JPH0694380B2 - Silica thermal insulation and method for producing the same - Google Patents

Silica thermal insulation and method for producing the same

Info

Publication number
JPH0694380B2
JPH0694380B2 JP5902492A JP5902492A JPH0694380B2 JP H0694380 B2 JPH0694380 B2 JP H0694380B2 JP 5902492 A JP5902492 A JP 5902492A JP 5902492 A JP5902492 A JP 5902492A JP H0694380 B2 JPH0694380 B2 JP H0694380B2
Authority
JP
Japan
Prior art keywords
heat
silica
silica glass
porous body
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5902492A
Other languages
Japanese (ja)
Other versions
JPH06135741A (en
Inventor
博至 木村
信一 大越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP5902492A priority Critical patent/JPH0694380B2/en
Publication of JPH06135741A publication Critical patent/JPH06135741A/en
Publication of JPH0694380B2 publication Critical patent/JPH0694380B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/20Uniting glass pieces by fusing without substantial reshaping
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シリカ保温断熱体に関
し、例えば、シリコンウエ−ハを炉芯管内で熱処理する
ためのウエ−ハ支持ボ−トを載置する保温筒や大型の炉
構造材のような耐熱強度と断熱性及び耐高温汚染性が要
求されるシリカ保温断熱体及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat insulating and heat insulating material for silica, for example, a heat insulating cylinder for mounting a wafer supporting boat for heat treating a silicon wafer in a furnace core tube or a large furnace structure. TECHNICAL FIELD The present invention relates to a silica heat-insulating heat insulator, which is required to have heat resistance strength, heat insulation properties, and high temperature pollution resistance, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】例えば、半導体工業において使用される
縦型熱処理装置は、多数のウエ−ハを並列状に積載した
ボ−トを保温筒に載せ、炉芯管内において400℃〜1200
℃の高温度範囲に加熱し、特定の反応性ガスや不活性ガ
スを流して半導体ウエ−ハの表面域に酸化、拡散,気相
成長又はアニ−ル等の各種の熱処理が行われる。その処
理において使用される保温断熱体としての保温筒は、上
記のような極めて高い温度に耐える耐熱性と炉芯管の下
部開口端に配置される密閉用Oリングやその他のシ−ル
部分に熱を伝えない断熱性及び炉内温度を均一に保つ保
温性や反応ガスに影響されない化学安定性が要求され
る。
2. Description of the Related Art For example, in a vertical heat treatment apparatus used in the semiconductor industry, a boat in which a large number of wafers are loaded in parallel is placed on a heat insulating cylinder, and 400 ° C. to 1200 ° C. in a furnace core tube.
Various heat treatments such as oxidation, diffusion, vapor phase growth or annealing are performed on the surface area of the semiconductor wafer by heating to a high temperature range of ° C and flowing a specific reactive gas or inert gas. The heat-retaining cylinder as a heat-retaining heat insulator used in the treatment has heat resistance to withstand extremely high temperatures as described above, and a sealing O-ring or other seal portion arranged at the lower open end of the furnace core tube. Thermal insulation that does not transfer heat, heat retention that keeps the temperature inside the furnace uniform, and chemical stability that is not affected by the reaction gas are required.

【0003】これらの要求に沿った保温断熱材として、
耐熱性が高く、しかも高純度で化学的安定性の優れた石
英ガラス製の円筒状容器内に石英ガラス繊維ウ−ルを断
熱材に詰め且つその容器内を減圧密封したものが用いら
れた。しかし、石英ガラス製の減圧容器の作製はその加
工が極めて厄介で、製作中に外圧やクラッキングによっ
て内部破壊を起こし爆発の原因となるので、その作製は
極めて困難である。
As a heat insulation material meeting these requirements,
A quartz glass cylindrical container having high heat resistance, high purity and excellent chemical stability was filled with a quartz glass fiber wool as a heat insulating material and the container was vacuum-sealed. However, it is extremely difficult to fabricate a vacuum vessel made of quartz glass, and it is extremely difficult to fabricate it because it causes an internal breakdown due to external pressure or cracking during the fabrication and causes an explosion.

【0004】また、かかるガラスウ−ル封入減圧保温筒
は、内部が減圧状態の空洞であるため強度が小さく、特
に、処理ウエ−ハ数を多くしたり、あるいはウエ−ハの
大型化に伴うウエ−ハボ−トの大荷重に耐える物理的強
度が不足して保温筒自体が熱変形したり破壊するなどの
事故が多発したため高温における機械的強度の大幅な向
上が要求された。
In addition, such a glass-wool-filled depressurized heat insulating cylinder has a low strength because the inside is a cavity in a depressurized state. -Since there were frequent accidents such as thermal deformation and breakage of the heat insulation cylinder itself due to lack of physical strength to withstand the heavy load of the hubot, significant improvement in mechanical strength at high temperature was required.

【0005】更に、繰返しの熱処理使用において、保温
筒表面に付着した反応ガス処理生成物から、コントロ−
ルされない反応ガスの再発生や望ましくない付着物の飛
散によるダストの発生があるため、酸によるエッチング
洗浄を頻繁に行って付着物を除去する必要がある。この
エッチングにより保温筒表面にピンホ−ルが発生し、そ
のため減圧状態の保温筒内部にエッチング薬液が侵入
し、後の熱処理工程においてその薬液が気化して爆発す
る事故も多く、重大な問題となっている。
Further, in repeated use of heat treatment, the reaction gas treated product adhering to the surface of the heat insulating cylinder is used to control the reaction gas.
Since unreacted reaction gas is regenerated and dust is generated due to unwanted scattering of deposits, it is necessary to frequently perform etching cleaning with an acid to remove deposits. Due to this etching, pinholes are generated on the surface of the heat insulating cylinder, so that the etching chemical enters the inside of the heat insulating cylinder in a depressurized state, and there are many accidents where the chemical is vaporized and explodes in the subsequent heat treatment step, which is a serious problem. ing.

【0006】かかる実情に鑑み、本発明者らは、分割さ
れた複数の小円筒体を組合せて強度を高めた石英ガラス
保温筒や、その小円筒体を多数の微小空間を有する塑性
体とそれを囲繞する透明ガラス被膜で構成させることに
より補強する方法を見出し、先に提案した(特開平64-4
7020号)。この補強法は確かに強度を向上させるが、分
割された多数の小円筒体の製造が厄介で工業的に不利で
あり、また塑性体を囲繞する充分な厚みのガラス被膜層
を作ることが極めて困難で、使用中にガラス被膜が破損
して塑性体が露出するという不都合があった。
In view of such circumstances, the inventors of the present invention have made a quartz glass heat-insulating cylinder in which a plurality of divided small cylinders are combined to enhance the strength, and the small cylinder is a plastic body having a large number of minute spaces and the same. We have found a method of reinforcement by constructing a transparent glass film surrounding the
7020). Although this reinforcing method certainly improves the strength, it is industrially disadvantageous to manufacture a large number of divided small cylinders, and it is extremely difficult to form a glass coating layer of sufficient thickness to surround the plastic body. It is difficult, and the glass coating is damaged during use, exposing the plastic body.

【0007】一方、前記半導体工業における熱処理に使
用される縦型炉や処理物に特定の元素をド−プするよう
な反応拡散処理炉においては、その処理において炉材か
らの不特定の不純物の侵入を嫌うため、炉壁材や炉の構
造材となる煉瓦やヒ−タ−ホルダ−の様な保温断熱及び
耐熱材には、高い純度と構造体としての強度が要求され
る。
On the other hand, in a vertical furnace used for heat treatment in the semiconductor industry or in a reaction diffusion treatment furnace for doping a specific element into a processed material, unspecified impurities from the furnace material are removed during the processing. In order to avoid invasion, high heat insulation and heat resistant materials such as bricks and heater holders, which are used as furnace wall materials and furnace structural materials, are required to have high purity and structural strength.

【0008】従来、これらの保温断熱材は、アルミナや
ジルコニアあるいは炭化珪素を主体とする焼結多孔質体
煉瓦又はボ−ドが使用されるが、これらはそれ自体が金
属酸化物であって不純物を多量に含有し、しかも多孔質
部分からの塵埃の発生や通過があるため、前記のような
各種要求を満たす処理には不適切であり、実質的に使用
し得ない。
Conventionally, as these heat insulation materials, sintered porous bricks or boards mainly composed of alumina, zirconia or silicon carbide have been used, but these are metal oxides themselves and are impurities. Is contained in a large amount, and dust is generated and passes from the porous portion, so that it is unsuitable for the treatment satisfying the various requirements as described above and cannot be practically used.

【0009】また、一般に炉材に使用される保温断熱材
は、加熱エネルギ−の省力及び熱処理工程の効率化の観
点から、使用炉における昇温及び降温には優れた温度追
随性と高い断熱性が要求されるが、温度追随性や断熱性
を向上させるには、保温断熱材の密度を小さくし、熱伝
導面積と熱容量を小さくする必要があり、従来のアルミ
ナ等の素材を使用した保温断熱体では、密度を小さくす
ると強度が不足し、大型の炉では、熱容量が大きく昇
温、降温に時間がかかり、しかも降温に多大なエネルギ
−を必要とするので非効率的であり、採用し難い。
Further, the heat insulating heat insulating material generally used for the furnace material has an excellent temperature followability and a high heat insulating property for the temperature rise and temperature decrease in the furnace to be used, from the viewpoint of saving the heating energy and improving the efficiency of the heat treatment process. However, in order to improve temperature followability and heat insulation, it is necessary to reduce the density of the heat insulating heat insulating material and reduce the heat conduction area and heat capacity. In the body, if the density is reduced, the strength becomes insufficient, and in a large furnace, the heat capacity is large and it takes time to raise and lower the temperature, and moreover, a large amount of energy is required for the lowering of the temperature, which is inefficient and difficult to adopt. .

【0010】[0010]

【発明が解決しようとする課題】従って、本発明の課題
は、優れた構造材としての強度及び不純物塵埃の遮断性
と自ら不純物を発散しない化学的安定性とを兼ね備え、
且つ密度が小さく保温,断熱性に優れた操作性の良好な
部材を提供することにある。また、他の技術的課題は、
そのような保温断熱材を工業的に有利に、且つ効果的に
製造する方法を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to have both excellent strength as a structural material, an ability to block impurity dust, and a chemical stability that does not diffuse impurities by itself.
Another object of the present invention is to provide a member having a small density, excellent heat retention, and excellent heat insulation and good operability. In addition, other technical issues
An object of the present invention is to provide a method for industrially producing such a heat insulating material in an advantageous and effective manner.

【0011】[0011]

【課題を解決するための手段】本発明者らは、上記課題
に関して種々の製造研究を重ね、実用的に極めて有利な
保温断熱体及びその製造方法を見出した。すなわち、本
発明は、前記特許請求の範囲に記載の要件から成るシリ
カ保温断熱体及びその効果的製造方法を要旨とするもの
である。
Means for Solving the Problems The inventors of the present invention have conducted various manufacturing researches on the above-mentioned problems and found a heat insulating heat insulator and a manufacturing method thereof which are extremely advantageous in practical use. That is, the gist of the present invention is a silica heat insulating heat insulating material and an effective manufacturing method thereof which satisfy the requirements described in the claims.

【0012】しかして本発明に係るシリカ保温断熱体
は、特に、見掛け密度範囲が0.1〜1.6g/cm3の高純度
シリカガラス多孔質体の全表面に高純度シリカガラス板
状焼結体及び/又は硬質シリカガラス板状体を一体に形
成させた構造に技術的特徴が有る。またその多孔質体
は、好ましくは、70%以下の連通気孔率、換言すれば、
全気孔に基づいて30%以上の独立気泡を含有する3次元
的強度を有するものであって、例えば、1700℃の高温に
も充分に耐えることができる耐熱形状安定性を有する炉
構造材として使用し得る極めて望ましいものである。
The silica heat insulating and heat insulating material according to the present invention, in particular, has a high-purity silica glass plate-shaped sintered body and a high-purity silica glass plate-shaped sintered material on the entire surface of the high-purity silica glass porous material having an apparent density range of 0.1 to 1.6 g / cm 3. The technical feature lies in the structure in which the hard silica glass plate is integrally formed. Further, the porous body is preferably 70% or less open pore rate, in other words,
It has a three-dimensional strength that contains 30% or more closed cells based on all pores, and is used as a furnace structural material with heat-resistant shape stability that can withstand a high temperature of 1700 ° C, for example. Is very desirable.

【0013】上記多孔質体の見掛け密度が0.1g/cm3
り小さいと、連通気泡の含有割合と関連するが、通常、
炉構造材として要求される機械的強度や耐熱形状安定性
が不足し、また、1.6g/cm3を超えると保温断熱性が低
下するので好ましくない。好ましい多孔質体の密度は、
0.2〜1.0g/cm3の範囲である。
When the apparent density of the porous body is less than 0.1 g / cm 3 , it is related to the content ratio of communicating cells, but it is usually
It is not preferable because the mechanical strength and heat-resistant shape stability required for the furnace structural material are insufficient, and when it exceeds 1.6 g / cm 3 , the heat insulating and heat insulating property is deteriorated. The preferable density of the porous body is
It is in the range of 0.2 to 1.0 g / cm 3 .

【0014】更に、シリカ多孔質体を構成するシリカガ
ラス中に含有される金属不純物は、半導体等の熱処理に
おいては可及的少量であることが望ましいが、半導体等
の加熱処理においては、金属不純物の含有量が100ppmを
超えるとウエ−ハへの汚染の悪影響が実質的に回避でき
ないので、不純物金属の合計量は100ppm以下であること
が重要である。
Further, it is desirable that the metal impurities contained in the silica glass constituting the porous silica material be as small as possible in the heat treatment of semiconductors and the like, but in the heat treatment of semiconductors and the like, the metal impurities are When the content of Al exceeds 100 ppm, the adverse effect of contamination on the wafer cannot be substantially avoided. Therefore, it is important that the total amount of impurity metals is 100 ppm or less.

【0015】保温断熱材は、通常、昇温と冷却が繰り返
し行われる。そのような条件においては、ガラス内に含
まれる金属不純物は結晶核となって多孔質体やこれを包
んでいる硬質シリカガラス体の結晶化を促進し、形成さ
れた結晶化ガラス質部分と非結晶化ガラス質部分との間
に温度変化に基づく膨張,収縮差によるクラックが発生
してガラス体の強度を低下させ、その結果、保温断熱材
の寿命が短縮されるのでガラス素材としてはできるだけ
金属不純物を含まないものが望ましい。
The heat insulating heat insulating material is usually repeatedly heated and cooled. Under such conditions, the metal impurities contained in the glass act as crystal nuclei to promote crystallization of the porous body and the hard silica glass body enclosing the porous body, and the formed crystallized vitreous portion is not Cracks due to the difference in expansion and contraction due to temperature changes with the crystallized vitreous part will reduce the strength of the glass body, and as a result, the life of the heat insulation material will be shortened. Those that do not contain impurities are desirable.

【0016】そのような不純物金属としては、例えば、
セリウム,ナトリウム,カリウム,アルミニウム,カル
シウム,ニッケル及び鉄等が代表的に挙げられる。これ
ら金属類は、いずれもガラスの結晶化を促進するので不
都合であり、特にシリカガラス中の移動の早いアルカリ
金属類はシリカガラスの結晶化作用が顕著なため、その
含有量は可及的少量が望ましい。
As such an impurity metal, for example,
Representative examples include cerium, sodium, potassium, aluminum, calcium, nickel and iron. All of these metals are disadvantageous because they accelerate the crystallization of the glass. In particular, the fast-moving alkali metals in silica glass have a remarkable crystallization effect on silica glass, so their content is as small as possible. Is desirable.

【0017】また、シリカ多孔質体を構成するシリカガ
ラスは、その中に含まれるOH基の量が多いほど耐熱温
度が低くなる。例えば、OH基含有量が300ppmより多い
シリカガラスは、1000℃以上の使用温度領域では形状安
定性が得られず、特に、積載物の重みや自重によって容
易に熱変形するので使用温度が著しく制限され、高温用
炉材としては使用できない。従って、高温保温断熱炉材
として使用するには、シリカガラス中に含有されるOH
基の含有量は、300ppm以下であることが実用上重要であ
る。望ましい含有量は200ppm以下である。
The silica glass constituting the silica porous body has a lower heat resistant temperature as the amount of OH groups contained therein increases. For example, silica glass with an OH group content of more than 300 ppm does not provide shape stability in the operating temperature range of 1000 ° C or higher, and in particular, it is easily thermally deformed due to the weight of the load or its own weight, so the operating temperature is extremely limited. Therefore, it cannot be used as a high temperature furnace material. Therefore, in order to use it as a high temperature heat insulation furnace material, OH contained in silica glass is used.
It is practically important that the content of the group is 300 ppm or less. A desirable content is 200 ppm or less.

【0018】更に、シリカ多孔質体は、連通気泡の含有
量が少ない方が好ましく、形成されるシリカ保温断熱体
の機械的強度を考慮するならば、その全気孔容積に占め
る連通気孔の含有率、すなわち連通気孔率は70%以下で
あることが望ましい。この連通気孔率は、例えば、部材
の見掛け密度と部材を構成するシリカ質ガラス自体の密
度の測定及び元の多孔性である部材を液体に浸漬して得
られる重量増加によって算出される連通気孔の体積から
容易に求められる。
Further, it is preferable that the content of communicating cells in the porous silica material is small, and if the mechanical strength of the silica thermal insulation body to be formed is taken into consideration, the content rate of the communicating pores in the total pore volume thereof is considered. That is, it is desirable that the open pore ratio is 70% or less. This open pore ratio is, for example, the open density of the open pores calculated by measuring the apparent density of the member and the density of the silica glass itself constituting the member and increasing the weight obtained by immersing the original porous member in a liquid. Easily calculated from the volume.

【0019】本発明の保温断熱体に用いられる板状シリ
カガラス焼結体及び硬質シリカガラス板状体は、多孔質
体の補強と多孔質体表面から発生する微細な破片や露出
気孔からのダストの飛散を防止する炉内における汚染防
止用被覆殻層であって、多孔質体と同様に高純度のシリ
カガラスが用いられる。このシリカガラスの板状殻体の
厚さは、温度追随性を考慮すれば、あまり薄くても厚く
ても好ましくなく、例えば、1〜10mm程度が好ましく採
用される。また、その被覆殻層は、工業的に所望される
性能を考慮すれば、板状焼結体が好ましい。
The plate-like silica glass sintered body and the hard silica glass plate-like body used for the heat insulating and heat insulating material of the present invention include reinforcing the porous body and fine fragments generated from the surface of the porous body and dust from exposed pores. It is a coating shell layer for preventing pollution in the furnace for preventing the scattering of the, and high-purity silica glass is used like the porous body. The thickness of the plate-like shell of silica glass is not preferably too thin or too thick in consideration of temperature followability, and for example, about 1 to 10 mm is preferably adopted. Further, the coated shell layer is preferably a plate-shaped sintered body in consideration of industrially desired performance.

【0020】次に、本発明のシリカ保温断熱体の製造方
法について説明する。本発明の断熱体の製造に用いられ
るシリカガラス多孔質体は、通常知られた各種のシリカ
ガラス発泡体の製造法によって製造することができる。
例えば、ガラスの溶融温度条件下にガス化する物質をシ
リカ多孔質体に含浸させたり、あるいはシリカ粉体に混
合してガラスを加熱溶融することにより独立気泡を多く
含むシリカガラス多孔質体が容易に得られる。その場
合、金属不純物含有量が100ppm以下でOH基の含有量が
300ppm以下のシリカガラス材料が使用され、また金属不
純物を導入する恐れのない発泡ガス化物質が使用され
る。
Next, a method for manufacturing the silica heat insulating and heat insulating material of the present invention will be described. The silica glass porous body used for producing the heat insulating body of the present invention can be produced by various commonly known methods for producing silica glass foam.
For example, a silica glass porous body containing many closed cells can be easily prepared by impregnating a silica porous body with a substance that gasifies under the melting temperature condition of glass or by mixing with silica powder and heating and melting the glass. Can be obtained. In that case, if the metal impurity content is 100 ppm or less and the OH group content is
A silica glass material of 300 ppm or less is used, and a foaming gasifying substance that does not introduce metal impurities is used.

【0021】また、本発明に係る多孔質体は、保温断熱
体として高温において充分な強度を有することが重要で
あり、これに関連して、シリカガラスの発泡を見掛け密
度が0.1〜1.6g/cm3の範囲になるように、且つその多
孔質体の連通気泡が70%以下となるようにコントロ−ル
すること重要である。かかるコントロ−ルは、発泡条
件、通常、特にガス化物質の種類,その含有量,それら
の混合分散状態及び加熱温度条件を選択することによっ
て行うことができる。その選択条件は、当業者が簡単な
実験によって容易に決定することができ、また、特開平
1-308846号公報に記載された石英ガラス発泡体の製造法
を利用することができる。
Further, it is important that the porous body according to the present invention has sufficient strength as a heat insulating body at a high temperature, and in this connection, the apparent density of silica glass foaming is 0.1 to 1.6 g / It is important to control so as to be in the range of cm 3 and the open cells of the porous body be 70% or less. Such control can be carried out by selecting the foaming conditions, usually the type of gasifying substance, its content, their mixed dispersion state and heating temperature condition. The selection conditions can be easily determined by those skilled in the art by simple experiments.
The method for producing a quartz glass foam described in JP-A 1-308846 can be used.

【0022】このようにして形成されたシリカガラス多
孔質体は、使用対象あるいは使用目的等により、通常、
ダイヤ砥石やガラス刃により、例えば、立方体,直方
体,円筒体等の各種の所望の形状に加工され、次いで、
カ−ボン製の耐熱性成形型容器内において、その多孔質
体の全表面に硬質シリカガラス板状体及び/又は板状シ
リカガラス焼結体を溶融一体化し、それら板体を被覆殻
体とする保温断熱体に形成される。
The silica glass porous body formed in this manner usually has a porous structure depending on the purpose of use or the purpose of use.
With a diamond grindstone or glass blade, for example, it is processed into various desired shapes such as a cube, a rectangular parallelepiped, a cylinder, and the like.
In a heat-resistant mold container made of carbon, a hard silica glass plate-like body and / or a plate-like silica glass sintered body is melt-integrated on the entire surface of the porous body, and these plate bodies are used as a covering shell body. It is formed into a heat insulation body.

【0023】その硬質シリカガラス板状体及び/又は板
状シリカガラス焼結体の多孔質体への溶融一体化におい
ては、高純度のシリカガラス粉体を成形用耐熱性型容器
内に入れ、その粉体中に上記所望形状のシリカ多孔質体
をほゞ中部に埋設して1400〜1800℃の範囲内の温度に加
熱することにより、該多孔質体の全表面に板状シリカガ
ラス焼結体を一体化被覆殻体に形成させることができ
る。
In melting and integrating the hard silica glass plate and / or the plate silica glass sintered body into the porous body, high-purity silica glass powder is put in a heat-resistant mold container for molding. By embedding the silica porous body of the desired shape in the powder in the middle part and heating it to a temperature in the range of 1400 to 1800 ° C., a plate-shaped silica glass sintered on the entire surface of the porous body. The body can be formed into a monolithic coated shell.

【0024】そのような板状シリカガラス焼結体の形成
に用いられるシリカガラス粉末は、ゾル・ゲル法又は気
相合成法によって製造した合成石英ガラスを粉砕して調
製され、所望の板状焼結体の形成に応じて適度の粒度範
囲のものが選択使用される。その粉末の粒度に関しては
特に制限はないが、例えば、50〜500μm程度に粉砕調
整されたものが実用上好適に使用される。
The silica glass powder used for forming such a plate-shaped silica glass sintered body is prepared by crushing synthetic quartz glass produced by a sol-gel method or a vapor phase synthesis method, and a desired plate-shaped firing is performed. Those having an appropriate particle size range are selected and used according to the formation of the aggregate. The particle size of the powder is not particularly limited, but, for example, a powder pulverized and adjusted to about 50 to 500 μm is preferably used in practice.

【0025】また、該多孔質体の周側面や上下面あるい
は全面に硬質シリカガラス板状体を当接して上記耐熱性
成形容器中に入れ、その際、該多孔質体と耐熱性成形容
器内面とが直接接触する部分には少なくともシリカガラ
ス粉体層を介在させ、炉内において1400〜1800℃の範囲
内に加熱することにより多孔質体の表面に一体化された
ガラス殻体が形成される。その際、シリカガラス粉体を
上記硬質シリカガラス板状体と多孔質体の接合面に適用
して融着剤として使用することもできる。
Further, a hard silica glass plate is brought into contact with the peripheral side surface, the upper and lower surfaces or the whole surface of the porous body and placed in the heat resistant molding container, at that time, the porous body and the inner surface of the heat resistant molding container. At least a silica glass powder layer is interposed in the portion that directly contacts with, and the glass shell body integrated with the surface of the porous body is formed by heating within a range of 1400 to 1800 ° C in a furnace. . At that time, silica glass powder can be applied to the joint surface between the hard silica glass plate and the porous body to be used as a fusion agent.

【0026】次に、本発明のシリカ保温断熱体の製造を
添付図面により具体的に説明する。図1は、シリカガラ
ス多孔質体の表面に硬質シリカガラス板状焼結体被覆層
を形成させる状態の一例を示す電気炉内の模式的断面図
である。図2は、本発明に係る円柱状保温断熱体の保温
筒の一例の部分切欠斜視図である。また、図3は、図2
と異なる直方体状保温筒の一例の部分切欠斜視図であ
る。
Next, the production of the silica heat insulating and heat insulating material of the present invention will be specifically described with reference to the accompanying drawings. FIG. 1 is a schematic cross-sectional view in an electric furnace showing an example of a state in which a hard silica glass plate-like sintered body coating layer is formed on the surface of a porous silica glass body. FIG. 2 is a partially cutaway perspective view of an example of a heat retaining cylinder of the cylindrical heat retaining heat insulator according to the present invention. In addition, FIG.
FIG. 6 is a partially cutaway perspective view of an example of a rectangular parallelepiped heat retaining tube.

【0027】図1において、カ−ボン製の有底円筒状の
耐熱性成形用容器型1内に適量のシリカ粉体2を敷き詰
め、その上に円柱状多孔質体3を載せ、その多孔質体の
周側面と容器型1の内周壁との間隙にシリカ粉体4を充
填し、更にそのシリカ粉体部と該多孔質体の上面に同じ
シリカ粉体を敷き詰める。次いで、その上に、上記耐熱
性円筒状容器型1の内径より僅かに小さい径のカ−ボン
製の円盤状落とし蓋5を容器型1の内側に挿入,載置す
る。
In FIG. 1, an appropriate amount of silica powder 2 is spread in a bottomed cylindrical heat-resistant molding container mold 1 made of carbon, and a columnar porous body 3 is placed on the silica powder 2 to form a porous structure. Silica powder 4 is filled in the gap between the peripheral side surface of the body and the inner peripheral wall of the container mold 1, and the same silica powder is spread over the silica powder portion and the upper surface of the porous body. Then, a disc-shaped dropping lid 5 made of carbon and having a diameter slightly smaller than the inner diameter of the heat-resistant cylindrical container mold 1 is inserted and placed on the inside of the container mold 1 on the container.

【0028】次に、これを電気炉内の台6の上に置き、
ヒ−タ7により炉内を1400〜1800℃の範囲の温度に加熱
する。温度によって多少異なるが、1〜2時間後に多孔
質体の全表面を覆ったシリカ粉体は焼結して多孔質体と
一体化した被覆殻板体を形成する。この焼結一体化処理
において、落とし蓋5が水平に下降し保持されるよう
に、例えば、耐熱容器型内の適当箇所に該蓋を水平に支
えるスペ−サ(図示せず)を取り付けることが実用的で
ある。
Next, this is placed on the table 6 in the electric furnace,
The heater 7 heats the inside of the furnace to a temperature in the range of 1400 to 1800 ° C. Although slightly different depending on the temperature, the silica powder covering the entire surface of the porous body is sintered after 1 to 2 hours to form a coated shell plate body integrated with the porous body. In this sintering integration process, for example, a spacer (not shown) for horizontally supporting the dropping lid 5 may be attached to an appropriate place in the heat-resistant container mold so that the dropping lid 5 is lowered and held horizontally. It is practical.

【0029】図2のシリカ保温断熱体は、円柱状多孔質
体11の上面に硬質シリカガラス円板12が融着一体化
され、その上面には、小円板状のウエ−ハボ−ト等載置
物受台13が同心的に一体に形成されており、また、そ
の多孔質体11の下側には、同様に硬質シリカガラス円
板14が融着一体化され、更にその多孔質体の管状外周
曲面には、硬質シリカガラス焼結板体15が融着一体化
された構成を有する。このような保温断熱体は、特に、
半導体熱処理炉の保温筒に好適に使用し得るものであ
る。
In the silica heat insulation heat insulator shown in FIG. 2, a hard silica glass disk 12 is fused and integrated on the upper surface of a cylindrical porous body 11, and a small disk-shaped waferbot or the like is formed on the upper surface thereof. The mount table 13 is formed concentrically and integrally, and a hard silica glass disk 14 is similarly fused and integrated under the porous body 11 and the porous body The tubular outer peripheral curved surface has a structure in which a hard silica glass sintered plate body 15 is fused and integrated. Such a heat insulation body, in particular,
It can be suitably used for a heat insulating cylinder of a semiconductor heat treatment furnace.

【0030】また、図3の保温断熱体は、長方形の多孔
質体16の上下,左右及び前後の全表面に硬質シリカガ
ラス焼結殻体17が融着一体化された煉瓦形状のもの
で、構成材が高純度の硬質ガラスで構成される製断熱体
であるから、特に、高温における不純物金属による汚染
が問題となる半導体等の熱処理用炉の炉壁として極めて
望ましい耐熱保温用炉材である。
The heat insulating and heat insulating body of FIG. 3 is of a brick shape in which a hard silica glass sintered shell body 17 is fused and integrated on all surfaces of the rectangular porous body 16 above, below, left and right, and front and rear, Since the constituent material is a heat insulator made of high-purity hard glass, it is a highly heat-resistant and heat-retaining furnace material that is particularly desirable as a furnace wall of a furnace for heat treatment of semiconductors, etc. where contamination with impurity metals at high temperatures poses a problem. .

【0031】[0031]

【作用】本発明の方法によれば、軽量且つ高純度の保温
断熱体が容易且つ安価に提供される。また得られた断熱
体は、耐熱形状安定性に優れ、また高温における機械的
支持強度も優れるので、保温筒その他の各種保温断熱部
材として広い利用性を有する。
According to the method of the present invention, a lightweight and high-purity heat-retaining heat insulator can be provided easily and inexpensively. Further, the obtained heat insulator has excellent heat-resistant shape stability and mechanical support strength at high temperatures, and therefore has wide applicability as a heat insulating cylinder and other various heat insulating heat insulating members.

【0032】[0032]

【実施例】【Example】

実施例 1 OH基を約200ppm含有し、50μm以下の粒径に調製され
たシリカ粉体を内径約250mmの円筒状型に充填し、約140
0℃の温度に約60分間加熱して円柱状の焼結体を作製し
た。次に、この焼結体をアンモニアガス雰囲気中で約80
0℃の温度に加熱して約30分間反応させアンモニア化を
行った。次に、雰囲気のアンモニアガスを除去した後、
減圧条件下に1600℃の温度で5時間加熱してシリカを溶
融し、内部から遊離ガスを発生させてその発泡により多
孔質体を製造した。これをカットして直径200mm,高さ2
00mmの円柱状多孔質体を作成した。
Example 1 Silica powder containing about 200 ppm of OH groups and having a particle size of 50 μm or less was filled in a cylindrical mold having an inner diameter of about 250 mm to give about 140
It was heated to a temperature of 0 ° C. for about 60 minutes to produce a cylindrical sintered body. Next, this sintered body is subjected to about 80
Ammonia was carried out by heating to a temperature of 0 ° C. and reacting for about 30 minutes. Next, after removing the ammonia gas in the atmosphere,
The silica was melted by heating at a temperature of 1600 ° C. for 5 hours under reduced pressure, and free gas was generated from the inside to produce a porous body by the foaming. This is cut to a diameter of 200 mm and a height of 2
A cylindrical porous body of 00 mm was prepared.

【0033】この多孔質体の見掛け密度は、0.4g/cm3
で、含有する連通気泡の全気泡に対する割合は約50%で
あった。また、原子吸光光度法によって、その中に含有
される金属不純物を分析した結果、金属成分としてのナ
トリウム,カリウム,リチウム,カルシウム,鉄,アル
ミニウム,セリウム及びニッケルの量は、いずれもすべ
て0.5ppm未満であった。
The apparent density of this porous body is 0.4 g / cm 3.
The ratio of the contained communicating bubbles to all the bubbles was about 50%. Moreover, as a result of analyzing the metal impurities contained therein by the atomic absorption photometry, the amounts of sodium, potassium, lithium, calcium, iron, aluminum, cerium and nickel as metal components are all less than 0.5 ppm. Met.

【0034】得られた円柱状多孔質体の上下各円形面
に、二枚の直径200mm,厚さ8mmの透明な石英ガラス円
板をそれぞれ当接して、外径260mm,厚さ mmの平滑な
カ−ボン円板上の中央に円柱を立てるように置き、その
外側に、これを内側に収納するように内径250mm,厚さ
5mm,高さ280mmのカ−ボン円筒体を設置して、その上
からゾルゲル法によって得られたシリカガラスを粉砕し
て粒径が600μm以下に調整された合成シリカ粉末をカ−
ボン円板表面から230mmの高さまで充填した。
Two transparent quartz glass disks each having a diameter of 200 mm and a thickness of 8 mm were respectively brought into contact with the upper and lower circular surfaces of the obtained cylindrical porous body to make a smooth surface having an outer diameter of 260 mm and a thickness of mm. A cylinder is placed upright in the center of the carbon disk, and on the outside, a carbon cylinder with an inner diameter of 250 mm, a thickness of 5 mm and a height of 280 mm is installed so that it can be stored inside. The silica glass obtained by the sol-gel method was crushed from above to obtain a synthetic silica powder having a particle size adjusted to 600 μm or less.
It was filled up to a height of 230 mm from the surface of the Bonn disc.

【0035】次に、このカ−ボン円筒容器型内に充填さ
れたシリカガラス粉体の上に、直径248mm,厚さ30mmの
円板状カ−ボン落とし蓋を載せて全体を電気炉内に移
し、該炉内を約0.1torrに減圧した後、1700℃に55分間
加熱してカ−ボン落とし蓋の重さで圧縮しながら溶着一
体化させ、同時に周側面部にシリカガラス粉体を焼結一
体化させた。
Next, a disk-shaped carbon dropping lid having a diameter of 248 mm and a thickness of 30 mm was placed on the silica glass powder filled in this carbon cylindrical container mold, and the whole was placed in an electric furnace. Then, after depressurizing the inside of the furnace to about 0.1 torr, it is heated at 1700 ° C. for 55 minutes to be fused and integrated while being compressed by the weight of the carbon dropping lid, and at the same time, the silica glass powder is baked on the peripheral side surface. I made it united.

【0036】冷却後、一体化物をカ−ボン円筒型から取
り出して外表面をカップ型ダイヤ砥石で研削し、円柱状
外周曲面分に肉厚8mmのシリカガラス焼結体層を、また
上下各円形面に厚さ約7mmのシリカガラス透明板状体層
を有する直径216mm,高さ210mmのシリカ保温断熱体を得
た。
After cooling, the integrated product was taken out from the carbon cylinder type and the outer surface was ground with a cup type diamond grindstone to form a cylindrical glass outer peripheral curved surface with a silica glass sintered body layer having a thickness of 8 mm, and upper and lower circular shapes. A silica thermal insulation body having a diameter of 216 mm and a height of 210 mm having a transparent silica glass plate layer having a thickness of about 7 mm on the surface was obtained.

【0037】得られた保温断熱体について、加熱−冷却
繰返し試験とその際の昇温速度並びに降温速度及び圧縮
強度をテストした。 加熱−冷却繰返し試験:保温断熱体を1200℃の炉中に2
時間保持した後、常温まで放冷し、再び炉内に入れて加
熱する繰返し加熱試験を行った。1200℃の加熱延べ時間
が2000時間を超えてもクラックや結晶化の兆候は認めら
れなかった。
With respect to the obtained heat-insulating heat insulator, heating-cooling repeated test was conducted, and the rate of temperature increase, rate of temperature decrease and compression strength were tested. Repeated heating-cooling test: Heat insulation 2 in a furnace at 1200 ℃
After holding for a period of time, the sample was allowed to cool to room temperature, put in the furnace again, and heated to perform a repeated heating test. No signs of cracking or crystallization were observed even if the heating and rolling time at 1200 ° C exceeded 2000 hours.

【0038】圧縮強度試験:保温断熱体を、毎分1kg
/cm2の割合で圧力を増加させる圧縮強度試験を行った
ところ、その圧力が約120kg/cm2になっても破壊しな
かった。一方、この保温断熱体と同じ形状(直径216m
m,高さ210mmの円柱体)で、その保温断熱体に内包され
た多孔質体と同様の多孔質体について同様の圧縮強度試
験を行った結果、約10kg/cm2で部分破壊した。この試
験により、本発明の保温断熱体が同形状の多孔質体に比
べて約12倍以上高い破壊強度を有することが確認され
た。
Compressive strength test: 1 kg / min of heat insulation
/ It was subjected to compressive strength tests to increase the pressure at a rate of cm 2, and not broken even at the pressure of about 120 kg / cm 2. On the other hand, the same shape as this heat insulation body (diameter 216m
The same compressive strength test was performed on a porous body similar to the porous body contained in the heat insulating and heat insulating body, and as a result, partial destruction was caused at about 10 kg / cm 2 . By this test, it was confirmed that the heat insulating and heat insulating material of the present invention has a breaking strength about 12 times or more higher than that of the porous material having the same shape.

【0039】昇温−降温試験:80リットルの内容積及び
30kVAの加熱能力を有する円筒型電気炉の炉口アルミ
ナ煉瓦と同じ形状の本発明の保温断熱体を炉材として使
用して、電気炉内の温度が1200℃に上昇する時間及び電
源を切って放冷し常温まで温度が下がる時間を調べた。
本発明の上記保温断熱体が昇温に2時間,降温に3時間
を要したのに対し、通常の電気炉構造材として用いられ
ているアルミナ煉瓦を使用した場合には、昇温に3時
間,降温に5時間を要した。その結果、電気炉の消費電
力及び処理サイクルが大幅に改善されることが判った。
Temperature increase-temperature decrease test: internal volume of 80 liters and
Using the heat insulating and heat insulating material of the present invention having the same shape as the furnace opening alumina brick of a cylindrical electric furnace having a heating capacity of 30 kVA as a furnace material, the time during which the temperature in the electric furnace rises to 1200 ° C. and the power is turned off. The time for the temperature to cool to room temperature was investigated.
Whereas the heat insulating heat insulator of the present invention required 2 hours to raise the temperature and 3 hours to lower the temperature, in the case of using the alumina brick used as a normal electric furnace structural material, the temperature rise took 3 hours. , It took 5 hours to cool down. As a result, it was found that the electric power consumption of the electric furnace and the processing cycle were significantly improved.

【0040】[0040]

【発明の効果】本発明の方法に係る保温断熱体は、保温
断熱性及び圧縮強度に優れ、しかも繰返しの温度変化に
対しても極めて安定で長期使用に耐えるから、その工業
的利用価値は著しく高い。
INDUSTRIAL APPLICABILITY The heat insulating and heat insulating material according to the method of the present invention has excellent heat insulating and heat insulating properties and compressive strength, and is extremely stable against repeated temperature changes, and can withstand long-term use. high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のシリカ保温断熱体を製造する状態の一
例を説明するための電気炉内の模式的断面図である。
FIG. 1 is a schematic cross-sectional view of the inside of an electric furnace for explaining an example of a state in which a silica heat insulating heat insulator of the present invention is manufactured.

【図2】本発明に係る円柱状保温断熱体の一例の保温筒
の部分切欠斜視図である。
FIG. 2 is a partially cutaway perspective view of a heat retaining cylinder of an example of a cylindrical heat retaining heat insulator according to the present invention.

【図3】本発明に係る直方体状保温断熱体の一例の部分
切欠斜視図である。
FIG. 3 is a partially cutaway perspective view of an example of a rectangular parallelepiped heat insulating heat insulator according to the present invention.

【符号の説明】[Explanation of symbols]

1 耐熱性成形用容器型 11 円柱状多孔質体 2,4 シリカ粉体 12 上側硬質シリカ
ガラス円板 3 円柱状多孔質体 13 載置物受台 5 円盤状落とし蓋 14 下側硬質シリカ
ガラス円板 6 台 15 硬質シリカガラ
ス焼結板体 7 ヒ−タ 16 長方形の多孔質
体 17 硬質シリカガラス焼結殻体
1 Heat-Resistant Molding Container Type 11 Cylindrical Porous Body 2,4 Silica Powder 12 Upper Hard Silica Glass Disc 3 Cylindrical Porous Body 13 Placement Holder 5 Disc Dropper 14 Lower Hard Silica Glass Disc 6 units 15 Hard silica glass sintered plate body 7 Heater 16 Rectangular porous body 17 Hard silica glass sintered shell body

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 含有金属不純物が100ppm以下、含有OH
基が300ppm以下のシリカガラスで構成された見掛け密度
0.1〜1.6g/cm3のシリカ多孔質体の全表面に板状シリ
カガラス焼結体及び/又は硬質シリカガラス板状体を一
体に形成して成るシリカ保温断熱体。
1. A metal impurity content of 100 ppm or less, OH content
Apparent density composed of silica glass whose base is 300 ppm or less
A silica heat-insulating heat insulator comprising a plate-like silica glass sintered body and / or a hard silica glass plate-like body integrally formed on the entire surface of a porous silica body of 0.1 to 1.6 g / cm 3 .
【請求項2】 シリカガラス多孔質体が、70%以下の連
通気孔率を有する請求項1に記載のシリカ保温断熱体。
2. The silica heat insulating / insulating body according to claim 1, wherein the silica glass porous body has an open pore ratio of 70% or less.
【請求項3】 シリカガラス粉体を耐熱性成形用容器型
中に入れ、その粉体中に、0.1〜1.6g/cm3の見掛け密
度を有し、含有される金属不純物が100ppm以下で且つO
H基が300ppm以下のシリカ多孔質体を埋設するか、該多
孔質体の周側面及び/又は上下面に硬質シリカガラス板
状体を当接して上記耐熱性成形用容器型中に入れ、その
際、該多孔質体と耐熱性成形容器内面とが直接接触する
部分には少なくともシリカガラス粉体を充填して、1400
〜1800℃の範囲の温度で加熱一体化することを特徴とす
る請求項1に記載のシリカ保温断熱体の製造方法。
3. Silica glass powder is placed in a heat-resistant molding container mold, and the powder has an apparent density of 0.1 to 1.6 g / cm 3 and contains metal impurities of 100 ppm or less. O
H group is embedded in a silica porous body of 300ppm or less, or put into the heat-resistant molding container mold by abutting a hard silica glass plate on the peripheral side surface and / or upper and lower surfaces of the porous body, At this time, at least the silica glass powder is filled in the portion where the porous body and the inner surface of the heat resistant molding container are in direct contact with each other, and 1400
The method for producing a silica heat insulating heat insulator according to claim 1, wherein the heat insulation is carried out at a temperature in the range of 1800 ° C.
【請求項4】 シリカガラス粉体が、ゾルゲル法又は気
相合成法によって得られた含有金属不純物100ppm以下、
及び含有OH基が300ppm以下のガラスを粉砕して調製さ
れたものである請求項3に記載の製造方法。
4. Silica glass powder is obtained by a sol-gel method or a gas phase synthesis method, containing metal impurities of 100 ppm or less,
4. The method according to claim 3, wherein the glass is prepared by crushing glass having an OH group content of 300 ppm or less.
【請求項5】 前記シリカ多孔質体とシリカガラス粉体
との加熱一体化を、減圧雰囲気条件下で加熱一体化を行
う請求項3に記載の製造方法。
5. The manufacturing method according to claim 3, wherein the heat integration of the silica porous body and the silica glass powder is performed under a reduced pressure atmosphere condition.
JP5902492A 1992-02-12 1992-02-12 Silica thermal insulation and method for producing the same Expired - Fee Related JPH0694380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5902492A JPH0694380B2 (en) 1992-02-12 1992-02-12 Silica thermal insulation and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5902492A JPH0694380B2 (en) 1992-02-12 1992-02-12 Silica thermal insulation and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06135741A JPH06135741A (en) 1994-05-17
JPH0694380B2 true JPH0694380B2 (en) 1994-11-24

Family

ID=13101309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5902492A Expired - Fee Related JPH0694380B2 (en) 1992-02-12 1992-02-12 Silica thermal insulation and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0694380B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5907044B2 (en) * 2012-11-02 2016-04-20 東京エレクトロン株式会社 Vertical heat treatment equipment
CN103896479B (en) * 2014-02-27 2016-02-10 陕西科技大学 A kind of simple method for preparing of sintered glass

Also Published As

Publication number Publication date
JPH06135741A (en) 1994-05-17

Similar Documents

Publication Publication Date Title
JP2897963B2 (en) Vertical heat treatment equipment and heat insulator
CA2135542C (en) Shaped body having a high silicon dioxide content and process for producing such shaped bodies
US3951587A (en) Silicon carbide diffusion furnace components
US5866062A (en) Process for producing shaped bodies of silicon dioxide
US4040849A (en) Polycrystalline silicon articles by sintering
EP0647600B1 (en) High-purity, opaque quartz glass, method for producing same and use thereof
JPS63257218A (en) Component of diffusion furnace
AU686871B2 (en) Subcritical process for drying sol-gel derived porous bodies
JP4014724B2 (en) Method for producing silica glass
US4828593A (en) Process for the production of glass
KR101806791B1 (en) Manufacturing method of quartz glass ingot with large area
JP5130334B2 (en) Square silica container for producing polycrystalline silicon ingot, porous silica plate and method for producing the same
JPH0694380B2 (en) Silica thermal insulation and method for producing the same
JP2875686B2 (en) High purity silica glass foam and method for producing the same
JP4931432B2 (en) Molds for the production of polycrystalline silicon slabs
JP2003292337A (en) Plasma corrosion resisting silica glass, manufacturing method therefor and apparatus using the same
JP2571181B2 (en) Quartz glass porous molded body and method for producing the same
JP3394323B2 (en) Method for producing high-purity silica glassy foam
JPH09202632A (en) Production of cylindrical quartz glass
JP2002356340A (en) Quarts glass having plasma corrosion resistance, production method therefor and member and apparatus using the same
JP3693772B2 (en) Method for producing opaque quartz glass cylinder
JPH0568433B2 (en)
JPS61286264A (en) Furnace center pipe for heating furnace and manufacture
JPH0742124B2 (en) Method for forming quartz glass plate
JPH063795B2 (en) Heat treatment equipment for semiconductor manufacturing

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20071124

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20081124

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20091124

LAPS Cancellation because of no payment of annual fees