by the PE method, a method of cutting the substrate surface into a checkerboard pattern into a required size as shown in FIG. 2 is adopted. When an LPE film is formed on a 2-inch substrate and a 2 mm square Faraday rotator is manufactured, the blade thickness of the cutting device is also taken into consideration to be about 290, and even if multiple growth furnaces are adopted in parallel, the price is low. It is not the production capacity and production method that are reflected in the realization.

【0007】[0007]

【課題を解決するための手段】本発明は、ファラデー回
転子の価格低減化を図るため、LPE法によるBiRIG
膜を形成する段階で、予め基板表面に所望の形状,大き
さに複数のトレンチ溝を形成し、その溝にBiRIG膜を
育成充填し、その溝長手方向に概ね直交する方向に切り
出すことによって一枚当たりのファラデー回転子取り出
し数量を拡大すること、およびファイバと近接して利用
できるように光線方向断面積を光ファイバ断面相当まで
小形化し、非相反光学装置に必要なファラデー回転子の
実質寸法を極小化することから構成される。
SUMMARY OF THE INVENTION In order to reduce the price of a Faraday rotator, the present invention is a BiRIG method using the LPE method.
In the step of forming the film, a plurality of trench grooves having a desired shape and size are formed in advance on the substrate surface, the BiRIG film is grown and filled in the grooves, and the grooves are cut in a direction substantially orthogonal to the groove longitudinal direction. By expanding the number of Faraday rotators taken out per sheet, and by reducing the cross-sectional area in the direction of the light beam to a size equivalent to that of the optical fiber so that it can be used in close proximity to the fiber, the actual size of the Faraday rotator required for nonreciprocal optical devices can be It consists of minimization.

【0008】すなわち本発明の第一要点は、すでにT.Ao
yamaらによって報告(NEC Research& Development NO.6
6 July 1982/P44-49)されている方式で、LPE育成中
の厚膜化に伴う結晶劣化を生じない膜厚内で膜成長方向
ではなく、膜成長方向に対して直角方向に光線を透過さ
せる利用方法を用いることから結晶劣化を誘発する膜厚
まで成長させる必要がない。結果として、従来方式の成
膜歩留りを大幅に改善できることが前提であるが、基板
表面に幅20μm以上、深さ500μm以下のトレンチ溝を形
成し、溝内にLPE法によるBiRIGを育成することで
ある。ここで、T.Aoyamaの構成は単にLPE育成膜を基
板に付着した状態で切断し、そのまま基板面内方向に光
線を伝播したもので、切断面を光学研磨する際にBiRI
G側が面ダレやチッピングを生じ、本発明で望んでいる
ような微小断面のファラデー回転子を形成すること困難
である。
That is, the first point of the present invention is that T.Ao
Reported by yama et al. (NEC Research & Development NO.6
6 July 1982 / P44-49), the light is transmitted not in the film growth direction but in the direction perpendicular to the film growth direction within the film thickness that does not cause crystal deterioration due to thickening during LPE growth. It is not necessary to grow to a film thickness that induces crystal deterioration because the utilization method is used. As a result, it is premised that the film-forming yield of the conventional method can be significantly improved, but by forming a trench groove with a width of 20 μm or more and a depth of 500 μm or less on the substrate surface and growing BiRIG by the LPE method in the groove. is there. Here, the structure of T. Aoyama is that the LPE grown film is simply cut in a state in which it is attached to the substrate, and the light beam is propagated in the in-plane direction of the substrate as it is.
The G side causes surface sagging or chipping, and it is difficult to form a Faraday rotator with a minute cross section as desired in the present invention.

【0009】これに対して、本発明が提唱するトレンチ
溝構造の場合、切断片の三方が基板ガーネット結晶で保
護されており、正確な透過断面研磨が実現できる。ただ
し、光線方向の透過断面は膜厚で制限されるので最大光
線有効径は500μm以下の制約が必然的に要請される。も
ちろん成膜厚が500μm以上結晶欠陥もなく育成できれば
本発明の再現性に何等問題は生じないし、膜厚1000μm
を越えない範囲までは本発明の目的が充足される。一
方、最小光線有効径は前記非相反光学装置と連結すべき
光ファイバのコア直径から規制され、単一モードファイ
バ径の10μmを遮蔽できる大きさから決定されるが、光
線伝播径を考慮して20μm以上が望ましい。
On the other hand, in the case of the trench groove structure proposed by the present invention, the cut pieces are protected on three sides by the substrate garnet crystal, and accurate transmission cross-section polishing can be realized. However, since the transmission cross section in the light ray direction is limited by the film thickness, the maximum effective light ray diameter is necessarily limited to 500 μm or less. Of course, if the film thickness of 500 μm or more can be grown without crystal defects, no problem will occur in the reproducibility of the present invention.
The object of the present invention is satisfied to the extent not exceeding. On the other hand, the minimum ray effective diameter is regulated from the core diameter of the optical fiber to be connected to the non-reciprocal optical device, and is determined from the size that can shield 10 μm of the single mode fiber diameter, but considering the ray propagation diameter. 20 μm or more is desirable.

【0010】[0010]

【実施例】基板材料としてウエハー厚さ1.2mmの構成元
素の一部をCa,Mg,Zr等で置換して格子定数を12.49Å
程度になっている、置換型Gd3Ga512(SGGG)結晶
ウエハーの表面をダイヤモンドブレードを用いてトレン
チ溝加工し、燐酸溶液中で表面を滑らかにするためエッ
チング処理を実施した。図3は溝加工後の基板表面の局
部断面構造である。トレンチ溝は両側に400μmの基板部
が残るようにし、溝幅も400μmとし、光線透過方向の膜
厚を1550nmで45゜とれるように約300μmの切断しろを考
慮した。2インチ基板上に30本のトレンチ溝が形成でき
た。
[Example] As a substrate material, a part of constituent elements having a wafer thickness of 1.2 mm was replaced with Ca, Mg, Zr or the like to obtain a lattice constant of 12.49
The surface of the substitutional type Gd 3 Ga 5 O 12 (SGGG) crystal wafer, which has reached a certain level, was subjected to trench groove processing using a diamond blade, and an etching treatment was carried out to smooth the surface in a phosphoric acid solution. FIG. 3 shows a local cross-sectional structure of the substrate surface after the groove processing. The trench groove had a substrate portion of 400 μm left on both sides, the groove width was 400 μm, and a cutting margin of about 300 μm was considered so that the film thickness in the light transmitting direction could be 45 ° at 1550 nm. 30 trench grooves could be formed on the 2-inch substrate.

【0011】つぎに溝側にBiRIGをLPE成長させた
後、LPE成長側表面を研削・研磨加工して最初のSG
GG基板表面が現れるまで除去した。トレンチ溝に形成
されたBiRIGのファラデー回転能は1550nmの波長帯域
で約1100度/cmであった。したがって、45度のファラデ
ー回転角とするには約400μm必要であり、切断しろも含
めて700μmで1個のファラデー回転子が形成できる。基
板全体では約1400個の素子が形成でき、従来方式に比較
して5倍の生産数となることが判った。図1は基板1か
ら切り出し、光学研磨後のファラデー回転子2の構造を
示す。
Next, BiRIG is grown on the groove side by LPE, and then the surface of the LPE growth side is ground and polished to produce the first SG.
It was removed until the surface of the GG substrate appeared. The Faraday rotation capability of BiRIG formed in the trench groove was about 1100 degrees / cm in the wavelength band of 1550 nm. Therefore, it takes about 400 μm to achieve a Faraday rotation angle of 45 degrees, and one Faraday rotator can be formed with 700 μm including the cutting margin. It was found that about 1400 elements can be formed on the entire substrate, which is five times as many as the conventional method. FIG. 1 shows the structure of the Faraday rotator 2 after being cut out from the substrate 1 and optically polished.

【0012】BiRIG部分の面精度は、干渉型表面計測
装置による測定からλ/10以下に加工されており、縁部
分のチッピングもほとんど認められない。図1において
半円状の斜線部分は反射防止膜3であり、三方を包囲す
る基板1部分を保持して反射防止膜を形成できるので、
BiRIG部は全面反射防止膜が可能となり、信頼性の高
い膜が得られる。基板部分を除去する場合は、この時点
で除去する。
The surface accuracy of the BiRIG portion is processed to λ / 10 or less according to the measurement by the interferometric surface measuring device, and almost no chipping of the edge portion is recognized. In FIG. 1, the semicircular hatched portion is the antireflection film 3, and since the antireflection film can be formed while holding the substrate 1 portions surrounding the three sides,
The entire surface of the BiRIG portion can be an antireflection film, and a highly reliable film can be obtained. When removing the substrate portion, it is removed at this point.

【0013】半導体レーザ(LD)モジュール用光アイ
ソレータへ適用するときは、ファラデー回転子の断面が
小さいのでレーザビームが十分に絞られている必要があ
る。従来構成は、LD出射光線は、共焦点位置に配され
た一方のレンズを透過後、偏光子,ファラデ回転子,検
光子を伝播し、ファイバ側に配したレンズを経て単一モ
ードファイバ(SMF)へ結合する。従って、伝播距離
が大きくするので空間伝播損失を抑制するため、LD光
線を一度拡大して、SMFコア部に収束させる必要があ
り、光アイソレータ構成部品も大きくする必要があるの
で本発明のファラデー回転子を適用するには光学結合系
を検討することが望まれる。
When applied to an optical isolator for a semiconductor laser (LD) module, the laser beam must be sufficiently narrowed because the Faraday rotator has a small cross section. In the conventional configuration, the LD emission light beam is transmitted through one lens arranged at the confocal position, propagates through a polarizer, a Faraday rotator, and an analyzer, and passes through a lens arranged on the fiber side to obtain a single mode fiber (SMF). ) To. Therefore, in order to suppress the spatial propagation loss because the propagation distance becomes large, it is necessary to expand the LD light beam once and converge it on the SMF core part, and it is also necessary to enlarge the optical isolator component parts. It is desirable to consider an optical coupling system in order to apply a child.

【0014】これに対して、図4はLD4側に1個のレ
ンズ5を配した単レンズ結合であり、この場合はSMF
6直前では光線が十分に収束され、光アイソレータ7透
過部が小さな開口径でも支障無く利用できる。図5は本
発明のファラデー回転子を搭載した光アイソレータの構
成を示す。ファラデー回転子2は三方を包囲する基板部
分を除去し、0.4mm,0.3mmの矩形断面とし、外径1.4m
m、内径0.5mm、磁界方向厚み2mmのリング型SmCo磁石8
に固定し、磁石の光線出射側には検光子9を配し、入射
側には偏光子10を最適光学位置に回転調整後、固定し
た。SMF端部からレンズ側出射端までの長さは約1.6m
mであり、非球面レンズ等によってSMFに結合する場
合、ビーム径はすでに200μm以下となっており、アイソ
レータ部で損失することなく、SMFへ結合できる。
On the other hand, FIG. 4 shows a single lens combination in which one lens 5 is arranged on the LD 4 side, and in this case SMF.
Just before 6, the light rays are sufficiently converged, and the optical isolator 7 can be used without any problem even if the transmission part has a small aperture diameter. FIG. 5 shows the structure of an optical isolator equipped with the Faraday rotator of the present invention. The Faraday rotator 2 has a rectangular section of 0.4mm and 0.3mm with the substrate part surrounding three sides removed, and an outer diameter of 1.4m.
Ring type SmCo magnet 8 with m, inner diameter 0.5mm and thickness 2mm in the magnetic field direction
The analyzer 9 was arranged on the light exit side of the magnet, and the polarizer 10 was fixed on the entrance side at the optimum optical position after rotation adjustment. The length from the SMF end to the lens side exit end is about 1.6m
When the beam is coupled to the SMF by an aspherical lens or the like, the beam diameter is already 200 μm or less, and the beam can be coupled to the SMF without loss in the isolator section.

【0015】[0015]

【発明の効果】本発明はLDモジュールの低価格対応構
成を提供することに多大な寄与を示すと同時に、従来製
造上均質な結晶成長が難点であった1550nm帯域の長波長
に適用する、LPE製造法によるファラデー回転子製造
を容易に実施でき、かつ信頼成の優れたファラデー素子
を提供することが可能となり、将来の光伝送に多大な貢
献が期待できる。
INDUSTRIAL APPLICABILITY The present invention makes a great contribution to providing a low-cost structure of an LD module, and at the same time, is applied to a long wavelength of 1550 nm band where uniform crystal growth was difficult in the conventional manufacturing process. The Faraday rotator can be easily manufactured by the manufacturing method, and it is possible to provide a Faraday element having excellent reliability, which is expected to make a great contribution to optical transmission in the future.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のファラデー回転子素子の構造の斜視図
を示す。
FIG. 1 shows a perspective view of the structure of a Faraday rotator element of the present invention.

【図2】従来のLPE法ファラデー回転子の切り出し例
の説明図を示す。
FIG. 2 is an explanatory view of an example of cutting out a conventional LPE method Faraday rotator.

【図3】本発明の基板トレンチ溝加工後の断面構造の斜
視図を示す。
FIG. 3 shows a perspective view of a cross-sectional structure after processing a substrate trench groove according to the present invention.

【図4】単レンズ収束ビームを用いたLDモジュールの
模式図を示す。
FIG. 4 shows a schematic view of an LD module using a single lens convergent beam.

【図5】本発明ファラデー回転子を用いたLDモジュー
ル用光アイソレータの分解図を示す。 1 基板 2 ファラデー回転子 3 反射防止膜 4 LD(半導体レーザ) 5 レンズ 6 単一モードファイバ 7 光アイソレータ 8 リング型磁石 9 検光子 10 偏光子 11 固定リング
FIG. 5 is an exploded view of an optical isolator for an LD module using the Faraday rotator of the present invention. 1 substrate 2 Faraday rotator 3 antireflection film 4 LD (semiconductor laser) 5 lens 6 single mode fiber 7 optical isolator 8 ring magnet 9 analyzer 10 polarizer 11 fixed ring

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年12月2日[Submission date] December 2, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のファラデー回転子素子の構造の斜視図
を示す。
FIG. 1 shows a perspective view of the structure of a Faraday rotator element of the present invention.

【図2】従来のLPE法ファラデー回転子の切り出し例
の説明図を示す。
FIG. 2 is an explanatory view of an example of cutting out a conventional LPE method Faraday rotator.

【図3】本発明の基板トレンチ溝加工後の断面構造の斜
視図を示す。
FIG. 3 shows a perspective view of a cross-sectional structure after processing a substrate trench groove according to the present invention.

【図4】単レンズ収束ビームを用いたLDモジュールの
模式図を示す。
FIG. 4 shows a schematic view of an LD module using a single lens convergent beam.

【図5】本発明ファラデー回転子を用いたLDモジュー
ル用光アイソレータの分解図を示す。
FIG. 5 is an exploded view of an optical isolator for an LD module using the Faraday rotator of the present invention.

【符号の説明】 1 基板 2 ファラデー回転子 3 反射防止膜 4 LD(半導体レーザ) 5 レンズ 6 単一モードファイバ 7 光アイソレータ 8 リング型磁石 9 検光子 10 偏光子 11 固定リング[Explanation of symbols] 1 substrate 2 Faraday rotator 3 antireflection film 4 LD (semiconductor laser) 5 lens 6 single mode fiber 7 optical isolator 8 ring magnet 9 analyzer 10 polarizer 11 fixed ring

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ウエハー状ガーネツト単結晶基板表面に
形成した、液相エピタキシャルBi置換希土類鉄系ガーネ
ット結晶膜からなる非相反光学装置用ファラデー回転子
において、ウエハー状ガーネツト単結晶基板の表面の20
μm以上の幅および深さを有する複数の長方形溝部に、
膜厚が基板表面に相当する位置まで形成した液相エピタ
キシャルBi置換希土類鉄系ガーネット結晶を、非相反光
学装置に必要なファラデー回転角が得られる長さに溝部
長手方向に対して概ね直交方向に切断し、切断面を光線
の入出射面とするため光学研磨を行い、反射防止膜を施
したファラデー回転子。
1. A Faraday rotator for a nonreciprocal optical device comprising a liquid phase epitaxial Bi-substituted rare earth iron-based garnet crystal film formed on the surface of a wafer-shaped garnet single crystal substrate, wherein the surface of the wafer-shaped garnet single crystal substrate is 20.
In a plurality of rectangular grooves having a width and depth of μm or more,
Liquid phase epitaxial Bi-substituted rare earth iron garnet crystal formed to a position where the film thickness corresponds to the surface of the substrate, and the Faraday rotation angle required for a nonreciprocal optical device was obtained in a direction approximately orthogonal to the longitudinal direction of the groove. A Faraday rotator that has been cut into pieces and has been subjected to optical polishing to make the cut surfaces into the entrance and exit surfaces of light rays and an antireflection film is applied.
【請求項2】 ウエハー状ガーネツト単結晶基板表面に
形成した、液相エピタキシャルBi置換希土類鉄系ガーネ
ット結晶膜からなる非相反光学装置用ファラデー回転子
において、ウエハー状ガーネツト単結晶基板の表面を予
めエッチングまたは研削加工等によって20μm以上の幅
および深さを有する複数の長方形溝部を形成した後、前
記溝部に形成される膜厚が元の基板表面に相当する位置
まで液相エピタキシャル結晶成膜を行い、基板表面まで
前記液相エピタキシャル結晶膜を除去し、残余溝部分に
育成された液相エピタキシャルBi置換希土類鉄系ガーネ
ット結晶を、非相反光学装置に必要なファラデー回転角
が得られる長さとするため、残余溝部長手方向に対して
概ね直交方向に切断し、切断面を光線の入出射面とする
ため光学研磨を行い、反射防止膜を施すことを特徴とし
たファラデー回転子の製造方法。
2. A surface of a wafer-shaped garnet single crystal substrate is previously etched in a Faraday rotator for a nonreciprocal optical device, which is formed on a surface of a wafer-shaped garnet single crystal substrate and comprises a liquid phase epitaxial Bi-substituted rare earth iron-based garnet crystal film. Or after forming a plurality of rectangular groove portion having a width and depth of 20μm or more by grinding or the like, liquid phase epitaxial crystal film formation is performed up to a position where the film thickness formed in the groove portion corresponds to the original substrate surface, The liquid phase epitaxial crystal film is removed up to the substrate surface, and the liquid phase epitaxial Bi-substituted rare earth iron-based garnet crystal grown in the residual groove portion has a Faraday rotation angle necessary for the nonreciprocal optical device, so that the length can be obtained. The remaining groove is cut in a direction substantially orthogonal to the longitudinal direction, and optical polishing is performed to make the cut surface the light entrance and exit surface. A method of manufacturing a Faraday rotator, which comprises applying an anti-reflection film.
【請求項3】 請求項1において、溝壁を形成する基板
結晶を除去し、光線透過方向断面積が光ファイバの断面
相当であるファラデー回転子。
3. The Faraday rotator according to claim 1, wherein a substrate crystal forming a groove wall is removed and a cross-sectional area in a light transmitting direction is equivalent to a cross section of an optical fiber.
JP27502092A 1992-09-17 1992-09-17 Faraday rotor for nonreciprocal optical device and its production Pending JPH0695050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27502092A JPH0695050A (en) 1992-09-17 1992-09-17 Faraday rotor for nonreciprocal optical device and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27502092A JPH0695050A (en) 1992-09-17 1992-09-17 Faraday rotor for nonreciprocal optical device and its production

Publications (1)

Publication Number Publication Date
JPH0695050A true JPH0695050A (en) 1994-04-08

Family

ID=17549762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27502092A Pending JPH0695050A (en) 1992-09-17 1992-09-17 Faraday rotor for nonreciprocal optical device and its production

Country Status (1)

Country Link
JP (1) JPH0695050A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136393A1 (en) * 2012-03-16 2013-09-19 日本電気株式会社 Polarization combiner and separator, polarization combining and separating structure, light mixer, optical modulator module, and method for manufacturing polarization combiner and separator
WO2014013640A1 (en) * 2012-07-17 2014-01-23 日本電気株式会社 Polarization separator, polarization separation structure, optical mixer, and method for manufacturing polarization separator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136393A1 (en) * 2012-03-16 2013-09-19 日本電気株式会社 Polarization combiner and separator, polarization combining and separating structure, light mixer, optical modulator module, and method for manufacturing polarization combiner and separator
CN104169762A (en) * 2012-03-16 2014-11-26 日本电气株式会社 Polarization combiner and separator, polarization combining and separating structure, light mixer, optical modulator module, and method for manufacturing polarization combiner and separator
JPWO2013136393A1 (en) * 2012-03-16 2015-07-30 日本電気株式会社 Polarization combiner / separator, polarization combiner / separator, optical mixer, optical modulator module, and polarization combiner / separator manufacturing method
US9442248B2 (en) 2012-03-16 2016-09-13 Nec Corporation Polarization beam combiner/splitter, polarization beam combining/splitting structure, light mixer, optical modulator module, and method for manufacturing polarization beam combiner/splitter
WO2014013640A1 (en) * 2012-07-17 2014-01-23 日本電気株式会社 Polarization separator, polarization separation structure, optical mixer, and method for manufacturing polarization separator
JPWO2014013640A1 (en) * 2012-07-17 2016-06-30 日本電気株式会社 Polarization separator, polarization separation structure, optical mixer, and method of manufacturing polarization separator

Similar Documents

Publication Publication Date Title
US6545795B2 (en) Magneto-optical member and optical isolator using the same
Sugimoto et al. A hybrid integrated waveguide isolator on a silica-based planar lightwave circuit
Levy The on-chip integration of magnetooptic waveguide isolators
US4195908A (en) Magnetic mirror for imparting non-reciprocal phase shift
CN102318151B (en) Planar waveguide laser apparatus
US6795242B2 (en) Miniature circulator devices and methods for making the same
US4762384A (en) Optical systems with antireciprocal polarization rotators
JP4797733B2 (en) Polarization-independent optical isolator for high-power lasers
US8254745B2 (en) Optical device, optical integrated device, and method of manufacturing the same
US4671621A (en) Optical systems with antireciprocal polarization rotators
JPH0695050A (en) Faraday rotor for nonreciprocal optical device and its production
JP3876666B2 (en) Optical device and manufacturing method thereof
Cai et al. An effective method for coupling single-mode fiber to thin-film waveguide
Zhu et al. Optical properties of a proton-implanted Nd: CNGG planar waveguide
US20060013076A1 (en) Magnetooptic element and process for fabricating the same and optical isolator incorporating it
JP2010191260A (en) Waveguide type isolator, optical integrated device, and manufacturing method of same
JPS61292613A (en) Faraday rotor and its production
JPH0477713A (en) Optical isolator independent of polarization
Wolfe Thin films for non-reciprocal magneto-optic devices
US20240118564A1 (en) Optical isolator
JP2982836B2 (en) Manufacturing method of waveguide type isolator
JPS5937504A (en) Optical waveguide
JP2890525B2 (en) Optical isolator
JP2985022B2 (en) Magneto-optical element and optical isolator
JP3594207B2 (en) Hetero-crystal junction type optical isolator

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020208