JPH0693323A - Detection of melting ratio of metal in metal refining furnace - Google Patents

Detection of melting ratio of metal in metal refining furnace

Info

Publication number
JPH0693323A
JPH0693323A JP26937092A JP26937092A JPH0693323A JP H0693323 A JPH0693323 A JP H0693323A JP 26937092 A JP26937092 A JP 26937092A JP 26937092 A JP26937092 A JP 26937092A JP H0693323 A JPH0693323 A JP H0693323A
Authority
JP
Japan
Prior art keywords
metal
refining furnace
trunnion shaft
furnace
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26937092A
Other languages
Japanese (ja)
Other versions
JP3321848B2 (en
Inventor
Hiroaki Ishida
博章 石田
Kazuharu Hanazaki
一治 花崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP26937092A priority Critical patent/JP3321848B2/en
Publication of JPH0693323A publication Critical patent/JPH0693323A/en
Application granted granted Critical
Publication of JP3321848B2 publication Critical patent/JP3321848B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To precisely detect melting ratio of a metal in a metal refining furnace. CONSTITUTION:A strain gage 6 is stuck to the surface positioned between a refining furnace 1 and a trunnion bearing 4 in the trunnion shaft 2 and a dynamic strain measuring instrument 7 for detecting the dynamic strain in the axial direction of the trunnion shaft 2 is connected with this strain gage 6. Further, an FFT analyzer 8 for executing spectrum analysis of the number of vibrations, which the detected dynamic strain provided, is connected with this dynamic strain measuring instrument. By an accumulating spectrum strength obtd. from the FFT analyzer 8, the melting ratio of the metal is detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固形物原料を装入し、
ガスを吹き込みながら溶湯を得る転炉,電気炉,溶湯還
元炉等の金属精錬炉における金属溶解量検出方法に関す
る。
BACKGROUND OF THE INVENTION The present invention charges solid raw materials,
The present invention relates to a method for detecting a molten metal amount in a metal refining furnace such as a converter, an electric furnace, a molten metal reduction furnace, which obtains molten metal while blowing gas.

【0002】[0002]

【従来の技術】一般に金属精錬炉は、回動可能に支持さ
れたトラニオン軸に両側を支持されており、この金属精
錬炉内に金属スクラップ,鉱石を装入し、この金属スク
ラップ,鉱石の溶解完了後に、内部の溶融金属が出湯さ
れるようにしてある。この溶解完了時を検知するため
に、例えば特開平2- 179811号公報には、トラニオン軸
のトルク速度及び/又は振動速度を検出することにより
金属精錬炉内の装入物が全て溶解しているか否かを検出
する方法が開示されている。即ち精錬炉内の金属が完全
に溶解したか否かを判断するために、トラニオン軸の内
外ギアに回転方向の力が作用したときのトルク速度及び
/又は振動速度を検出する。そしてこのトルク速度が0
になったとき、または振動速度が相対的に大きくなった
ときを炉内の装入物が完全に溶解したときであると判断
するのである。
2. Description of the Related Art Generally, a metal refining furnace is supported on both sides by a trunnion shaft which is rotatably supported. Metal scrap and ore are charged into the metal refining furnace, and the metal scrap and ore are melted. After completion, the molten metal inside is tapped. In order to detect the completion of melting, for example, in Japanese Patent Laid-Open No. 2-179811, it is confirmed whether all the charges in the metal refining furnace are melted by detecting the torque speed and / or vibration speed of the trunnion shaft. A method of detecting whether or not is disclosed. That is, in order to determine whether or not the metal in the refining furnace is completely melted, the torque speed and / or the vibration speed when a force in the rotational direction acts on the inner and outer gears of the trunnion shaft are detected. And this torque speed is 0
It is judged that when the charge in the furnace is completely melted, or when the vibration speed becomes relatively large.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、この従
来方法は金属精錬炉内の装入物が全て溶解しているか否
かを検出するものであって溶解途中の時々刻々の金属溶
解量を検出することは非常に困難であった。本発明は、
斯かる事情に鑑みてなされたものであり、溶解途中の金
属溶解量を時々刻々検出することが可能な金属精錬炉に
おける金属溶解量の検出方法を提供することを目的とす
る。
However, this conventional method is for detecting whether or not all the charges in the metal refining furnace are melted, and for detecting the amount of metal dissolved at every moment during melting. It was very difficult. The present invention is
The present invention has been made in view of such circumstances, and an object thereof is to provide a method for detecting a metal dissolution amount in a metal refining furnace capable of detecting the metal dissolution amount during melting every moment.

【0004】[0004]

【課題を解決するための手段】本発明者等は鋭意研究の
結果、前記金属溶解量はトラニオン軸の動歪み(変位加
速度)が有する振動数をFFTアナライザで解析したス
ペクトル強度と密接な関係があることを発見した。図4
は金属溶解量が大(A),中(B),小(C)であると
きの前記動歪みが有する振動数を周波数解析した場合の
周波数とスペクトル強度との関係を示す。このスペクト
ル強度は金属溶解量に係わらず1Hz付近で大きなピーク
を示し、そのピークは金属溶解量に応じて、金属溶解量
が大であるときは大きく、小であるときは小さく、金属
溶解量をよく反映している。本発明は、斯かる知見に基
づいてなされたものであり、トラニオン軸の軸方向に作
用する動歪みを検出し、その累計スペクトル強度から金
属溶解量を測定することにより、溶解途中の金属溶解量
を時々刻々検出することが可能な金属精錬炉における金
属溶解量の検出方法を提供することが可能となる。
As a result of earnest research by the present inventors, the amount of metal dissolved has a close relationship with the spectrum intensity obtained by analyzing the frequency of dynamic strain (displacement acceleration) of the trunnion shaft with an FFT analyzer. I found that. Figure 4
Shows the relationship between frequency and spectrum intensity when frequency analysis is performed on the frequency of the dynamic strain when the amount of dissolved metal is large (A), medium (B), and small (C). This spectral intensity shows a large peak near 1 Hz regardless of the amount of dissolved metal, and the peak is large when the amount of dissolved metal is large, small when it is small, and small when the amount of dissolved metal is small. It reflects well. The present invention has been made on the basis of such findings, detecting the dynamic strain acting in the axial direction of the trunnion shaft, and measuring the metal dissolution amount from the cumulative spectral intensity, the metal dissolution amount in the middle of melting It is possible to provide a method for detecting the amount of dissolved metal in a metal refining furnace, which can detect the moments every moment.

【0005】本発明に係る金属精錬炉における金属溶解
量検出方法は、回動可能に支持されたトラニオン軸によ
って両側を支持され、該トラニオン軸の回動で傾動可能
な金属精錬炉において、前記トラニオン軸の軸方向の動
歪みを検出し、該動歪みが有する振動数を周波数解析
し、該周波数解析により得られる振動数のスペクトルを
時間的に積算し、これにより得られる累計スペクトル強
度により金属溶解量を検出することを特徴とする。
According to the method for detecting the amount of dissolved metal in a metal refining furnace according to the present invention, both sides are supported by a trunnion shaft which is rotatably supported, and the trunnion is tiltable by the rotation of the trunnion shaft. The dynamic strain in the axial direction of the shaft is detected, the frequency of the dynamic strain is frequency-analyzed, the spectrum of the frequency obtained by the frequency analysis is temporally integrated, and the total spectrum intensity thus obtained is used to dissolve the metal. It is characterized by detecting the quantity.

【0006】[0006]

【作用】金属精錬炉内に装入物が充填されている場合、
炉内で生成された溶解物中に導入されたガスによって生
じるメタル浴の揺動は金属精錬炉本体からトラニオン軸
へ伝播される。この揺動による力は、トラニオン軸の回
転方向と共に軸方向へも作用する。ここでトラニオン軸
の回転方向に作用する力は、炉内に充填物が残存してい
る場合にはその充填物の偏在による影響を受け、メタル
浴の揺動による影響だけを分離することは困難である。
しかしながら、トラニオン軸の軸方向に作用する力は充
填物の偏在による影響をほとんど受けず、メタル浴の揺
動による力に大きく影響される。また軸方向に作用する
力は、金属精錬炉本体が有する固有振動数にも影響され
るためこれを除く必要がある。そこで軸方向の動歪みを
検出し、さらに周波数解析して炉体の固有振動数を排除
する。なお、この軸方向に作用する力を検出するには歪
み(変位)ではなく、動歪み(変位加速度)による方が
精度がよい。
[Operation] When the charge is filled in the metal refining furnace,
The fluctuation of the metal bath caused by the gas introduced into the melt produced in the furnace is propagated from the metal refining furnace body to the trunnion shaft. The force of this swing acts in the axial direction as well as the rotation direction of the trunnion shaft. Here, the force acting in the direction of rotation of the trunnion shaft is affected by the uneven distribution of the packing when the packing remains in the furnace, and it is difficult to separate only the effect of the rocking of the metal bath. Is.
However, the force acting in the axial direction of the trunnion shaft is hardly affected by the uneven distribution of the filler, and is greatly affected by the force caused by the rocking of the metal bath. Further, the force acting in the axial direction is also influenced by the natural frequency of the metal refining furnace main body, and therefore it must be removed. Therefore, the dynamic strain in the axial direction is detected, and the frequency is further analyzed to eliminate the natural frequency of the furnace body. In order to detect the force acting in the axial direction, it is more accurate to use dynamic strain (displacement acceleration) rather than strain (displacement).

【0007】一般に前述の金属精錬炉本体の固有振動数
は、金属精錬炉のサイズ,形状によって異なるが、3〜
6Hz域に存在することが知られている。 0.3Hz未満の振
動数域はFFTアナライザ及び動歪み測定器の性能上解
析は困難であり、またメタル浴の揺動とはほとんど関係
がない。
Generally, the natural frequency of the above-mentioned metal refining furnace body varies depending on the size and shape of the metal refining furnace.
It is known to exist in the 6 Hz range. The frequency range below 0.3 Hz is difficult to analyze due to the performance of the FFT analyzer and the dynamic strain measuring instrument, and has little relation to the fluctuation of the metal bath.

【0008】そこで最もメタル浴の揺動と関係が深いと
考えられる 0.3〜3.0 Hzの振動域の累計スペクトル強度
を、銑鉄を連続的に製造する操業において計測した。図
5は0.3〜3.0 Hz域の累計スペクトル強度の経時変化を
示すグラフであり、送風時間(60分を1.0とする)を横
軸にとり、累計スペクトル強度(基本の振幅に対する比
率)(○)及びストックレベル(×)を縦軸にとって示
してある。なおスクラップ比率は75%,鉱石比率は25%
であり、60分後の溶銑重量は7.59tである。図5より明
らかな如く累計スペクトル強度は経時変化に伴い高くな
り、ストックレベルは溶解(経時変化)に伴い固体物が
液体の流動物に変化するので減少する。このように累計
スペクトル強度とストックレベルとの間には相関関係が
認められる。従って 0.3〜3.0 Hz域の累計スペクトル強
度と炉内の金属溶解量との関係を予め求めておけば、溶
解途中の累計スペクトル強度から炉内の金属溶解量を推
定することができる。
Then, the cumulative spectrum intensity in the vibration range of 0.3 to 3.0 Hz, which is considered to be most closely related to the fluctuation of the metal bath, was measured in the operation of continuously producing pig iron. Fig. 5 is a graph showing the change over time in the cumulative spectrum intensity in the 0.3 to 3.0 Hz range, with the horizontal axis representing the blow time (60 minutes is 1.0), and the cumulative spectrum intensity (ratio to the basic amplitude) (○ ) And stock level (x) are plotted on the vertical axis. The scrap ratio is 75%, ore ratio is 25%
And the weight of hot metal after 60 minutes is 7.59t. As is clear from FIG. 5, the cumulative spectrum intensity increases with the lapse of time, and the stock level decreases as the solid material changes to a liquid fluid with the dissolution (change with time). Thus, there is a correlation between the cumulative spectrum intensity and the stock level. Therefore, if the relationship between the cumulative spectral intensity in the 0.3 to 3.0 Hz range and the amount of dissolved metal in the furnace is obtained in advance, the amount of dissolved metal in the furnace can be estimated from the cumulative spectral intensity during melting.

【0009】本発明にあっては、トラニオン軸の軸方向
に作用する動歪みが有する振動数を周波数解析し、これ
により得られる累計スペクトル強度に基づいて金属溶解
量を検出することにより、正確に溶解途中の金属溶解量
を時々刻々検出することが可能となる。
According to the present invention, the frequency of the frequency of the dynamic strain acting in the axial direction of the trunnion shaft is analyzed, and the amount of metal dissolved is detected accurately based on the cumulative spectrum intensity obtained by the frequency analysis. It is possible to detect the amount of metal dissolved during melting every moment.

【0010】[0010]

【実施例】以下、本発明をその実施例を示す図面に基づ
き具体的に説明する。図1は、本発明に係る金属精錬炉
における金属溶解量検出方法の実施に用いる装置の構成
を示す模式図である。図中1は、筒型の精錬炉1であ
り、この精錬炉1を支持するトラニオン軸2が両側に連
設されている。このトラニオン軸2は、基台3上に配設
されたトラニオン軸受4に回動自在に支持されており、
トラニオン軸2の一方側には、ギア5が連結されてい
る。そしてこのギア5に動力が伝えられて精錬炉1を回
動せしめるようになしてある。そして前記精錬炉1内に
金属スクラップが装入され、さらに酸素が吹き込まれて
酸化されて金属スクラップが溶解し、この溶解完了後
に、トラニオン軸2の回動により精錬炉1が傾動され内
部の溶解金属が出湯されるようになしてある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings showing the embodiments. FIG. 1 is a schematic diagram showing the configuration of an apparatus used for carrying out the method for detecting a dissolved metal amount in a metal refining furnace according to the present invention. In the figure, reference numeral 1 denotes a cylindrical refining furnace 1, and a trunnion shaft 2 for supporting the refining furnace 1 is continuously provided on both sides. The trunnion shaft 2 is rotatably supported by a trunnion bearing 4 arranged on a base 3.
A gear 5 is connected to one side of the trunnion shaft 2. The power is transmitted to the gear 5 so that the refining furnace 1 can be rotated. Then, metal scrap is charged into the refining furnace 1 and further oxygen is blown into the refining furnace to oxidize and melt the metal scrap. After completion of the melting, the trunnion shaft 2 is rotated to tilt the refining furnace 1 to melt the inside. The metal is designed to be tapped.

【0011】そして上述の如き構成の金属精錬炉におい
て本発明では、トラニオン軸2の精錬炉1とトラニオン
軸受4との間に位置する表面に歪ゲージ6が貼付されて
おり、この歪ゲージ6にはトラニオン軸2の軸方向の動
歪みを検出するために動歪み測定器7が接続されてい
る。さらに検出した動歪みが有する振動数をスペクトル
解析し累計するFFTアナライザ8が接続されている。
In the metal refining furnace having the above-mentioned structure, in the present invention, the strain gauge 6 is attached to the surface of the trunnion shaft 2 located between the refining furnace 1 and the trunnion bearing 4, and the strain gauge 6 is attached to the surface. Is connected to a dynamic strain measuring instrument 7 for detecting dynamic strain in the axial direction of the trunnion shaft 2. Further, an FFT analyzer 8 for spectrally analyzing and accumulating the frequencies of the detected dynamic strains is connected.

【0012】以上の如き装置を用いての具体的な実験例
について説明する。図2は、炉内装入物分布を示す説明
図である。使用した精錬炉1は上部に開口部11を設けた
筒型であり、直径 1.5m、炉底から炉口までの高さ 3.6
m、内容積6.0m3 である。この精錬炉1の炉底部には
底吹羽口12及び出銑口13を設け、炉底から上方へ 0.8,
1.4, 2.0mの炉壁に夫々一次羽口14,下段二次羽口1
5,上段二次羽口16を設けてある。これらは全て炉壁の
周方向90°間隔の4本の羽口で構成されている。また一
次羽口14の下側には排滓口17が設けてある。底吹羽口12
へは支燃性ガスが導入され、下,上段二次羽口15,16へ
は支燃性ガス又は窒素ガスを切り換えて導入するように
なしてある。また一次羽口へは支燃性ガス及び非塊状燃
料を導入するようになしてある。一次羽口14,下,上段
二次羽口15,16へ導入する支燃性ガスは純酸素を使用し
た。
A concrete experimental example using the above apparatus will be described. FIG. 2 is an explanatory diagram showing the distribution of the contents inside the furnace. The refining furnace 1 used was a cylinder type with an opening 11 at the top, with a diameter of 1.5 m and a height from the bottom to the mouth of the furnace of 3.6 m.
m, and the internal volume is 6.0 m 3 . The bottom of the smelting furnace 1 is provided with a bottom blowhole 12 and a taphole 13 so that 0.8
Primary tuyeres 14 and lower secondary tuyeres 1 on 1.4 and 2.0 m furnace walls, respectively
5, upper secondary tuyeres 16 are provided. These are all composed of four tuyeres at 90 ° intervals in the circumferential direction of the furnace wall. A slag spout 17 is provided below the primary tuyere 14. Bottom Bluff 12
A combustion-supporting gas is introduced into the lower secondary upper tuyeres 15 and 16 and the combustion-supporting gas or nitrogen gas is switched and introduced into the lower secondary tuyeres 15 and 16. In addition, combustion-supporting gas and non-lumped fuel are introduced into the primary tuyere. Pure oxygen was used as the combustion-supporting gas to be introduced into the primary tuyere 14, lower and upper secondary tuyere 15, 16.

【0013】鉄源としては最大寸法 400mm角、嵩比重
3.5t/m3 のスクラップ(鉄純度99%)と表1に示す
成分を有する粒度約10mmの塊状鉄鉱石を用いた。塊状コ
ークスは粒度20〜70mmのものを使用し、その組成は表2
に示す。また一次羽口へ導入する非塊状燃料としては 2
00メッシュ篩下が80重量%以上の微粉炭を使用し、この
組成も表2に示す。
As an iron source, the maximum size is 400 mm square, bulk specific gravity
A 3.5 t / m 3 scrap (iron purity 99%) and a lumpy iron ore having the components shown in Table 1 and a particle size of about 10 mm were used. The block coke has a grain size of 20-70 mm and its composition is shown in Table 2.
Shown in. In addition, as non-lumped fuel to be introduced into the primary tuyere, 2
Pulverized coal of which the amount under the 00 mesh sieve is 80% by weight or more is used, and its composition is also shown in Table 2.

【0014】[0014]

【表1】 [Table 1]

【0015】そして図2に示す如き層構造の原料装入を
行う。即ち下方からコークス充填層(c),スクラップ
・鉱石充填層(s),コークス充填層,スクラップ・鉱
石充填層及びコークス充填層の順の層構造(図2(a))、
又はコークス充填層,スクラップ・鉱石充填層,コーク
ス充填層,スクラップ・鉱石充填層,コークス充填層及
びスクラップ・鉱石充填層の順の層構造(図2(b))を有
するように装入する。そして底吹羽口12へは 100Nm3
Hrの酸素ガスと 300Nm3 /Hrの窒素ガスとを導入し、一
次羽口14へは1000Nm3 /Hrの酸素ガスと1200kg/Hrの微
粉炭とを導入し、下,上段二次羽口15,16へは合わせて
500Nm3 /Hrの酸素ガスを導入して銑鉄を連続的に製造
した。
Then, a raw material having a layered structure as shown in FIG. 2 is charged. That is, from the bottom, a coke packed bed (c), a scrap / ore packed bed (s), a coke packed bed, a scrap / ore packed bed, and a coke packed bed in that order (FIG. 2 (a)),
Alternatively, the coke packed bed, the scrap / ore packed bed, the coke packed bed, the scrap / ore packed bed, the coke packed bed, and the scrap / ore packed bed are charged in this order to have a layered structure (FIG. 2 (b)). And 100 Nm 3 / to the bottom blowhole 12
Introducing a nitrogen gas of oxygen gas and 300 Nm 3 / Hr for Hr, the primary tuyeres 14 introduces the pulverized coal of an oxygen gas and 1200 kg / Hr of 1000 Nm 3 / Hr, lower, upper secondary tuyeres 15 To 16
Pig iron was continuously produced by introducing oxygen gas of 500 Nm 3 / Hr.

【0016】次にFFTアナライザ8により 0.3〜3.0
Hz域のスペクトル強度を累計して出銑量との対応をとっ
た結果について説明する。図3は 0.3〜3.0 Hz域の累計
スペクトル強度と炉内の製造溶銑量との関係を示す。な
お製造溶銑量はロードセルで測定した。またスクラップ
比率は75%,鉱石比率は25%である。図3より3〜9t
の広範囲の溶銑量にわたって±10%以内の精度で推定可
能であることがわかる。
Next, the FFT analyzer 8 uses 0.3 to 3.0.
The result of accumulating the spectrum intensity in the Hz range and making correspondence with the amount of tapped metal will be described. Figure 3 shows the relationship between the cumulative spectral intensity in the 0.3-3.0 Hz range and the amount of hot metal produced in the furnace. The amount of hot metal produced was measured with a load cell. The scrap ratio is 75% and the ore ratio is 25%. From 3 to 9t
It can be estimated that the accuracy can be estimated within ± 10% over a wide range of hot metal.

【0017】また前記スクラップと鉱石との比率を変化
させた場合の結果を表3に示す。表3より明らかな如く
スクラップと鉱石との比率に関わりなく検出精度は±10
%以内であった。ここで鉱石比率が高くなるに従い精度
が低下するのは、鉱石,コークス及び石炭の燃料から生
成するスラグ量が増加してメタル浴の揺動が妨げられる
ため、または鉱石は棚吊りが発生しやすいため、炉内で
ガスの片流れが生じて炉体の揺動に影響を及ぼすものと
考えられる。
Table 3 shows the results when the ratio of the scrap to the ore was changed. As is clear from Table 3, the detection accuracy is ± 10 regardless of the ratio of scrap to ore.
It was within%. Here, the accuracy decreases as the ore ratio increases, because the amount of slag generated from the fuel of ore, coke and coal increases and the rocking of the metal bath is hindered, or the ore is easily suspended. Therefore, it is considered that one-sided gas flow occurs in the furnace and affects the swing of the furnace body.

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【発明の効果】以上のように、本発明方法にあっては、
トラニオン軸の軸方向の動歪みより得られる累計スペク
トル強度に基づいて金属溶解量を検出するので、金属溶
解量を正確に検知することが可能となる等、本発明は優
れた効果を奏する。
As described above, according to the method of the present invention,
Since the metal dissolution amount is detected based on the cumulative spectrum intensity obtained from the dynamic strain of the trunnion shaft in the axial direction, the present invention has an excellent effect such that the metal dissolution amount can be accurately detected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る金属精錬炉における金属溶解量検
出方法の実施に用いる装置の構成を示す模式図である。
FIG. 1 is a schematic diagram showing a configuration of an apparatus used for carrying out a method for detecting a dissolved metal amount in a metal refining furnace according to the present invention.

【図2】炉内装入物分布を示す説明図である。FIG. 2 is an explanatory diagram showing a distribution of contents in a furnace interior.

【図3】0.3〜3.0 Hz域の累計スペクトル強度と炉内の
製造溶銑量との関係を示す。
FIG. 3 shows the relationship between the cumulative spectrum intensity in the 0.3 to 3.0 Hz region and the amount of hot metal produced in the furnace.

【図4】周波数とスペクトル強度との関係を示す。FIG. 4 shows the relationship between frequency and spectral intensity.

【図5】累計スペクトル強度の経時変化を示すグラフで
ある。
FIG. 5 is a graph showing changes in cumulative spectrum intensity over time.

【符号の説明】 1 精錬炉 2 トラニオン軸 3 基台 4 トラニオン軸受 5 ギア 6 歪ゲージ 7 動歪み測定器 8 FFTアナライザ 11 開口部 12 底吹羽口 13 出銑口 14 一次羽口 15 下段二次羽口 16 上段二次羽口 17 排滓口[Explanation of reference symbols] 1 refining furnace 2 trunnion shaft 3 base 4 trunnion bearing 5 gear 6 strain gauge 7 dynamic strain measuring instrument 8 FFT analyzer 11 opening 12 bottom blowing port 13 taphole 14 primary tuyere 15 lower secondary Tuyere 16 Upper tier Secondary tuyere 17 Discharge mouth

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 回動可能に支持されたトラニオン軸によ
って両側を支持され、該トラニオン軸の回動で傾動可能
な金属精錬炉において、前記トラニオン軸の軸方向の動
歪みを検出し、該動歪みが有する振動数を周波数解析
し、該周波数解析により得られる振動数のスペクトルを
時間的に積算し、これにより得られる累計スペクトル強
度により金属溶解量を検出することを特徴とする金属精
錬炉における金属溶解量検出方法。
1. In a metal refining furnace which is supported on both sides by a rotatably supported trunnion shaft and can be tilted by the rotation of the trunnion shaft, a dynamic strain in the axial direction of the trunnion shaft is detected, and the motion is detected. In a metal refining furnace characterized by frequency-analyzing the frequency of the strain, temporally integrating the spectrum of the frequency obtained by the frequency analysis, and detecting the amount of metal dissolved by the cumulative spectrum intensity obtained thereby. Metal dissolution amount detection method.
JP26937092A 1992-09-10 1992-09-10 Metal melting amount detection method in metal smelting furnace Expired - Fee Related JP3321848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26937092A JP3321848B2 (en) 1992-09-10 1992-09-10 Metal melting amount detection method in metal smelting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26937092A JP3321848B2 (en) 1992-09-10 1992-09-10 Metal melting amount detection method in metal smelting furnace

Publications (2)

Publication Number Publication Date
JPH0693323A true JPH0693323A (en) 1994-04-05
JP3321848B2 JP3321848B2 (en) 2002-09-09

Family

ID=17471452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26937092A Expired - Fee Related JP3321848B2 (en) 1992-09-10 1992-09-10 Metal melting amount detection method in metal smelting furnace

Country Status (1)

Country Link
JP (1) JP3321848B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111323115A (en) * 2020-03-11 2020-06-23 宁波奥克斯电气股份有限公司 Method and system for testing abnormal sound of indoor unit of air conditioner
CN115161575A (en) * 2022-06-30 2022-10-11 张源 Hot galvanizing zinc melting system for metal products

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111323115A (en) * 2020-03-11 2020-06-23 宁波奥克斯电气股份有限公司 Method and system for testing abnormal sound of indoor unit of air conditioner
CN111323115B (en) * 2020-03-11 2022-06-14 宁波奥克斯电气股份有限公司 Method and system for testing abnormal sound of indoor unit of air conditioner
CN115161575A (en) * 2022-06-30 2022-10-11 张源 Hot galvanizing zinc melting system for metal products

Also Published As

Publication number Publication date
JP3321848B2 (en) 2002-09-09

Similar Documents

Publication Publication Date Title
KR20110138145A (en) Measuring probes for measuring and taking samples with a metal melt
EP0187861A1 (en) Apparatus for preheating and charging raw materials for electric furnace
Williams Control and analysis in iron and steelmaking
CN111944942B (en) Dynamic tapping control method and device for eccentric furnace bottom of converter
Zhang et al. Temperature field distribution of a dissected blast furnace
JPH0693323A (en) Detection of melting ratio of metal in metal refining furnace
CN105154716B (en) Titanium-aluminium alloy preparation method and preparation facilitiess
JP2003511558A (en) Method and apparatus for surrounding an arc discharge
US4096918A (en) Metallurgical vat support system
CA2131428C (en) Alloy material addition method and apparatus for smelting and melting furnaces
JPH0734112A (en) Detection of amount of molten metal accumulated in refining furnace
CA2406394A1 (en) A method of operating a steelmaking furnace during a steelmaking process
JPH1183330A (en) Melting progress evaluation method for arc melting furnace
JPS5830656A (en) Judgement of agitation in molten material or others
JP2830347B2 (en) Measurement method for layer height of smelting furnace interior
JP3553107B2 (en) Smelting reduction method with improved recovery of metal components
TSAI et al. Model study on shaking ladle
CN112880410B (en) Feeding device used in iron casting smelting process
JPH0461045B2 (en)
EP4269625A1 (en) Method for detecting remaining amount of liquid and detection device for same, method for detecting remaining amount of molten substance and detection device for same, and vertical furnace operation method
JP2000256712A (en) Method for controlling distribution of charged material in furnace opening part of blast furnace
JP2897363B2 (en) Hot metal production method
EP4269626A1 (en) Detection method and detection device for liquid level height of liquid, detection method and detection device for liquid level height of molten material, and operation method for vertical furnace
Kamalpour et al. The Behaviour of coke in submerged arc furnace smelting of ferromanganese
JPH0931507A (en) Method for tracking charged material in blast furnace

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees