JP4931432B2 - Molds for the production of polycrystalline silicon slabs - Google Patents
Molds for the production of polycrystalline silicon slabs Download PDFInfo
- Publication number
- JP4931432B2 JP4931432B2 JP2006034472A JP2006034472A JP4931432B2 JP 4931432 B2 JP4931432 B2 JP 4931432B2 JP 2006034472 A JP2006034472 A JP 2006034472A JP 2006034472 A JP2006034472 A JP 2006034472A JP 4931432 B2 JP4931432 B2 JP 4931432B2
- Authority
- JP
- Japan
- Prior art keywords
- mold
- silicon
- silica
- melt
- polycrystalline silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Silicon Compounds (AREA)
Description
本発明は、シリコン融液を凝固させる際に用いるシリコン鋳造炉内構造に関し、さらに詳しくは太陽電池用の基板等を製造するための多結晶シリコン鋳片を得るために用いる鋳型に関する。 The present invention relates to an internal structure of a silicon casting furnace used for solidifying a silicon melt, and more particularly to a mold used for obtaining a polycrystalline silicon slab for manufacturing a substrate for a solar cell.
太陽光発電用のセルを作りこむための基板として、それ自身も発電セルの機能を分担したシリコン結晶基板が広く利用されている。そのうち、基板の結晶性が単結晶から成るタイプと多結晶から成るタイプに分けられるが、現在最も多く用いられているのが多結晶タイプである。多結晶タイプの基板は、高純度のシリコン原料を溶解し、鋳型の中で一方向に凝固させることにより多結晶鋳片を製造した後、それを薄片にスライスして作られる。前記の多結晶鋳片を作りこむ一方向凝固法による多結晶シリコン鋳片製造プロセスが重要である。 As a substrate for building a photovoltaic power generation cell, a silicon crystal substrate that has shared the function of the power generation cell itself is widely used. Among them, the crystallinity of the substrate can be divided into a single crystal type and a polycrystalline type, and the polycrystalline type is most frequently used at present. A polycrystalline type substrate is made by melting a high-purity silicon raw material and solidifying it in a mold in one direction to produce a polycrystalline slab and then slicing it into a thin piece. The polycrystalline silicon slab manufacturing process by the unidirectional solidification method for making the polycrystalline slab is important.
一方、太陽電池に使用されるシリコンは一般に99.9999質量%程度の純度が必要とされ、各種金属不純物は0.1質量ppm以下、又、Bは少なくとも0.3質量ppm以下、好ましくは0.1質量ppm以下であることが要求される。この純度を満たすシリコンとしては、半導体用シリコン、すなわち、シリコン塩化物を蒸留後熱分解して得られる高純度シリコンがある。しかしながら、このシーメンス法はコストが高く、大量にシリコンを必要とする太陽電池には不向きである。 On the other hand, silicon used for solar cells generally requires a purity of about 99.9999% by mass, various metal impurities are 0.1 mass ppm or less, and B is at least 0.3 mass ppm or less, preferably 0. .1 mass ppm or less is required. As silicon satisfying this purity, there is silicon for semiconductors, that is, high-purity silicon obtained by pyrolyzing silicon chloride after distillation. However, this Siemens method is expensive and unsuitable for solar cells that require a large amount of silicon.
そこで、太陽電池に使用可能な安価なシリコンを製造する技術が各種研究されてきたが、B、P以外の、Fe、Al、Ca等の各種金属不純物は、一方向凝固法で除去することが一般的である。すなわち、シリコン融液が固化する際に、共存する融液シリコンに金属不純物は多く分配し、固化したシリコンにはわずかしか取り込まれないという現象を使用した精製方法である。つまり、太陽電池に使用可能な安価なシリコンを製造する技術においても、一方向凝固法による多結晶シリコン鋳片製造プロセスが重要である。 Therefore, various techniques for producing inexpensive silicon that can be used for solar cells have been studied. Various metal impurities other than B and P, such as Fe, Al, and Ca, can be removed by a unidirectional solidification method. It is common. That is, when the silicon melt is solidified, it is a purification method using the phenomenon that a large amount of metal impurities are distributed to the coexisting melt silicon and only a small amount is taken into the solidified silicon. That is, in the technology for producing inexpensive silicon that can be used for solar cells, a polycrystalline silicon slab manufacturing process by a unidirectional solidification method is important.
従来の一方向凝固法による多結晶シリコン鋳片製造プロセスにおいては、例えば特許文献1には、空隙率が高く、熱伝導率が低い材料を鋳型の側壁に用いることによって、側壁面からの抜熱を抑えて側壁面からの結晶成長を軽減させ、一方向凝固性が良い多結晶シリコンを製造する方法が開示されている。また、特許文献2には、従来の製造方法のように底部から上方に垂直方向に温度勾配を付与するだけでなく、冷却開始時に、鋳型の側面に設けられた補助ヒーターを用いて、鋳型の底部の一部から水平方向に温度勾配を付与することによって、水平方向に径が大きな結晶粒を有する結晶シリコンを製造する方法が開示されている。
In a conventional polycrystalline silicon slab manufacturing process using a unidirectional solidification method, for example,
前記の特許文献1〜2に開示されている様な多結晶シリコン鋳片製造炉は、一般的に、真空ポンプなどで内部の空気を追い出すことの出来る密閉された金属製容器の中に、主要部材としてヒーター、断熱材、鋳型、鋳型台座が収められている。断熱材は、ヒーター、鋳型、鋳型台座と前記の容器金属間の断熱に配され、多くはカーボン繊維から成る成型断熱材が用いられる。ヒーターは、鋳型の上面、ないし側面、ないし上面および側面に配される。
The polycrystalline silicon slab manufacturing furnace as disclosed in the above-mentioned
鋳型台座は、鋳型下部の冷却に用いられることが多く、鋳片を一方向凝固させるのに適した温度勾配を鋳造中の鋳片および融液に与えるために、それ自身が直接または間接的に冷却される構造をとり、かつヒーターと鋳型の位置関係をコントロールできるように昇降できる機能を持っていたり、鋳型内部の面内方向の均熱をとるために回転が可能であったりする場合が一般的である。一方向凝固法を用いたシリコン多結晶鋳片製造装置の内部は上記のように複雑な構造を必要とするのである。 The mold pedestal is often used to cool the lower part of the mold and itself or directly to provide a temperature gradient suitable for unidirectional solidification of the slab to the slab and melt during casting. In general, it has a cooled structure and can move up and down so that the positional relationship between the heater and the mold can be controlled, or it can be rotated in order to keep the heat in the in-plane direction inside the mold. Is. The inside of the silicon polycrystalline slab manufacturing apparatus using the unidirectional solidification method requires a complicated structure as described above.
一方、それらの部材を構成する材料としては、1400℃以上の高温に耐える材料、かつシリコン鋳片に不純物を拡散させないような高純度の材料でなければならないことから、材料は非常に高価な黒鉛製、ないし石英製に限られている。また上記の用途に合うように、通常複雑に加工されている。 On the other hand, the materials constituting these members must be materials that can withstand high temperatures of 1400 ° C or higher and high-purity materials that do not allow impurities to diffuse into silicon slabs. Made of quartz or quartz. Moreover, it is usually processed in a complicated manner to suit the above application.
しかしながら、上記の炉内構造は、一方向に結晶性が良好な多結晶シリコンを製造することを目的として設計されたもので、凝固の際のトラブル発生により鋳型が破損し、これに伴う融液の流出に関しては十分に考慮されているとはいえず、融液が流出した場合、鋳造炉内部材に融液が含侵してしまい、上記の高価な部材の再利用が不可能となってしまう。すなわち、融液が鋳造炉内部材に広がるのを根本的に防ぐことが出来るような鋳型材質および/または構造を見出すことが重要な課題であった。 However, the furnace structure described above is designed for the purpose of producing polycrystalline silicon with good crystallinity in one direction. The mold is damaged due to the occurrence of troubles during solidification, and the associated melt. However, when the melt flows out, the melt infiltrates into the casting furnace member, making it impossible to reuse the above expensive member. . That is, it has been an important problem to find a mold material and / or structure that can fundamentally prevent the melt from spreading to the casting furnace inner member.
本発明は、鋳型の破損により融液が流出した場合でも、鋳造炉内のヒーター、断熱材などの部材にシリコンが含浸して破損することを防止できる鋳型を提供することを目的とする。 An object of the present invention is to provide a mold capable of preventing silicon from impregnating and damaging members such as a heater and a heat insulating material in a casting furnace even when a melt flows out due to breakage of the mold.
上記目的を達成するため、
(1)一方向凝固鋳造法による多結晶シリコン鋳片製造に用いる鋳型であって、少なくとも外側の鋳型、内側の鋳型で構成された二重の鋳型と、両鋳型間にシリカ系の粉末から成る充填材が配されたことを特徴とする多結晶シリコン鋳片製造用の鋳型、
(2)前記のシリカ系粉末が、珪砂、シリカガラスのいずれか一方、又は、双方であることを特徴とする(1)に記載の多結晶シリコン鋳片製造用の鋳型、
(3)前記のシリカ系粉末の最大粒径が3mm未満であることを特徴とする(1)または(2)に記載の多結晶シリコン鋳片製造用の鋳型、
を用いる。
To achieve the above objective,
(1) A mold used for producing a polycrystalline silicon slab by a unidirectionally solidified casting method, comprising at least an outer mold, a double mold composed of an inner mold, and a silica-based powder between both molds. A mold for producing polycrystalline silicon slabs, characterized in that a filler is disposed;
(2) The mold for producing a polycrystalline silicon slab according to (1), wherein the silica-based powder is one or both of silica sand and silica glass,
(3) The mold for producing a polycrystalline silicon slab according to (1) or (2), wherein the maximum particle size of the silica-based powder is less than 3 mm,
Is used.
本発明によれば、鋳型を二重構造とし、外側の鋳型と内側の鋳型の間の隙間にシリカ系の粉末を充填しているので、内側の鋳型が破損した場合においても、流出した融液は内側の鋳型と外側の鋳型の間に充填されたシリカ系の粉末によって受け止められ、外側の鋳型に達することが無く、まして、鋳型の外まで流出し鋳造炉内のヒーターや断熱材、鋳型を支える構造部材などに達することが無く、それら外側の鋳型、鋳造炉内のヒーターや断熱材、鋳型を支える構造部材などの破損を防ぐ。従って、多結晶シリコン製造装置を安定的に操業することができる。 According to the present invention, the casting mold has a double structure, and the gap between the outer casting mold and the inner casting mold is filled with silica-based powder. Is received by the silica-based powder filled between the inner mold and the outer mold, so that it does not reach the outer mold and flows out of the mold, and the heater, heat insulating material and mold in the casting furnace are removed. It does not reach the supporting structural members, and prevents damage to the outer molds, heaters and heat insulating materials in the casting furnace, and structural members that support the molds. Therefore, the polycrystalline silicon manufacturing apparatus can be stably operated.
本発明に係る多結晶シリコン鋳片製造装置用のシリコン鋳造用鋳型は、まず二重構造からなる。 A silicon casting mold for a polycrystalline silicon slab manufacturing apparatus according to the present invention first has a double structure.
外側の鋳型は強度の高いカーボン製ないしカーボンコンポジット製など、特にその二つに限定するものではないが、繰り返し使用可能で、鋳型およびシリコン鋳片の質量を支えることが可能な程度の強度を持ち、シリコン鋳片に対し不純物を拡散しないものが選定される。 The outer mold is not limited to two, such as high-strength carbon or carbon composite, but it can be used repeatedly and is strong enough to support the mass of the mold and silicon slab. A material that does not diffuse impurities into the silicon slab is selected.
内側の鋳型はカーボン製、カーボンコンポジット製、石英製、シリカ粉末やチッ化珪素粉末をフェノール樹脂で固めた材質など、特に限定はしないが、それ自身がシリコンを鋳造する温度、雰囲気において大きく形を変えないものであり、シリコン鋳片と接するに表面にさらにシリカやチッ化珪素粉末をそのまま溶射したり、エタノールやポリビニルアルコールを分散させた水などの溶媒で溶いて塗布することで繰り返し使用しても良く、あるいは鋳造の度毎に壊れてしまっても良いが、やはりシリコン鋳片に対し不純物を拡散しないものが選定される。 The inner mold is not particularly limited, such as carbon, carbon composite, quartz, silica powder or silicon nitride powder hardened with phenolic resin, but it has a large shape at the temperature and atmosphere at which it casts silicon. It is not changed, and it is repeatedly used by spraying silica or silicon nitride powder on the surface as it is in contact with the silicon slab, or by dissolving and applying with a solvent such as water in which ethanol or polyvinyl alcohol is dispersed. Alternatively, it may be broken every time it is cast, but one that does not diffuse impurities into the silicon slab is selected.
さらに、外側の鋳型と内側の鋳型の隙間にシリカ系の充填材を充填する。充填材はシリカ系の粉末から成り、外鋳型と内鋳型の隙間の寸法が変化しても、外鋳型と内鋳型の隙間が不定形であっても、あるいは前記の多様な材料から構成されているがために温度の上昇に伴う熱膨張によって隙間の寸法や形状が大きく変化しても、粉末であるが故の流動性によって、隙間を常に満たすことが可能である。さらに、シリカはシリコン融液ときわめて濡れ性が悪く、シリコン融液を弾く性質があるため、シリコン融液の漏れ出しを止めることが出来る。したがって、流動性と弾く性質を組み合わせることで、シリコン融液の漏れ出しを止め得るのである。 Further, a silica-based filler is filled in the gap between the outer mold and the inner mold. The filler is made of silica-based powder, and even if the size of the gap between the outer mold and the inner mold changes, the gap between the outer mold and the inner mold is indefinite, or it is made of the above-mentioned various materials. Therefore, even if the size and shape of the gap greatly change due to thermal expansion accompanying an increase in temperature, it is possible to always fill the gap due to the fluidity due to the powder. Furthermore, since silica has a very poor wettability with the silicon melt and has a property of repelling the silicon melt, the leakage of the silicon melt can be stopped. Therefore, leakage of the silicon melt can be stopped by combining the fluidity and the repelling property.
シリコン融液は凝固点付近でも極めて粘性が低く、小さな隙間からも多量の融液が漏れ出すことが多く、この融液漏れによって炉内の部材を破損させる。しかしながら、上記の鋳型であれば、仮に、内側の鋳型にヒビが入ったり、溶けて欠落していたり、製造工程の問題により巣が入っていたり、鋳型に何らかの欠陥があり、内側の鋳型からシリコンが漏れ出したとしても、シリコンを弾く性質をもつシリカ系粉末が隙間なく充填されてシリコンの漏れ出しは外鋳型に到達する手前で止め得るのである。 Silicon melt has a very low viscosity even near the freezing point, and a large amount of melt often leaks from a small gap. This melt leakage damages members in the furnace. However, in the case of the above mold, it is assumed that the inner mold is cracked, melted and missing, has nests due to problems in the manufacturing process, or the mold has some defects, and the inner mold is Even if it leaks out, the silica-based powder having the property of repelling silicon is filled without any gap, and the leakage of silicon can be stopped just before reaching the outer mold.
漏れを確実に防止する目的においては、シリカ系の粉末から成る充填材は、内鋳型の底と外鋳型の底の間、及び内鋳型の側面と外鋳型の側面の両方に配置することが望ましい。シリカ系粉末の充填層の厚みとしては、実験的知見により、シリカ系粉末の最大粒径の少なくとも3倍以上あれば湯漏れ防止機能を発揮するため、3倍以上が好ましい。 For the purpose of reliably preventing leakage, it is desirable to place the filler made of silica-based powder between the bottom of the inner mold and the bottom of the outer mold, and both on the side of the inner mold and the side of the outer mold. . The thickness of the packed bed of the silica-based powder is preferably 3 times or more because, based on experimental knowledge, if the maximum particle size of the silica-based powder is at least 3 times or more, the hot water leakage preventing function is exhibited.
また、側面に配置するシリカ系粉末の充填層は、ヒーター位置が鋳型の上面のみにある場合は断熱層として寄与し、厚みを多くとることにより底面から上面にかけて形成される一方向凝固組織(柱状組織)の平行度が揃った組織を作りこむことが出来る。ちなみに、シリカ系粉末の充填層の厚みの上限値は、特に規定するものではなく、所望の断熱層として寄与する範囲で、適宜、設定することができる。 The packed bed of silica-based powder arranged on the side surface contributes as a heat insulating layer when the heater position is only on the upper surface of the mold. It is possible to create an organization with the same degree of parallelism. Incidentally, the upper limit value of the thickness of the silica-based powder packed layer is not particularly defined, and can be appropriately set within a range that contributes as a desired heat insulating layer.
一般的に、鋳型の底面から抜熱する場合が多いが、その場合には底面のシリカ系粉末の充填層の厚みはなるべく薄いほうが一方向凝固組織の作りこみに有利であり、必ずしも内鋳型の底と外鋳型の底の隙間にシリカ粉末を充填する必要はなく、内鋳型と外鋳型の側面の隙間にシリカ系粉末を充填して鋳型側面からの融液漏れを防止するだけでも十分効果的である。 In general, heat is often removed from the bottom surface of the mold, but in that case, it is advantageous to create a unidirectionally solidified structure if the thickness of the silica-based powder packed layer on the bottom surface is as thin as possible. There is no need to fill the gap between the bottom and the bottom of the outer mold with silica powder, and it is sufficient to fill the gap between the side of the inner mold and the outer mold with silica-based powder to prevent melt leakage from the mold side. It is.
上記記載のシリカ系粉末としては、結晶質シリカである珪砂でも、非晶質シリカであるシリカガラスでも良く、あるいはそれらの混合物でも、結晶質と非晶質の中間的な物質でも良い。珪砂は一般的に入手しやすく、安価である。好ましくは、高純度の珪石を粉砕して得られ、かつ磁選などの手段を用いて粉砕に伴い混入した不純物を取り除いたものであることが望ましい。シリカガラスも一般的に入手しやすく、安価である。好ましくは、高純度の珪石を溶融して噴霧固化させたシリカガラスであることが望ましい。高純度のシリカ系粉末からは、SiとO以外の不純物を拡散することはなく、少なくとも80質量%以上の高純度シリカ系粉末を含んでいれば、シリコン鋳片の太陽電池特性に影響を及ぼさない。 The silica-based powder described above may be silica sand which is crystalline silica, silica glass which is amorphous silica, a mixture thereof, or an intermediate substance between crystalline and amorphous. Silica sand is generally readily available and inexpensive. Preferably, it is obtained by pulverizing high-purity silica and removing impurities mixed with the pulverization using means such as magnetic separation. Silica glass is generally readily available and inexpensive. Preferably, it is silica glass obtained by melting and spray-solidifying high-purity silica stone. The high-purity silica-based powder does not diffuse impurities other than Si and O, and if it contains at least 80% by mass or more of high-purity silica-based powder, the solar cell characteristics of the silicon slab will be affected. Absent.
上記記載のシリカ系粉末の粒径は3mm未満であることが好ましい。シリカ系粉末同士の間には必ず空隙を生じるが、シリカ系粉末の粒径が大きいと空隙も大きくなり、粉末の最大粒径が3mm以上であると、シリコンが空隙を伝って融液漏れする。したがって、シリカ系粉末の最大粒径は3mm未満であることが好ましく、さらに融液漏れ防止効果を確実にするにはシリカ系粉末の最大粒径は1mm未満であることが好ましい。 The particle size of the silica-based powder described above is preferably less than 3 mm. There is always a gap between silica-based powders, but if the particle size of the silica-based powder is large, the voids also become large. If the maximum particle size of the powder is 3 mm or more, silicon leaks through the voids and melts. . Therefore, the maximum particle size of the silica-based powder is preferably less than 3 mm, and the maximum particle size of the silica-based powder is preferably less than 1 mm in order to ensure the melt leakage preventing effect.
また、粉末の流動性の点からも、最大粒径3mm未満が好ましい。すなわち、最大粒径3mm以上であると流動性が悪くなるためである。また、シリカ系粉末の最大粒径の下限値は、特に規定するものではないが、最大粒径10μm未満であるとシリコン融点付近の高温でシリカ系粉末同士が焼結し流動性を阻害するため、最大粒径は10μm以上が好ましい。 From the viewpoint of powder fluidity, the maximum particle size is preferably less than 3 mm. That is, if the maximum particle size is 3 mm or more, the fluidity is deteriorated. In addition, the lower limit of the maximum particle size of the silica-based powder is not particularly specified, but if the maximum particle size is less than 10 μm, the silica-based powders sinter at a high temperature near the silicon melting point to inhibit fluidity. The maximum particle size is preferably 10 μm or more.
次に、本発明に係る多結晶シリコン製造装置の溶融シリコン漏れ防止用鋳型の実施の形態について図面を参照して説明する。図1は、本発明の溶融シリコン漏れ防止用鋳型を設置した多結晶シリコン製造装置凝固炉内の模式的部分縦断面図である。 Next, an embodiment of a mold for preventing molten silicon leakage of a polycrystalline silicon manufacturing apparatus according to the present invention will be described with reference to the drawings. FIG. 1 is a schematic partial longitudinal sectional view in a polycrystalline silicon production apparatus solidification furnace in which a mold for preventing molten silicon leakage according to the present invention is installed.
図1の実施の形態では、高純度高密度黒鉛製の加熱ヒータ1は鋳型の上方、炉内天井部に配されている。内鋳型2は石英製で内側にチッ化珪素が塗布されている。外鋳型3は高強度のカーボンファイバ強化カーボン複合材料(以下C/C材という)である。シリコン鋳片に接する内鋳型2と外部の断熱材に接する外鋳型3の間の充填層4に珪砂が配されている。珪砂は高純度の珪石を粉砕し、篩いがけを施して、0.5〜1mmの粒のみを選別し、さらに磁選して鉄系の不純物を除去した仕様である。
In the embodiment of FIG. 1, the
外鋳型より上の壁には、外鋳型と同様、C/C材の壁が配され、かつヒーターより上にもC/C材製の天井壁が配されている。すなわち、図1の炉内はC/C材によって6面を囲まれた構造である。6面のうち外鋳型底部をのぞく面においては、外鋳型外側に黒鉛製の成型断熱材5が配されており、炉内の熱を炉外に伝えにくいようになっている。外鋳型底部にのみ水冷された金属部材6が配されており、鋳型下部から抜熱する。 Similar to the outer mold, a wall made of C / C material is arranged on the wall above the outer mold, and a ceiling wall made of C / C material is also arranged above the heater. That is, the inside of the furnace of FIG. 1 has a structure surrounded by six surfaces with C / C material. On the surface of the six surfaces except the bottom of the outer mold, a molded heat insulating material 5 made of graphite is arranged outside the outer mold so that the heat inside the furnace is not easily transmitted to the outside of the furnace. A water-cooled metal member 6 is disposed only at the bottom of the outer mold, and heat is extracted from the lower part of the mold.
上記、C/C材、黒鉛断熱材は非常に高価であり、繰り返し使う必要がある。また、水冷された金属部材が鋳型の底に配されるので、もし溶融したシリコンが漏れ出して、水冷された金属部材に達することがあると、水漏れなどさらに重篤な設備損害を与えることになる。 The C / C material and the graphite heat insulating material are very expensive and need to be used repeatedly. Also, since the water-cooled metal member is placed at the bottom of the mold, if the molten silicon leaks out and reaches the water-cooled metal member, it may cause more serious equipment damage such as water leakage. become.
本発明の鋳型では、仮に内鋳型2から溶融シリコンが漏れ出しても、充填層4に充填された珪砂でシリコンが受け止められるので、外鋳型3やその外の黒鉛断熱材5や水冷された金属部材6に達することは無く、部材の寿命を持たせ、かつ安定的に操業することが可能である。
In the mold of the present invention, even if molten silicon leaks from the
図2の実施の形態は、いわゆるブリッジマン型炉の炉内に本発明の鋳型を配した例である。高純度高密度黒鉛製の加熱ヒータ7は鋳型の上方、加熱ヒータ9は外鋳型13の側部に配されている。内鋳型8は石英製で内側にチッ化珪素が塗布されている。外鋳型13はC/C材である。シリコン鋳片に接する内鋳型8と外部の断熱材に接する外鋳型13の間の充填層10に珪砂が配されている。
The embodiment of FIG. 2 is an example in which the mold of the present invention is arranged in a so-called Bridgman furnace. The
珪砂は高純度の珪石を粉砕し、篩いがけを施して、0.5〜1mmの粒のみを選別し、さらに磁選して鉄系の不純物を除去した仕様である。底部をのぞく天井面、側面においては黒鉛製の成型断熱材11が配されており、炉内の熱を伝えないようになっている。外鋳型底部にのみ水冷された金属部材12が配されており、鋳型下部から抜熱する。上記、C/C材、黒鉛断熱材は非常に高価であり、繰り返し使う必要がある。
Silica sand is a specification in which high-purity silica stone is crushed and sieved to select only 0.5 to 1 mm grains, and then magnetically separated to remove iron-based impurities. A graphite molded heat insulating material 11 is arranged on the ceiling surface and the side surface except the bottom so as not to transmit heat in the furnace. A water-cooled
また、水冷された金属部材12が鋳型の底に配されるので、もし溶融したシリコンが漏れ出して、水冷された金属部材12に達することがあると、水漏れなどさらに重篤な設備損害を与えることになる。本発明の鋳型では、仮に内鋳型8から溶融シリコンが漏れ出しても、充填層10に充填された珪砂でシリコンが受け止められるので、外鋳型13、黒鉛断熱材11、水冷された金属部材12に達することは無く、部材の寿命を持たせ、かつ安定的に操業することが可能である。
In addition, since the water-cooled
図1の装置を用いて融液漏れおよび不純物汚染の試験を実施した。 The melt leakage and impurity contamination tests were conducted using the apparatus of FIG.
外鋳型3は開口部分が600mm×600mm、及び深さが320mm(共に内寸)である組立式のC/C材製鋳型とし、内鋳型2は開口部分が500mm×500mm、及び深さが300mm(共に内寸)である肉厚10mmの石英鋳型とした。図1で充填層4とした外鋳型3と内鋳型2の隙間には、以下に述べるような種々の材質の粉末を充填したが、厚みは側面を40mm、底面を10mmとした。
The
実施例1では充填層4を粒径が0.5〜1mmのシリカガラス、実施例2では充填層4を粒径が0.5〜1mmの珪砂、比較例1では充填層4を粒径が0.5〜1mmのアルミナ粉末、比較例2では充填層4を粒径が0.5〜1mmのジルコニア粉末、比較例3では充填層4を粒径が0.5〜1mmのマグネシア粉末、比較例4では充填層4をカーボンファイバー、比較例5では充填層4をシリカ・アルミナファイバーとした。実施例、および比較例の組み合わせについて表1に示す。 In Example 1, the packing layer 4 is silica glass having a particle size of 0.5 to 1 mm, in Example 2, the packing layer 4 is silica sand having a particle size of 0.5 to 1 mm, and in Comparative Example 1, the packing layer 4 is 0.5 to 1 mm in particle size. Alumina powder, in Comparative Example 2, the packed layer 4 is zirconia powder having a particle size of 0.5 to 1 mm, in Comparative Example 3, the packed layer 4 is magnesia powder having a particle size of 0.5 to 1 mm, in Comparative Example 4, the packed layer 4 is carbon fiber, In Comparative Example 5, the filler layer 4 was made of silica / alumina fiber. It shows in Table 1 about the combination of an Example and a comparative example.
さて、石英製内鋳型側面の底から20mmの高さ位置に予め直径10mmの穴を開けた。穴が開いていることにより、意図的に溶融シリコンが鋳型から漏れる構造にした。チャンバー内を大気圧のアルゴンガスで置換した後、溶解炉では高純度シリコン(99.999999999質量%)100kgを1550℃で溶解し、鋳型については抵抗加熱式ヒーターで、毎分5℃の昇温速度で1550℃まで加熱した。 A hole with a diameter of 10 mm was made in advance at a height of 20 mm from the bottom of the side surface of the quartz inner mold. A structure in which molten silicon leaks from the mold was intentionally formed by the holes. After replacing the chamber with argon gas at atmospheric pressure, 100 kg of high-purity silicon (99.999999999% by mass) was melted at 1550 ° C in the melting furnace, and the mold was heated at a heating rate of 5 ° C per minute with a resistance heater. Heated to 1550 ° C.
次いで、溶解炉内の溶融シリコン(シリコン融液)100kgを鋳型内へ傾注し、その後、抵抗加熱式ヒーターの温度を徐々に下げて、シリコンを下方から徐々に凝固させた。シリコン全体が凝固した後に、抵抗加熱式ヒーターの電源を切り、常温まで冷却した。常温まで冷却した後、凝固したシリコンを鋳型から取り出した。 Next, 100 kg of molten silicon (silicon melt) in the melting furnace was poured into the mold, and then the temperature of the resistance heating heater was gradually lowered to gradually solidify the silicon from below. After the entire silicon solidified, the resistance heater was turned off and cooled to room temperature. After cooling to room temperature, the solidified silicon was removed from the mold.
[溶融シリコンの融液漏れ比較]
実施例1については99.5kgのシリコンを回収した。すなわち、0.5kgの融液が流出したが、流出した融液がシリカガラス粉末によって止められ、外鋳型内壁面には到達しなかった。実施例2も0.5kgの融液が流出したが、流出した融液が珪砂粉末によって止められ、外鋳型内壁面には到達しなかった。
[Comparison of molten silicon leaks]
For Example 1, 99.5 kg of silicon was recovered. That is, although 0.5 kg of melt flowed out, the melt that flowed out was stopped by the silica glass powder and did not reach the inner wall surface of the outer mold. In Example 2 as well, 0.5 kg of melt flowed out, but the flowed out melt was stopped by the silica sand powder and did not reach the inner wall surface of the outer mold.
比較例1についても、99.5kgのシリコンを回収した。すなわち、0.5kgの融液が流出したが、流出した融液がアルミナ粉末によって止められ、外鋳型内壁面には到達しなかった。比較例2も0.5kgの融液が流出したが、流出した融液がジルコニア粉末によって止められ、外鋳型内壁面には到達しなかった。比較例3も0.5kgの融液が流出したが、流出した融液がマグネシア粉末によって止められ、外鋳型内壁面には到達しなかった。 For Comparative Example 1, 99.5 kg of silicon was recovered. That is, 0.5 kg of the melt flowed out, but the flowed out melt was stopped by the alumina powder and did not reach the inner wall surface of the outer mold. In Comparative Example 2, 0.5 kg of melt flowed out, but the melt that flowed out was stopped by the zirconia powder, and did not reach the inner wall surface of the outer mold. In Comparative Example 3, 0.5 kg of the melt flowed out, but the flowed out melt was stopped by the magnesia powder and did not reach the inner wall surface of the outer mold.
比較例4は10kgのシリコンしか回収できなかった。すなわち、90kgのシリコンが漏れてしまい、C/C部材に含浸してしまい、再利用不可能となってしまった。比較例5は99.8kgのシリコンを回収した。すなわち、0.2kgの融液が流出したが、流出した融液がシリカ・アルミナファイバーによって止められ、外鋳型内壁面には到達しなかった。 In Comparative Example 4, only 10 kg of silicon could be recovered. That is, 90 kg of silicon leaked and impregnated into the C / C member, making it impossible to reuse. Comparative Example 5 recovered 99.8 kg of silicon. That is, 0.2 kg of the melt flowed out, but the flowed out melt was stopped by the silica / alumina fiber and did not reach the inner wall surface of the outer mold.
[溶融シリコン汚染比較]
更に、シリコン塊の中心部分から分析サンプルを採取し、ICP-AES(ICP発光)分析法による定性分析を行った。
[Mixed silicon contamination comparison]
Furthermore, an analysis sample was taken from the center of the silicon lump and qualitatively analyzed by ICP-AES (ICP emission) analysis.
その結果、実施例1のシリコン塊からはSi以外の元素は検出されず、不純物による汚染は無いことが確認された。なお、上記ICP-AES分析法における検出限界値は、B:0.05質量ppm、P:0.05質量ppm、その他の重金属については0.02質量ppmである。実施例2についても同様の試験を行った。その結果、Si以外の元素は検出されず、不純物による汚染は無いことが確認された。 As a result, no element other than Si was detected from the silicon mass of Example 1, and it was confirmed that there was no contamination with impurities. The detection limit values in the ICP-AES analysis method are B: 0.05 mass ppm, P: 0.05 mass ppm, and other heavy metals are 0.02 mass ppm. A similar test was performed on Example 2. As a result, elements other than Si were not detected, and it was confirmed that there was no contamination with impurities.
比較例1についても同様の試験を行った結果、27質量ppmのAlが検出され、Alによる汚染が有ることが確認された。比較例2についても同様の試験を行った結果、17質量ppmのZrが検出され、Zrによる汚染が有ることが確認された。比較例3についても同様の試験を行った結果、7ppmのMgが検出され、Mgによる汚染が有ることが確認された。比較例4についても同様の試験を行った結果、Si以外の元素は検出されず、不純物による汚染は無いことが確認された。比較例5についても同様の試験を行ったところ22質量ppmのAlが検出され、Alによる汚染があることが確認された。上記の評価結果をまとめて表2に示す。 As a result of conducting the same test for Comparative Example 1, 27 mass ppm of Al was detected, and it was confirmed that there was contamination by Al. As a result of conducting the same test for Comparative Example 2, 17 mass ppm of Zr was detected, and it was confirmed that there was contamination with Zr. As a result of conducting the same test for Comparative Example 3, 7 ppm of Mg was detected, and it was confirmed that there was contamination with Mg. As a result of conducting the same test for Comparative Example 4, it was confirmed that no elements other than Si were detected and there was no contamination by impurities. When a similar test was performed for Comparative Example 5, 22 ppm by mass of Al was detected, and it was confirmed that there was contamination with Al. The evaluation results are summarized in Table 2.
本発明の実施例1、2では、共にシリコンへの不純物汚染がなく、シリコン溶湯の漏れを止めることができた。一方、比較例1、比較例2、比較例3、比較例5についてはシリコン融液の漏れを止めることができたが、シリコンへの不純物汚染が有り、比較例4についてはシリコンへの不純物汚染はないが、シリコン溶湯の漏れを止めることができなかった。 In Examples 1 and 2 of the present invention, there was no impurity contamination in silicon, and leakage of molten silicon could be stopped. On the other hand, in Comparative Example 1, Comparative Example 2, Comparative Example 3, and Comparative Example 5, leakage of the silicon melt could be stopped, but there was impurity contamination in silicon, and in Comparative Example 4, impurity contamination in silicon. No, but the leakage of molten silicon could not be stopped.
1 抵抗加熱ヒーター
2 内鋳型
3 外鋳型
4 充填層
5 黒鉛断熱材
6 水冷された金属部材
7 上部抵抗加熱ヒーター
8 内鋳型
9 側部抵抗加熱ヒーター
10 充填層
11 黒鉛断熱材
12 水冷された金属部材兼昇降式台
13 外鋳型
DESCRIPTION OF
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006034472A JP4931432B2 (en) | 2006-02-10 | 2006-02-10 | Molds for the production of polycrystalline silicon slabs |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006034472A JP4931432B2 (en) | 2006-02-10 | 2006-02-10 | Molds for the production of polycrystalline silicon slabs |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007210860A JP2007210860A (en) | 2007-08-23 |
JP4931432B2 true JP4931432B2 (en) | 2012-05-16 |
Family
ID=38489626
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006034472A Expired - Fee Related JP4931432B2 (en) | 2006-02-10 | 2006-02-10 | Molds for the production of polycrystalline silicon slabs |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4931432B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200932963A (en) * | 2008-01-29 | 2009-08-01 | Green Energy Technology Inc | Crystal growing furnace with heating improvement structure |
JP5846437B2 (en) * | 2012-03-12 | 2016-01-20 | 国立大学法人名古屋大学 | Method for producing silicon ingot |
JP5986534B2 (en) * | 2013-05-14 | 2016-09-06 | 東洋炭素株式会社 | Silicon casting mold |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000135545A (en) * | 1998-10-29 | 2000-05-16 | Mitsubishi Materials Corp | Casting device |
JP4273664B2 (en) * | 2001-01-12 | 2009-06-03 | 三菱マテリアル株式会社 | Crystalline silicon production equipment |
JP4599067B2 (en) * | 2004-02-24 | 2010-12-15 | 株式会社第一機電 | Ga compound doped polycrystalline silicon and manufacturing method thereof |
JP4379163B2 (en) * | 2004-03-12 | 2009-12-09 | 三菱マテリアル株式会社 | Manufacturing method of crucible for manufacturing high purity silicon ingot |
JP4863637B2 (en) * | 2005-03-29 | 2012-01-25 | 京セラ株式会社 | Silicon casting apparatus and method for casting polycrystalline silicon ingot |
-
2006
- 2006-02-10 JP JP2006034472A patent/JP4931432B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007210860A (en) | 2007-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20040211496A1 (en) | Reusable crucible for silicon ingot growth | |
KR101440804B1 (en) | Composite crucible and method of manufacturing the same | |
RU2344206C2 (en) | Crucible for device producing block of crystal substance and method for producing this substance | |
JPH11310496A (en) | Production of silicon ingot having unidirectionally solidified texture and apparatus therefor | |
JP2006273666A (en) | Silicon melting crucible, silicon casting device using the same, and method for casting polycrystalline silicon ingot | |
JP4815003B2 (en) | Crucible for silicon crystal growth, crucible manufacturing method for silicon crystal growth, and silicon crystal growth method | |
JP2002170780A (en) | Crucible and method for growing polycrystal silicon using it | |
JP4863637B2 (en) | Silicon casting apparatus and method for casting polycrystalline silicon ingot | |
JP4931432B2 (en) | Molds for the production of polycrystalline silicon slabs | |
JP2010162573A (en) | Method for producing porous metal and method for producing heat sink | |
JP5740111B2 (en) | Polycrystalline silicon ingot manufacturing apparatus, polycrystalline silicon ingot manufacturing method, and polycrystalline silicon ingot | |
JP6401051B2 (en) | Method for producing polycrystalline silicon ingot | |
JP4766882B2 (en) | Silicon coagulation purification apparatus and coagulation purification method | |
TWI573764B (en) | Containers for silicon ingots | |
JP2013227171A (en) | Crucible for growing single crystal, method for manufacturing the same, and method for manufacturing single crystal silicon | |
JP2006111529A (en) | Mold for casting silicon | |
TWI534305B (en) | An arrangement for manufacturing crystalline silicon ingots (1) | |
US9611565B2 (en) | Crystal growth apparatus with ceramic coating and methods for preventing molten material breach in a crystal growth apparatus | |
JP4480357B2 (en) | Plate silicon manufacturing equipment | |
JP2004322195A (en) | Unidirectionally solidified silicon ingot and method for manufacturing the same, and silicon plate and substrate for solar battery | |
WO2011096821A1 (en) | Sectioned crucible | |
JP4693932B1 (en) | Cylindrical silicon crystal manufacturing method and cylindrical silicon crystal manufactured by the manufacturing method | |
JP2012101972A (en) | Method and apparatus for producing crystal semiconductor | |
EP2619355B1 (en) | Technique to modify the microstructure of semiconducting materials | |
JP2017178741A (en) | Mold for manufacturing silicon ingot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080904 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20080904 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120117 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120214 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150224 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |