JPH0695044A - Optical modulator element - Google Patents

Optical modulator element

Info

Publication number
JPH0695044A
JPH0695044A JP24773292A JP24773292A JPH0695044A JP H0695044 A JPH0695044 A JP H0695044A JP 24773292 A JP24773292 A JP 24773292A JP 24773292 A JP24773292 A JP 24773292A JP H0695044 A JPH0695044 A JP H0695044A
Authority
JP
Japan
Prior art keywords
film
pair
single crystal
lower electrode
buffer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24773292A
Other languages
Japanese (ja)
Inventor
Akihiro Ito
彰浩 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Research Institute of General Electronics Co Ltd
Ricoh Co Ltd
Original Assignee
Ricoh Research Institute of General Electronics Co Ltd
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Research Institute of General Electronics Co Ltd, Ricoh Co Ltd filed Critical Ricoh Research Institute of General Electronics Co Ltd
Priority to JP24773292A priority Critical patent/JPH0695044A/en
Publication of JPH0695044A publication Critical patent/JPH0695044A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the optical modulator element for TE-like mode which is formed by using an inexpensive Si and Ge single crystalline substrate and has sufficient element characteristics. CONSTITUTION:The single crystalline substrate contg. at least one kind of Si and Ge elements is provided therein with at least a pair of lower electrode parts electrically separated from other regions by respective p-n junctions facing each other apart a prescribed spacing. One or plural layers of epitaxially grown buffer layers are provided on the single crystalline substrate and an epitaxially grown film consisting of the composite oxide of a perovskite structure contg. Pb is provided on the buffer layer. An optical waveguide of the propagation direction of light parallel with the longitudinal direction of the spacing between a pair of the lower electrodes is provided of a part or the whole of the multi component oxide right above the spacing. At least a pair of upper electrodes are provided in the positions facing the lower electrodes via the buffer layer and the multi component oxide layer. A mechanism to electrically connect the upper electrodes and lower electrodes facing each other via the film is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、プリンター、発光素
子、光通信、光コンピューター等に有用な光変調器素子
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical modulator device useful for printers, light emitting devices, optical communications, optical computers and the like.

【0002】[0002]

【従来の技術】(Pb,La)(Zr,Ti)O3
(Pb,La)TiO3などのPb元素を含むペロブス
カイト構造をもつ複合酸化物は優れた電気光学効果を持
ち、これらの材料を薄膜化し、光導波路型光変調器、光
スイッチ素子への応用が広く試みられている。
2. Description of the Related Art (Pb, La) (Zr, Ti) O 3 ,
A complex oxide having a perovskite structure containing a Pb element such as (Pb, La) TiO 3 has an excellent electro-optic effect, and these materials can be thinned to be applied to an optical waveguide type optical modulator and an optical switch element. Widely tried.

【0003】なお、光スイッチは、広い意味で光変調器
の1種と考えられるので以下の説明での光変調器も、光
スイッチを含むものとする。
Since the optical switch is considered to be a kind of optical modulator in a broad sense, the optical modulator in the following description also includes an optical switch.

【0004】これらの材料を用いた光変調器素子におい
て、十分な素子特性を得るには前記複合酸化物からなる
薄膜は、単結晶であることが必要である。多結晶体では
結晶粒界による光の散乱のために、十分な素子特性を得
ることはむずかしい。
In the optical modulator device using these materials, the thin film made of the complex oxide needs to be a single crystal in order to obtain sufficient device characteristics. In a polycrystalline body, it is difficult to obtain sufficient device characteristics due to light scattering by grain boundaries.

【0005】従来、これらの複合酸化物薄膜を用いた光
変調器はアルミナ単結晶基板上でのエピタキシャル膜を
用い試作されている[J.J.Appl.Phys.,
24,Suppl.24−2,284(1985)]。
しかし、アルミナ等の酸化物単結晶基板は高価である。
さらに、近年の電子デバイスの小型化、高集積化の要請
に対応するため、Si,Ge単結晶基板上に、前記複合
酸化物薄膜を用いた光変調器を作製することが試みられ
ている(特開昭62−39825、特開昭63−551
98、特開昭60−161635)。
Conventionally, optical modulators using these composite oxide thin films have been prototyped using an epitaxial film on an alumina single crystal substrate [J. J. Appl. Phys. ,
24, Suppl. 24-2, 284 (1985)].
However, an oxide single crystal substrate such as alumina is expensive.
Furthermore, in order to meet recent demands for miniaturization and high integration of electronic devices, it has been attempted to fabricate an optical modulator using the above-mentioned composite oxide thin film on a Si, Ge single crystal substrate ( JP-A-62-39825, JP-A-63-551
98, JP-A-60-161635).

【0006】[0006]

【発明が解決しようとする課題】しかし、Si,Ge単
結晶基板を用いた場合以下のような解決すべき課題が発
生する。
However, when the Si, Ge single crystal substrate is used, the following problems to be solved occur.

【0007】第1の課題は、Si,Ge単結晶基板上に
光導波路を設ける場合、前記複合酸化物の屈折率が、
2.5〜2.7であるが、Si,Geは屈折率がそれぞ
れ4.0、5.3であるため、導波路に光をとじこめる
ためにはSi,Ge単結晶基板と、複合酸化物導波路の
間に複合酸化物、導波路より小さい屈折率のバッファ層
が必要となる。
The first problem is that when an optical waveguide is provided on a Si, Ge single crystal substrate, the refractive index of the composite oxide is
However, since Si and Ge have a refractive index of 4.0 and 5.3, respectively, in order to confine light in the waveguide, a Si and Ge single crystal substrate and a complex oxide are used. A complex oxide and a buffer layer having a refractive index smaller than that of the waveguide are required between the waveguides.

【0008】さらに、このバッファ層は複合酸化物のエ
ピタキシャル膜を得るためには下地、Si,Ge上にエ
ピタキシャル成長した膜でなければならない。
Further, this buffer layer must be a film epitaxially grown on the underlying layers, Si and Ge, in order to obtain an epitaxial film of complex oxide.

【0009】このようなバッファ層としては、MgAl
24,MgOが提案されているが、作製プロセス条件が
約950℃と過酷なため、素子の集積化を目ざした場
合、Si,Ge単結晶基板中にすでに作製してある駆動
回路等へのダメージが発生し、使用できる場合が限定さ
れる。
As such a buffer layer, MgAl
2 O 4 and MgO have been proposed, but since the fabrication process conditions are as severe as about 950 ° C., when aiming for device integration, it is possible to use a drive circuit already fabricated in a Si or Ge single crystal substrate. There is limited damage and can only be used.

【0010】第2の課題について説明する。The second problem will be described.

【0011】前記複合酸化物のような異方性材料を用い
た光導波路型変調器の場合、光の伝搬方向に垂直な平面
内で光の電界の主成分が、膜の面内方向に向いているモ
ード(TEライクモード)か、膜面に垂直方向に向いて
いるモード(TMライクモード)になるような導波路構
成をとる。
In the case of an optical waveguide modulator using an anisotropic material such as the complex oxide, the main component of the electric field of light is directed in the in-plane direction of the film in a plane perpendicular to the light propagation direction. The waveguide configuration is such that it is in the open mode (TE-like mode) or in the mode perpendicular to the film surface (TM-like mode).

【0012】前記複合酸化物は、外部から印加する電界
により屈折率が変化する電気光学効果を持つが、前記複
合酸化物中を伝搬する光は、電界面が印加電界方向と平
行な偏光状態である場合、屈折率の変化の影響を最も強
く受ける。
The complex oxide has an electro-optical effect in which the refractive index is changed by an electric field applied from the outside, but the light propagating in the complex oxide has a polarization state in which the electric field plane is parallel to the applied electric field direction. In some cases, it is most strongly affected by changes in refractive index.

【0013】よってTEライクモードの場合、導波光の
伝搬方向に垂直で膜の面内方向に電界を印加する必要が
ある。酸化物単結晶基板を用い光スイッチを作製した例
では、プレーナー型電極を用いて、このような電界を印
加している(図2)。
Therefore, in the TE-like mode, it is necessary to apply an electric field perpendicular to the propagation direction of guided light and in the in-plane direction of the film. In an example in which an optical switch is manufactured using an oxide single crystal substrate, such an electric field is applied using a planar electrode (FIG. 2).

【0014】しかし、Si,Ge単結晶基板の場合は各
電極下のSi,Ge単結晶基板中で、前記バッファ層と
の奥面部に、反対極性の電荷が誘起されるため、前記複
合酸化物膜中で膜面内方向には有効な強さの電界は発生
しない(図3)。
However, in the case of a Si / Ge single crystal substrate, charges of opposite polarity are induced in the Si / Ge single crystal substrate under each electrode in the inner surface of the buffer layer. An electric field of effective strength is not generated in the film in the film in-plane direction (FIG. 3).

【0015】本発明の目的は、これらの課題を解決し、
安価なSi,Ge単結晶基板上に、十分な素子特性をも
つTEライクモード用光・変調器素子を作製することを
可能にすること、さらに従来Si,Ge単結晶を用いた
熟成した集積回路技術を利用して、前記光変調器素子の
高集積化、多機能化を可能にすることである。
The object of the present invention is to solve these problems,
It is possible to fabricate a TE-like mode optical / modulator element having sufficient element characteristics on an inexpensive Si / Ge single crystal substrate, and further, a mature integrated circuit using a conventional Si / Ge single crystal. By using the technology, it is possible to realize high integration and multifunction of the optical modulator element.

【0016】[0016]

【課題を解決するための手段】本発明は、鋭意検討した
結果、本発明に至った。
As a result of extensive studies, the present invention has led to the present invention.

【0017】すなわち、本発明は、Si,Ge元素のす
くなくとも1種を含む単結晶基板中に、少くとも1対の
一定の間隙をもって対向する各々PN接合により他領域
と電気的に分離される下部電極部を設け、前記単結晶基
板上にエピタキシャル成長したバッファ層を1層又は複
数層設け、前記バッファ層の上にPbを含む、ペロブス
カイト構造の複合酸化物からなるエピタキシャル成長膜
を設け、前記複合酸化物膜の一部又は全部で前記1対の
下部電極の間隙の直上で、光の伝搬方向が前記間隙の長
手方向と平行である光導波路を設け、前記下部電極とバ
ッファ層及び複合酸化物層を介し対向する位置に少くと
も1対の上部電極を設け、膜を介し対向する上部電極と
下部電極の電極は、電気的に接続される機構を設けた光
変調器素子である。
That is, according to the present invention, in a single crystal substrate containing at least one of Si and Ge elements, a lower portion which is electrically separated from other regions by PN junctions facing each other with at least one pair of constant gaps. An electrode portion is provided, one or more buffer layers epitaxially grown on the single crystal substrate are provided, and an epitaxial growth film made of a complex oxide having a perovskite structure containing Pb is provided on the buffer layer. An optical waveguide whose light propagation direction is parallel to the longitudinal direction of the gap is provided directly above the gap between the pair of lower electrodes in a part or all of the film, and the lower electrode, the buffer layer, and the complex oxide layer are provided. At least one pair of upper electrodes are provided at positions facing each other through the film, and the electrodes of the upper electrode and the lower electrode facing each other through the film are optical modulator elements provided with a mechanism to be electrically connected.

【0018】図1に本発明の光変調器素子の基本構成を
示す。
FIG. 1 shows the basic structure of the optical modulator element of the present invention.

【0019】本発明に使用する基板は、Si,Ge,S
(1-X)GeX等のSi,Ge元素の少なくとも1種を含
む単結晶基板である(以下Si,Ge単結晶基板とい
う)。これらの基板は面方位が(100)か(111)
及びそれらの方位から±10°以内でオフセットしてい
る基板が望ましい。さらに、ここでいう単結晶基板と
は、非晶質基板又は、多結晶基板上に成膜したSi,G
e,Si1-X,GeX膜をランプ加熱やレーザー加熱で溶
融再結晶化させた基板も含む。
The substrate used in the present invention is made of Si, Ge, S.
A single crystal substrate containing at least one of Si and Ge elements such as i (1-X) Ge X (hereinafter referred to as Si and Ge single crystal substrate). These substrates have a plane orientation of (100) or (111)
And substrates that are offset within ± 10 ° of their orientation are desirable. Further, the single crystal substrate referred to here is Si, G formed on an amorphous substrate or a polycrystalline substrate.
It also includes a substrate obtained by melting and recrystallizing the e, Si 1-x , Ge x film by lamp heating or laser heating.

【0020】本発明の光変調器素子においては、前記S
i,Ge単結晶基板中に、PN接合により、接する領域
と電気的に分離可能な、対向する少なくとも1対の下部
電極部を設ける。
In the optical modulator element of the present invention, the S
In the i, Ge single crystal substrate, at least one pair of opposing lower electrode portions that can be electrically separated from the contact area by a PN junction is provided.

【0021】この1対の下部電極部の間隙は、500〜
90000000Åであり、5000〜5000000
0Åが望ましい。
The gap between the pair of lower electrode portions is 500 to
90,000,000Å and 5000 to 5,000,000
0Å is desirable.

【0022】前記Si,Ge単結晶基板上には又、エピ
タキシャル成長したバッファー層を1層又は複数層設け
る。このバッファー層は、SrO,BaO,CeO2
ZrO2,TiO2,Al23,MgO,MgAl24
の酸化物から構成される。このバッファ層の膜厚は、1
0〜8000000Åで、500〜50000Åが望ま
しい。
On the Si, Ge single crystal substrate, one or a plurality of epitaxially grown buffer layers are also provided. This buffer layer is composed of SrO, BaO, CeO 2 ,
It is composed of oxides such as ZrO 2 , TiO 2 , Al 2 O 3 , MgO and MgAl 2 O 4 . The thickness of this buffer layer is 1
0 to 8,000,000Å, preferably 500 to 50000Å.

【0023】さらに、バッファ層の上に(Pb,La)
TiO3,(Pb,La)(Zr,Ti)O3等のPbを
含むペロブスカイト構造の複合酸化物のエピタキシャル
成長膜を1層又は複数層設ける。(以下、複合酸化物膜
という)。膜厚は、500〜5000000Åで、80
0〜200000Åが望ましい。そして、この複合酸化
物膜中には、前記1対の下部電極の間隙の間、又は、間
隙を含み、間隙と平行して通る導波路を設ける。
Further, on the buffer layer (Pb, La)
One or a plurality of epitaxial growth films of a complex oxide having a perovskite structure containing Pb such as TiO 3 and (Pb, La) (Zr, Ti) O 3 are provided. (Hereinafter, referred to as a complex oxide film). The film thickness is 500 to 5,000,000Å, 80
0-200000Å is desirable. Then, in this composite oxide film, a waveguide is provided between the gaps of the pair of lower electrodes or including the gap and passing in parallel with the gap.

【0024】光導波路の、光が伝搬する方向と直角な膜
の面内方向の寸法は、1000〜90000000Å
で、3000〜50000000Åが望ましい。
The dimension of the optical waveguide in the in-plane direction of the film perpendicular to the light propagation direction is 1000 to 90000000Å
Therefore, 3000 to 50000000Å is desirable.

【0025】この光導波路上又は光導波路をはさみ、下
部電極とバッファ層及び複合酸化物層を介し、対向する
位置に、すくなくとも1対のAl,Au,Cr,Pt,
poly−Si等からなる上部電極を設ける。
A pair of Al, Au, Cr, Pt, at least one pair of Al, Au, Cr, Pt, is provided on the optical waveguide or sandwiching the optical waveguide and facing the lower electrode through the buffer layer and the complex oxide layer.
An upper electrode made of poly-Si or the like is provided.

【0026】最後に、バッファ層及び複合酸化物層を介
し対向する上部電極と下部電極を、素子上にAl,A
u,Cr,Pt,poly−Si等の膜によるか、A
u,Al等のリード線のボンディングにより電気的に接
続する。
Finally, the upper electrode and the lower electrode, which face each other with the buffer layer and the complex oxide layer in between, are formed on the device by Al, A
A film of u, Cr, Pt, poly-Si, etc.
Electrical connection is made by bonding lead wires such as u and Al.

【0027】次に、作製方法及び細部構成についてさら
に詳細に述べる。
Next, the manufacturing method and detailed structure will be described in more detail.

【0028】下部電極は、通常のSi,Geウエハープ
ロセス技術で作製できる。つまりパタン形成は、レジス
トを用いるリソグラフィー工程と、ドライ又は化学エッ
チング工程で行ない、不純物導入は、固相及び気相の拡
散工程かイオン注入工程により行う。細部構成例をあげ
れば、 (1)n型基板中に2つのP型下部電極を設ける(図
5)。
The lower electrode can be manufactured by a usual Si or Ge wafer process technique. That is, pattern formation is performed by a lithography process using a resist and a dry or chemical etching process, and impurity introduction is performed by a solid phase and vapor phase diffusion process or an ion implantation process. As a detailed configuration example, (1) two P-type lower electrodes are provided in an n-type substrate (FIG. 5).

【0029】(2)P型基板中に2つのn型下部電極を
設ける(図6)。
(2) Two n-type lower electrodes are provided in the P-type substrate (FIG. 6).

【0030】(3)n型基板中に、Pウエルを設け、P
ウエル中にn型下部電極を設け、Pウエル以外の部分
に、P型下部電極を設ける(図7)。
(3) P well is provided in the n-type substrate, and P well
An n-type lower electrode is provided in the well, and a P-type lower electrode is provided in a portion other than the P well (FIG. 7).

【0031】(4)P型基板中に、nウエルを設け、n
ウエル中にP型下部電極を設け、nウエル以外の部分
に、n型下部電極を設ける(図8)。
(4) An n well is provided in a P-type substrate, and n
A P-type lower electrode is provided in the well, and an n-type lower electrode is provided in a portion other than the n-well (FIG. 8).

【0032】(5)n型又はP型基板中に、SiH4
ス等を用いSiをエピタキシャル成長させ、エピタキシ
ャルSi膜中にPウエル、nウエルを設け、Pウエル中
には、n型下部電極、nウエル中には、P型下部電極を
設ける(図9)。
(5) Si is epitaxially grown in an n-type or P-type substrate by using SiH 4 gas or the like, a P well and an n well are provided in the epitaxial Si film, and an n type lower electrode, A P-type lower electrode is provided in the n-well (FIG. 9).

【0033】なお、図5〜9において、1,2は下部電
極、3はSi,Ge単結晶基板を表す。
5 to 9, 1 and 2 are lower electrodes, and 3 is a Si, Ge single crystal substrate.

【0034】エピタキシャルバッファ層は、Si,Ge
単結晶基板表面をHF処理、HClボイル処理、高温フ
ラッシュ法、Gaビーム照射法等により清浄化し、S
i,Ge単結晶基板の表面の酸化膜を除去した後、MB
E(分子線エピタキシャル)法、ALE(アトミックレ
イヤーエピタキシャル)法、MOCVD(有機金属化学
的気相成長)法、CVD法、スパッタリング法、蒸着法
等により作製する。
The epitaxial buffer layer is made of Si, Ge.
The surface of the single crystal substrate is cleaned by HF treatment, HCl boil treatment, high temperature flash method, Ga beam irradiation method, etc.
After removing the oxide film on the surface of the i, Ge single crystal substrate, MB
It is formed by E (molecular beam epitaxial) method, ALE (atomic layer epitaxial) method, MOCVD (metal organic chemical vapor deposition) method, CVD method, sputtering method, vapor deposition method, or the like.

【0035】なお、良好なエピタキシャル成長膜を得る
ためや、光の吸収層を設ける目的でバッファ層とバッフ
ァ層の間又は、バッファ層とSi,Ge単結晶基板の間
に、SrTiO3、BaTiO3、SrF2、CaF2、Z
nS、ZnSe、GaPのような、エピタキシャル層を
設ける場合もある。
In order to obtain a good epitaxial growth film or to provide a light absorption layer, SrTiO 3 , BaTiO 3 , or between the buffer layers and between the buffer layer and the Si, Ge single crystal substrate, SrF 2 , CaF 2 , Z
An epitaxial layer such as nS, ZnSe or GaP may be provided.

【0036】次に、複合酸化物膜は、MBE法、ALE
法、MOCVD法、CVD法、スパッタリング法蒸着法
により作製する。
Next, the composite oxide film is formed by MBE method and ALE.
Method, MOCVD method, CVD method, sputtering method vapor deposition method.

【0037】光導波路は、複合酸化膜をRIE(リアク
ティブイオンエッチング)法や化学エッチング法によ
り、リッジ型に形成したり、Ta25、SiO2、Al2
3等の上部誘電体膜をパターン形成する方法、対向す
る金属膜を形成する方法などがあるが、光導波路形状を
限定するものではない。
In the optical waveguide, a complex oxide film is formed into a ridge type by RIE (reactive ion etching) method or chemical etching method, or Ta 2 O 5 , SiO 2 , Al 2 is formed.
There is a method of patterning an upper dielectric film such as O 3 and a method of forming a facing metal film, but the shape of the optical waveguide is not limited.

【0038】また、複合酸化物膜の上に上部バッファ層
を介して上部電極を設ける場合もある。
In some cases, the upper electrode is provided on the composite oxide film via the upper buffer layer.

【0039】また、光変調器の構成も、光導波路型であ
ること以外はいずれの構成にも、限定するものではな
く、全反射型光スイッチ、方向性結合器型光スイッチ、
分岐型光スイッチ等も含む。
Further, the structure of the optical modulator is not limited to any structure other than that of the optical waveguide type, and a total reflection type optical switch, a directional coupler type optical switch,
It also includes a branch type optical switch.

【0040】SrO,BaO,CeO2,ZrO2,Ti
2,Al23,MgO,MgAl24等のバッファ層
材料は、Si、Ge、Si1-X、GeX及び前記複合酸化
物ともそれぞれほぼ合致する原子配置をもつ結晶面を有
するので、前記複合酸化物は、Si,Ge単結晶基板の
結晶構造を反映してエピタキシャル成長する。またこれ
らのバッファ層は、単一層又は複数層で全体の屈折率を
前記複合酸化物より小さくできるので膜厚を適切に選択
すれば、複合酸化物導波路中に光を良好にとじこめるこ
とができる。
SrO, BaO, CeO 2 , ZrO 2 , Ti
The buffer layer material such as O 2 , Al 2 O 3 , MgO, and MgAl 2 O 4 has a crystal plane having an atomic arrangement that substantially matches Si, Ge, Si 1-x , Ge x and the complex oxide. Therefore, the composite oxide is epitaxially grown by reflecting the crystal structure of the Si, Ge single crystal substrate. In addition, these buffer layers can be made to be a single layer or a plurality of layers so that the total refractive index can be made smaller than that of the complex oxide, and therefore, if the film thickness is appropriately selected, light can be well confined in the complex oxide waveguide. .

【0041】プレーナー型の上部電極だけの構成に電圧
を印加した場合、各電極で、電極直下のSi,Ge単結
晶界面に、上部電極とは逆極性の電荷が誘起されるため
に、光導波路膜面内方向には、有効に電界が発生せず、
前記複合酸化物導波路内では、十分な屈折率変化がおこ
らない。
When a voltage is applied to the structure of only the planar type upper electrode, electric charges of opposite polarities to those of the upper electrode are induced at the Si / Ge single crystal interface immediately below the electrodes at each electrode, so that the optical waveguide An electric field is not effectively generated in the in-plane direction of the film,
A sufficient change in refractive index does not occur in the complex oxide waveguide.

【0042】本発明の上部電極と、下部電極を伴用して
用いる場合は有効に、光導波路膜中に電界が発生し、良
好な光変調特性を得る。
When the upper electrode and the lower electrode of the present invention are used together, an electric field is effectively generated in the optical waveguide film, and good light modulation characteristics are obtained.

【0043】[0043]

【実施例】【Example】

実施例1 抵抗値1〜0.1Ω/cmの(100)n型Si基板面
を用い、Siウエハープロセスにより2ヶ所に約200
000Åの間隔で、長さ10mmのP型領域の下部電極
を、Bイオン注入し形成する。次に、この基板をRCA
洗浄を行った後HF/H2O(1/100)中にディッ
プ後、MBE装置に入れた。10-11Torrまで排気
した後、SrOペレットを電子線加熱により蒸着させ、
膜厚約500ÅのSrO膜を作製する。次に、MgOペ
レットを電子線加熱により、約5000Å成長させる。
試料を取り出し、MOCVD装置に入れ、Pb(C
254、La(DPM)3、Ti(OC374及びO2
ガスを原料とし(Pb、La)TiO3(100)配向
エピタキシャル膜を膜厚約4000Å成長させる。
Example 1 A (100) n-type Si substrate surface having a resistance value of 1 to 0.1 Ω / cm was used, and about 200 was formed at two locations by a Si wafer process.
A lower electrode in a P-type region having a length of 10 mm is formed by B ion implantation at intervals of 000Å. Next, this substrate is RCA
After washing, it was dipped in HF / H 2 O (1/100) and placed in an MBE apparatus. After exhausting to 10 −11 Torr, SrO pellets are vapor-deposited by electron beam heating,
An SrO film having a film thickness of about 500Å is prepared. Next, the MgO pellet is grown by electron beam heating to about 5000Å.
The sample is taken out and put in the MOCVD equipment, and Pb (C
2 H 5 ) 4 , La (DPM) 3 , Ti (OC 3 H 7 ) 4 and O 2
Using gas as a raw material, a (Pb, La) TiO 3 (100) oriented epitaxial film is grown to a film thickness of about 4000Å.

【0044】次に、Al23−SiO2膜を電子線加熱
蒸着法により、約500Å成長させる。次に、前述の2
ヶ所下部電極の間隙領域の直上に位置するように、Al
23−SiO2膜をRIEエッチングする。次に膜厚2
000ÅのAl電極を約200000Åの間隔で、長さ
10mmのパターン形成する。次に、下部電極に達する
コンタクトホールをRIEで形成したのち、Al金属膜
により接続する。
Next, an Al 2 O 3 —SiO 2 film is grown by electron beam heating vapor deposition to about 500 Å. Next, the above 2
Place Al so that it is located right above the gap area of the lower electrode.
RIE etching is performed on the 2 O 3 —SiO 2 film. Next, the film thickness 2
A 000Å Al electrode is formed with a pattern of 10 mm in length at intervals of about 200,000Å. Next, a contact hole reaching the lower electrode is formed by RIE and then connected by an Al metal film.

【0045】この光スイッチ素子に、波長633mmの
TEモード光をプリズムを用い入射し、一方の上部−下
部電極に−0.5V、他方の上部−下部電極に−20V
印加すると、出射光強度は電圧を印加しない場合に比
べ、25%減少した。
TE mode light having a wavelength of 633 mm is incident on this optical switch element by using a prism, and one upper-lower electrode has -0.5 V and the other upper-lower electrode has -20 V.
When applied, the intensity of emitted light was reduced by 25% as compared with the case where no voltage was applied.

【0046】下部電極を形成せず、他は同一構成の光ス
イッチ素子の場合は、同一条件で測定した場合、電圧印
加の効果は、確認されなかった。なお、図10は実施例
1の光変調器素子の説明図である。
In the case of the optical switch element having the same structure except that the lower electrode was not formed, the effect of voltage application was not confirmed when measured under the same conditions. Note that FIG. 10 is an explanatory diagram of the optical modulator element of the first embodiment.

【0047】[0047]

【発明の効果】前記Si,Ge単結晶及び、前記複合酸
化物とそれぞれほぼ合致する原子配置をもつ結晶面を有
し、全体的にみれば、前記複合酸化物より小さい屈折率
のバッファ層を用いているので前記複合酸化物膜は、結
晶粒界の少いエピタキシャル膜となり、光導波損欠の少
く、より材料の異方性を顕著に出現させることができ、
より高特性の光スイッチ素子を基板上に作製することが
できる。
EFFECTS OF THE INVENTION A buffer layer having a refractive index smaller than that of the composite oxide as a whole has a crystal plane having an atomic arrangement that substantially matches the Si and Ge single crystals and the composite oxide, respectively. Since the composite oxide film used is an epitaxial film with few crystal grain boundaries, the optical waveguide loss deficiency is small, and the anisotropy of the material can be remarkably exhibited.
An optical switch element having higher characteristics can be manufactured on the substrate.

【0048】さらに、下部電極を形成することにより、
前記複合酸化物膜中に、十分な程度電界を発生させるこ
とができるため、より光変調特性を高めることができ
る。
Further, by forming the lower electrode,
Since a sufficient electric field can be generated in the composite oxide film, the light modulation characteristics can be further improved.

【0049】さらには、Si,Ge単結晶上に光スイッ
チ素子の作製が、可能になることにより光変調器素子の
高集積化、及び多機能化が計れる。
Furthermore, since it becomes possible to fabricate an optical switch element on a Si or Ge single crystal, the optical modulator element can be highly integrated and multifunctional.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光変調器素子の基本構成断面説明図。FIG. 1 is a sectional view showing the basic configuration of an optical modulator device according to the present invention.

【図2】酸化物単結晶基板を用いた光スイッチの断面説
明図。
FIG. 2 is a cross-sectional explanatory diagram of an optical switch using an oxide single crystal substrate.

【図3】Si,Ge単結晶基板を用いた光スイッチの断
面説明図。
FIG. 3 is an explanatory cross-sectional view of an optical switch using a Si, Ge single crystal substrate.

【図4】Si,Ge単結晶基板中に下部電極を付加した
光スイッチの断面説明図。
FIG. 4 is a cross-sectional explanatory view of an optical switch in which a lower electrode is added to a Si / Ge single crystal substrate.

【図5】本発明の光変調器素子における下部電極の構成
例。
FIG. 5 is a structural example of a lower electrode in the optical modulator element of the present invention.

【図6】同別の構成例。FIG. 6 is another example of the configuration.

【図7】同さらに別の構成例。FIG. 7 shows another example of the configuration.

【図8】同さらに別の構成例。FIG. 8 shows another example of the configuration.

【図9】同さらに別の構成例。FIG. 9 shows another example of the configuration.

【図10】実施例による本発明光変調器素子の構成例。FIG. 10 is a structural example of an optical modulator device of the present invention according to an embodiment.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Si,Ge元素のすくなくとも1種を含
む単結晶基板中に、少くとも1対の一定の間隙をもって
対向する各々PN接合により他領域と電気的に分離され
る下部電極部を設け、前記単結晶基板上にエピタキシャ
ル成長したバッファ層を1層又は複数層設け、前記バッ
ファ層の上にPbを含む、ペロブスカイト構造の複合酸
化物からなるエピタキシャル成長膜を設け、前記複合酸
化物膜の一部又は全部で前記1対の下部電極の間隙の直
上で、光の伝搬方向が前記間隙の長手方向と平行である
光導波路を設け、前記下部電極とバッファ層及び複合酸
化物層を介し対向する位置に少くとも1対の上部電極を
設け、膜を介し対向する上部電極と下部電極の電極は、
電気的に接続される機構を設けた光変調器素子。
1. A single crystal substrate containing at least one of Si and Ge elements is provided with lower electrode portions electrically opposed to other regions by PN junctions facing each other with at least one pair of constant gaps. A single or a plurality of buffer layers epitaxially grown on the single crystal substrate, and an epitaxial growth film made of a complex oxide having a perovskite structure containing Pb on the buffer layer, and a part of the complex oxide film. Or, at a position directly above the gap between the pair of lower electrodes, an optical waveguide whose light propagation direction is parallel to the longitudinal direction of the gap is provided, and the optical waveguide is opposed to the lower electrode via the buffer layer and the complex oxide layer. At least one pair of upper electrodes are provided in the
An optical modulator element provided with a mechanism to be electrically connected.
JP24773292A 1992-09-17 1992-09-17 Optical modulator element Pending JPH0695044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24773292A JPH0695044A (en) 1992-09-17 1992-09-17 Optical modulator element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24773292A JPH0695044A (en) 1992-09-17 1992-09-17 Optical modulator element

Publications (1)

Publication Number Publication Date
JPH0695044A true JPH0695044A (en) 1994-04-08

Family

ID=17167850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24773292A Pending JPH0695044A (en) 1992-09-17 1992-09-17 Optical modulator element

Country Status (1)

Country Link
JP (1) JPH0695044A (en)

Similar Documents

Publication Publication Date Title
CN1239930C (en) Electro-optical structure and method for manufacturing the same
US6229159B1 (en) Silicon-based functional matrix substrate and optical integrated oxide device
US5070026A (en) Process of making a ferroelectric electronic component and product
US6385355B1 (en) Optical deflection element
US6307996B1 (en) Optical waveguide device and manufacturing method thereof
US6278138B1 (en) Silicon-based functional matrix substrate and optical integrated oxide device
JPH095797A (en) Optical deflecting element
JPH0543399A (en) Thin film fucntional member
EP1589370A1 (en) Optical deflection device, and manufacturing method thereof
WO2002069382A1 (en) Solid-state device and its manufacturing method
EP0544399A2 (en) Epitaxial magnesium oxide as a buffer layer for formation of subsequent layers on tetrahedral semiconductors
JPH0695044A (en) Optical modulator element
JPH04133035A (en) Single crystal thin film semiconductor device for optical valve substrate
JPS5944004A (en) Substrate for thin-film optical circuit
JPS5930507A (en) Substrate for optical circuit
JP3199091B2 (en) Stack of oriented thin films
JP2000241836A (en) Optical switch and production of optical switch
JPS61217087A (en) Non-linear type resistance element for liquid crystal display unit
JP3513532B2 (en) Optical switching element
JP4506088B2 (en) Manufacturing method of optical element
JP4412796B2 (en) Manufacturing method of optical waveguide element
JP3534971B2 (en) Light control element
JP2003021850A (en) Waveguide type optical control device and its manufacturing method
KR20120133146A (en) Optical image shutter and method of fabricating the same
JP2556206B2 (en) Method for manufacturing dielectric thin film