JPH069477A - Production of naphthaldehyde - Google Patents

Production of naphthaldehyde

Info

Publication number
JPH069477A
JPH069477A JP4184609A JP18460992A JPH069477A JP H069477 A JPH069477 A JP H069477A JP 4184609 A JP4184609 A JP 4184609A JP 18460992 A JP18460992 A JP 18460992A JP H069477 A JPH069477 A JP H069477A
Authority
JP
Japan
Prior art keywords
naphthaldehyde
catalyst
methylnaphthalene
reaction
phase oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4184609A
Other languages
Japanese (ja)
Other versions
JPH0729970B2 (en
Inventor
Masahiro Saito
昌弘 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP4184609A priority Critical patent/JPH0729970B2/en
Publication of JPH069477A publication Critical patent/JPH069477A/en
Publication of JPH0729970B2 publication Critical patent/JPH0729970B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To produce naphthaldehyde in high yield by vapor-phase oxidation reaction of methylnaphthalene. CONSTITUTION:Methylnaphthalene is brought into contact with a catalyst of molybdenum oxide or vanadium oxide carried on magnesium oxide or further containing a potassium compound, together with a gas containing oxygen at 250 to 450 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、メチルナフタレンを原
料として、気相酸化反応によりナフトアルデヒドを選択
的に製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for selectively producing naphthaldehyde by a gas phase oxidation reaction using methylnaphthalene as a raw material.

【0002】[0002]

【従来の技術】コ−クス炉副生タ−ルや石油の高沸点留
分には、多量のメチルナフタレンが含まれている。しか
しながら、メチルナフタレンについては現在のところ利
用価値がないため、その有効利用法の開発が強く望まれ
ている。
2. Description of the Related Art A large amount of methylnaphthalene is contained in a coke oven by-product tar and a high boiling point fraction of petroleum. However, since methylnaphthalene has no utility value at present, development of an effective utilization method thereof is strongly desired.

【0003】また、従来メチルナフタレンの気相酸化技
術に関する報告は非常に少ないが、気相酸化は、液相酸
化に比べて生成物の分離や連続操業が容易であるなどの
利点があるので、気相酸化を用いたメチルナフタレンの
用途開発が可能となれば工業的に非常に有効である。
Further, there have been very few reports on the gas phase oxidation technology of methylnaphthalene, but the gas phase oxidation has advantages such as easy separation of products and continuous operation as compared with liquid phase oxidation. It would be industrially very effective if the application development of methylnaphthalene using gas phase oxidation could be possible.

【0004】メチルナフタレンを原料として気相酸化反
応によりナフトアルデヒドを製造した過去の研究(C.
A.,135736(1974))によれば、ナフトア
ルデヒドの選択率は約35%と低いものであった。
Past studies on the production of naphthaldehyde by gas phase oxidation reaction using methylnaphthalene as a raw material (C.
A. , 135736 (1974)), the selectivity of naphthaldehyde was as low as about 35%.

【0005】本発明はかかる点に鑑みてなされたもので
あり、メチルナフタレンを原料として、気相酸化反応に
より、各種化学製品を合成する際の中間体として重要な
ナフトアルデヒドを選択的に製造することができる方法
を提供するものである。
The present invention has been made in view of the above point, and selectively produces naphthaldehyde, which is important as an intermediate when synthesizing various chemical products, by using methylnaphthalene as a raw material by a gas phase oxidation reaction. It provides a method that can be done.

【0006】[0006]

【発明が解決しようとする課題】メチルナフタレンを気
相酸化することにより、ナフトアルデヒドを高い効率で
製造できる方法を開発することである。
It is an object of the present invention to develop a method for producing naphthaldehyde with high efficiency by subjecting methylnaphthalene to gas phase oxidation.

【0007】[0007]

【課題を解決するための手段】本発明は、メチルナフタ
レンを酸素含有気体と共に、モリブデン酸化物またはバ
ナジウム酸化物を酸化マグネシウムに担持させた触媒と
250℃乃至450℃で接触させることを特徴とするナ
フトアルデヒドの選択的製造法である。
The present invention is characterized in that methylnaphthalene is brought into contact with a catalyst in which molybdenum oxide or vanadium oxide is supported on magnesium oxide at 250 ° C. to 450 ° C. together with an oxygen-containing gas. This is a selective production method of naphthaldehyde.

【0008】本発明にて使用する触媒は、担体として酸
化マグネシウムを使用することに特徴があり、これによ
りナフトアルデヒドを選択的に得ることができる。触媒
成分として他にカリウム化合物を含有させることにより
触媒性能の劣化に対する安定性やナフトアルデヒドの選
択率を向上させることが可能である。
The catalyst used in the present invention is characterized in that magnesium oxide is used as a carrier, whereby naphthaldehyde can be selectively obtained. By including a potassium compound as a catalyst component, it is possible to improve stability against deterioration of catalytic performance and selectivity of naphthaldehyde.

【0009】本発明において触媒成分となるマグネシウ
ム、バナジウム及びモリブデンは、触媒調製後酸化物の
形態となっていれば良く、触媒構成原料には、各金属の
硝酸塩、塩酸塩、有機酸塩等を用いることができる。ま
た、カリウム化合物としては、各種カリウム塩を用いる
ことができるが、とくに硝酸塩が好適である。
Magnesium, vanadium and molybdenum, which are the catalyst components in the present invention, need only be in the form of oxides after catalyst preparation, and the catalyst constituent raw materials include nitrates, hydrochlorides, organic acid salts and the like of each metal. Can be used. As the potassium compound, various potassium salts can be used, but nitrates are particularly preferable.

【0010】触媒の調製は、公知の含浸法、共沈法、沈
殿法等を用いて行うことができる。
The catalyst can be prepared by a known impregnation method, coprecipitation method, precipitation method or the like.

【0011】本発明方法にて原料として用いるメチルナ
フタレンは、特に高純度である必要はなく、コ−クス製
造プロセス中に大量に生じる副生タ−ルや石油の高沸点
成分を利用できる。また、酸化剤としては、酸素を含有
している気体であればよく、通常、空気を用いることが
できる。
The methylnaphthalene used as a raw material in the method of the present invention does not have to have a high purity, and a large amount of by-product tar or a high boiling point component of petroleum produced during the coke production process can be used. The oxidizing agent may be any gas containing oxygen, and air can be usually used.

【0012】本発明のナフトアルデヒドの製造方法は、
流動床・固定床のいずれの方式でも行うことができる。
また、触媒の粒子径、形状は反応器の形式に応じて任意
に選択し得る。
The method for producing naphthaldehyde of the present invention comprises:
Either a fluidized bed or a fixed bed can be used.
The particle size and shape of the catalyst can be arbitrarily selected according to the type of reactor.

【0013】本発明方法における反応温度としては 2
50℃〜450℃の範囲が好ましい。反応温度が250
℃未満の場合は充分な転化率が得られず、450℃を越
えるとCOやCO2 等の分解ガスの発生量が多くなるか
らである。
The reaction temperature in the method of the present invention is 2
The range of 50 ° C to 450 ° C is preferable. Reaction temperature is 250
This is because if the temperature is lower than 0 ° C, a sufficient conversion cannot be obtained, and if the temperature exceeds 450 ° C, the amount of decomposition gas such as CO and CO 2 is increased.

【0014】[0014]

【実施例】以下、本発明を実施例によりさらに詳細に説
明する。
EXAMPLES The present invention will now be described in more detail with reference to examples.

【0015】実施例1 粉末状酸化マグネシウムに、メタバナジン酸アンモニウ
ムを溶解させた水溶液を混合し、これを充分攪拌した。
これを乾燥器で乾燥し、水を充分に除去した後、450
℃にて空気中で3時間焼成した。得られた触媒の組成は
255wt%、MgO残余となるようにした。
Example 1 Powdered magnesium oxide was mixed with an aqueous solution in which ammonium metavanadate was dissolved, and this was thoroughly stirred.
This is dried in a drier to remove water sufficiently, and then 450
It was calcined in air at ℃ for 3 hours. The composition of the obtained catalyst was such that V 2 O 5 was 5 wt% and the balance was MgO.

【0016】次に、20〜40メッシュに粒度調製した
触媒6gをステンレス製反応管に充填し、2−メチルナ
フタレン:空気:水:He=1:12:16:5(モル
比)の混合ガスを流量152Nml/minで400℃
の温度で接触させた。このようにして得られた反応液及
びガスを逐次採取し、主としてガスクロマトグラフを用
いて分析したところ転化率及び2−ナフトアルデヒドの
選択率は下記第1表に記す通りであった。
Next, 6 g of a catalyst having a particle size adjusted to 20 to 40 mesh was charged into a stainless reaction tube, and a mixed gas of 2-methylnaphthalene: air: water: He = 1: 12: 16: 5 (molar ratio). At a flow rate of 152 Nml / min at 400 ° C
Contacted at a temperature of. The reaction liquid and gas thus obtained were sequentially sampled and analyzed mainly by gas chromatography, and the conversion and the selectivity of 2-naphthaldehyde were as shown in Table 1 below.

【0017】[0017]

【表1】 [Table 1]

【0018】実施例2 メタバナジン酸アンモニウムに代えてモリブデン酸アン
モニウムを用いて実施例1と同様の方法で調製した触媒
6gを用いて、実施例1と同じ反応条件で反応を行った
ところ、下記第1表に併記する結果を得た。
Example 2 Using 6 g of the catalyst prepared in the same manner as in Example 1 by using ammonium molybdate in place of ammonium metavanadate, the reaction was carried out under the same reaction conditions as in Example 1, and The results are also shown in Table 1.

【0019】実施例3、4 触媒調製時に硝酸カリウムを加え、実施例1、2と同様
の方法で調製した触媒6gを用いて、実施例1と同じ反
応条件で反応を行ったところ、下記第1表に併記する結
果を得た。
Examples 3 and 4 Potassium nitrate was added during the preparation of the catalyst, and 6 g of the catalyst prepared in the same manner as in Examples 1 and 2 was used to carry out the reaction under the same reaction conditions as in Example 1, and the following first The results also shown in the table were obtained.

【0020】比較例1〜9 酸化マグネシウムに変えて、下記第2表に示す担体を使
用し、メタバナジン酸アンモニウムあるいはモリブデン
酸アンモニウム及び硝酸カリウムを用いて実施例3、4
と同様の方法で調製した触媒6gを用いて実施例1と同
じ反応条件で反応を行ったところ、下記第2表に併記す
る結果を得た。
Comparative Examples 1 to 9 In place of magnesium oxide, the carriers shown in Table 2 below were used, and ammonium metavanadate or ammonium molybdate and potassium nitrate were used in Examples 3, 4
When 6 g of the catalyst prepared by the same method as above was used and the reaction was carried out under the same reaction conditions as in Example 1, the results shown in Table 2 below were also obtained.

【0021】[0021]

【表2】 [Table 2]

【0022】実施例5〜10 触媒中の酸化バナジウム、酸化モリブデン、酸化マグネ
シウム及びカリウムの含有量を変化させ、実施例3、4
と同様の方法で調製した触媒を用いて実施例1と同じ反
応条件で反応を行ったところ、下記第3表に記す結果を
得た。
Examples 5-10 Examples 3 and 4 were carried out by changing the contents of vanadium oxide, molybdenum oxide, magnesium oxide and potassium in the catalyst.
When a reaction was performed under the same reaction conditions as in Example 1 using a catalyst prepared by the same method as in Example 1, the results shown in Table 3 below were obtained.

【0023】[0023]

【表3】 [Table 3]

【0024】実施例11 実施例4と同様にして調製したMoO3(10)・K2
(10)・MgO(80)触媒25gを反応管に充填
し、2−メチルナフタレン:空気:水:He=1:4
0:4:62(モル比)の混合ガスを流量504Nml
/minで340℃の温度で接触させた。その結果、転
化率は22.1%、2−ナフトアルデヒド選択率は7
8.4%であった。
Example 11 MoO 3 (10) · K 2 O prepared in the same manner as in Example 4
(10) 25 g of MgO (80) catalyst was charged into a reaction tube, and 2-methylnaphthalene: air: water: He = 1: 4.
A mixed gas of 0: 4: 62 (molar ratio) with a flow rate of 504 Nml
/ Min at a temperature of 340 ° C. As a result, the conversion rate was 22.1% and the 2-naphthaldehyde selectivity was 7
It was 8.4%.

【0025】実施例12 実施例11で用いた触媒と同じ触媒50gを反応管に充
填し、2−メチルナフタレン:空気:水:He=1:8
0:0:133(モル比)の混合ガスを流量254Nm
l/minで340℃ の温度で接触させた。その結
果、転化率は37.4%、2−ナフトアルデヒド選択率
は73.3%であった。
Example 12 A reaction tube was charged with 50 g of the same catalyst as used in Example 11, and 2-methylnaphthalene: air: water: He = 1: 8.
The flow rate of the mixed gas of 0: 0: 133 (molar ratio) is 254 Nm.
Contact was performed at a temperature of 340 ° C. at 1 / min. As a result, the conversion was 37.4% and the 2-naphthaldehyde selectivity was 73.3%.

【0026】実施例13 実施例11で用いた触媒と同じ触媒50gを反応管に充
填し、1−メチルナフタレン:空気:水:He=1:8
0:0:133(モル比)の混合ガスを流量254Nm
l/minで340℃ の温度で接触させた。その結
果、転化率は47.2%、1−ナフトアルデヒド選択率
は71.1%であった。
Example 13 A reaction tube was charged with 50 g of the same catalyst as used in Example 11, and 1-methylnaphthalene: air: water: He = 1: 8.
The flow rate of the mixed gas of 0: 0: 133 (molar ratio) is 254 Nm.
Contact was performed at a temperature of 340 ° C. at 1 / min. As a result, the conversion rate was 47.2% and the 1-naphthaldehyde selectivity was 71.1%.

【0027】[0027]

【発明の効果】以上、説明した如く、本発明に係るナフ
トアルデヒドの製造方法によれば、メチルナフタレンを
原料として気相酸化反応によりナフトアルデヒドを高い
選択率で容易に得ることができるものである。
As described above, according to the method for producing naphthaldehyde of the present invention, naphthaldehyde can be easily obtained with a high selectivity by the gas phase oxidation reaction using methylnaphthalene as a raw material. .

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 メチルナフタレンを酸素含有気体と共
に、モリブデン酸化物またはバナジウム酸化物を酸化マ
グネシウムに担持させた触媒と250℃乃至450℃で
接触させることを特徴とするナフトアルデヒドの製造方
法。
1. A method for producing naphthaldehyde, which comprises contacting methylnaphthalene together with an oxygen-containing gas with a catalyst in which molybdenum oxide or vanadium oxide is supported on magnesium oxide at 250 ° C. to 450 ° C.
【請求項2】 触媒が、カリウム化合物を含んでいるも
のである請求項第1項記載のナフトアルデヒドの製造方
法。
2. The method for producing naphthaldehyde according to claim 1, wherein the catalyst contains a potassium compound.
JP4184609A 1992-06-18 1992-06-18 Method for producing naphthaldehyde Expired - Lifetime JPH0729970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4184609A JPH0729970B2 (en) 1992-06-18 1992-06-18 Method for producing naphthaldehyde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4184609A JPH0729970B2 (en) 1992-06-18 1992-06-18 Method for producing naphthaldehyde

Publications (2)

Publication Number Publication Date
JPH069477A true JPH069477A (en) 1994-01-18
JPH0729970B2 JPH0729970B2 (en) 1995-04-05

Family

ID=16156219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4184609A Expired - Lifetime JPH0729970B2 (en) 1992-06-18 1992-06-18 Method for producing naphthaldehyde

Country Status (1)

Country Link
JP (1) JPH0729970B2 (en)

Also Published As

Publication number Publication date
JPH0729970B2 (en) 1995-04-05

Similar Documents

Publication Publication Date Title
CA1046044A (en) Catalyst for use in and process for preparing acrylonitrile
JPS6115849A (en) Oxydehydrogenation of ethane to ethylene
JP2008069156A (en) Method for producing aromatic or heteroaromatic nitrile, and supported catalyst for use in the method
JPH0149542B2 (en)
US4306090A (en) Catalyst compositions and their use for the preparation of methacrolein
US4374758A (en) Preparation of stable tellurium-containing solution from metallic tellurium and process for producing tellurium-antimony containing oxide catalyst using said solution
JPS5827255B2 (en) Method for producing unsaturated fatty acids
CN107073455B (en) Improved selective ammonia oxidation catalyst
US4620035A (en) Production of acrylic acid by oxidation of acrolein
US4245118A (en) Oxidation of unsaturated aldehydes
WO2003097233A1 (en) Method for preparing a catalyst for partial oxidation of propylene
JPS5820944B2 (en) Production method of acrolein by propylene oxidation
CN112867560A (en) Catalyst for alkane oxidative dehydrogenation and/or alkene oxidation
JPH03137937A (en) Preparation of catalyst for preparing methacrylic acid
US3804778A (en) Fluorination catalyst and process
KR100636570B1 (en) Process for producing alcohol and/or ketone
JPH10128112A (en) Catalyst for vapor phase contact oxidation reaction of isobutane and its preparation
JPH069477A (en) Production of naphthaldehyde
EP0180997B1 (en) Process for the preparation of catalyst used in the production of unsaturated carboxylic acids
JP2614089B2 (en) Acrolein production method
JPS5896041A (en) Preparation of methacrylic acid
JPH0615178A (en) Preparation of catalyst for production of methacrylic acid
JP2814321B2 (en) Method for producing methacrylic acid
JPH069485A (en) Production of 2-methyl-1,4-naphthaquinone
US3660480A (en) Catalyst for the oxidation of olefins to unsaturated aldehydes and unsaturated acids

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term