JPH0693270A - Production of rodlike pitch - Google Patents

Production of rodlike pitch

Info

Publication number
JPH0693270A
JPH0693270A JP24155692A JP24155692A JPH0693270A JP H0693270 A JPH0693270 A JP H0693270A JP 24155692 A JP24155692 A JP 24155692A JP 24155692 A JP24155692 A JP 24155692A JP H0693270 A JPH0693270 A JP H0693270A
Authority
JP
Japan
Prior art keywords
pitch
cooling
rod
molten
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP24155692A
Other languages
Japanese (ja)
Inventor
Koji Sato
藤 幸 治 佐
Akihiro Yamauchi
内 昭 宏 山
Masao Tsuzaki
崎 昌 夫 津
Masayuki Ando
藤 正 幸 安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP24155692A priority Critical patent/JPH0693270A/en
Publication of JPH0693270A publication Critical patent/JPH0693270A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Working-Up Tar And Pitch (AREA)

Abstract

PURPOSE:To obtain rodlike pitch of high mechanical strength, good in handleability, formable in any dimension, by regulating the viscosity of coal- or petroleum-based molten pitch within a specific range followed by extruding the molten pitch through a die and then cutting it to a specified length. CONSTITUTION:Using a cool forming device 1 consisting of a double pipe made up of an outer pipe 1a and inner pipe 1b, the outer pipe 1a is injected with cooling water at 80 deg.C, while the inner pipe 1b with coal- or petroleum-based molten pitch, through a high-pressure pump 4 to regulate the viscosity of the pitch to 1000-100000 poise followed by horizontally extruding the pitch via a circular die 20mm in diameter into the air, and the pitch is then cut to a specified length using a guillotine cutter 3; the resultant rodlike pitch 8 is carried under air cooling on a belt conveyor 7 and allowed to fall into the water in a cooling tank 9 to effect complete solidification, thus obtaining the rodlike pitch having the above-mentioned advantages.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、棒状ピッチの製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a rod-shaped pitch.

【0002】[0002]

【従来の技術】従来固形ピッチの製造方法には種々の方
法がある(「芳香族及びタール工業ハンドブック」昭和
53年12月、(社)日本芳香族工業会発行)。このう
ち、棒状ピッチの製造法として垂直冷却槽式では、前工
程で製造されたピッチをある程度冷却後、ピッチノズル
から冷却槽の中の水中に流出降下させ、これにより棒状
に固化したピッチを冷却槽の底部近くに設けたカッタ付
きのスクリューコンベアーによって切断し、バケットエ
レベーターによって冷却槽外へ搬出される。このペレッ
トを乾燥したものを最終製品としていた。
2. Description of the Related Art There are various conventional methods for producing solid pitch ("Aromatic and Tar Industry Handbook", December 1978, published by Japan Aromatic Industry Association). Among them, in the vertical cooling tank type as a method of manufacturing the rod-shaped pitch, after cooling the pitch manufactured in the previous step to some extent, it is made to flow out and fall from the pitch nozzle into the water in the cooling tank, thereby cooling the solidified pitch in the rod shape. It is cut by a screw conveyor with a cutter provided near the bottom of the tank and is carried out of the cooling tank by a bucket elevator. The final product was obtained by drying these pellets.

【0003】しかしながら、上記のような従来の棒状ピ
ッチの製造方法にあっては、冷却槽内においてピッチが
何回もカッタによって切断される可能性があるため、棒
状のピッチを切断する際に粉末、破片等が発生し、歩留
りが悪く作業環境も悪いといった問題があった。また、
この棒状のピッチは端面に角部(エッジ)を有してお
り、輸送作業等において、この端面が破砕し、粉化し、
製品歩留りの低下、製品品質の低下及び作業環境を悪く
する等の問題があった。また、このようなピッチは、急
冷固化されるため棒径が細く、内部に空孔、空洞、もし
くは水分が残存し易く、また、強度的にも弱いという問
題点があった。
However, in the conventional method for manufacturing a rod-shaped pitch as described above, since the pitch may be cut by the cutter many times in the cooling tank, the powder may be cut when the rod-shaped pitch is cut. However, there are problems such as generation of debris, poor yield, and poor working environment. Also,
This rod-shaped pitch has corners (edges) on the end surface, and during transportation work, etc., this end surface is crushed and pulverized,
There were problems such as a decrease in product yield, a decrease in product quality, and a bad working environment. Further, such a pitch has a problem that the diameter of the bar is small because it is rapidly cooled and solidified, and holes, cavities, or moisture are likely to remain inside and the strength is weak.

【0004】この問題点を解決する方法として、ピッチ
の形状を球状にする方法が、例えば、特公昭60−10
1190号、特公昭61−23957号、特開昭63−
139981号公報等に開示されている。
As a method of solving this problem, there is a method of making the pitch shape spherical, for example, Japanese Patent Publication No. 60-10.
No. 1190, Japanese Patent Publication No. 61-23957, JP-A No. 63-
It is disclosed in Japanese Patent No. 139981.

【0005】しかしながら、これらの方法では、得られ
るピッチは、棒状ではなく、球状、もしくはこれの類似
体であり、球状品は、棒状品に比較して落下衝撃に弱く
(粉化し易い)、安息角が小さいため貯蔵時に不安定
(山積み高さを大きくできない)と言ったハンドリング
特性上の問題点がある。また、粘度の低い溶融状態のピ
ッチを冷却槽の水中に押し出し、押し出すと同時に水中
カッティングするため、水による抵抗によって変形した
り、急冷固化時の密度変化が大きいため残留応力や内部
空隙の発生する可能性が高く、欠陥が出易くなるという
問題点があった。
However, in these methods, the pitch obtained is not rod-like but spherical or an analogue thereof, and the spherical product is more vulnerable to drop impact (prone to powdering) than the rod-like product, and has a rest position. Since the corners are small, there is a problem in handling characteristics that it is unstable during storage (the pile height cannot be increased). In addition, the pitch of molten state with low viscosity is extruded into the water in the cooling tank, and at the same time as it is extruded, it is deformed by resistance due to water, and residual stress and internal voids are generated due to large density change during rapid cooling and solidification. There is a problem that there is a high possibility that defects are likely to occur.

【0006】更につけ加えると、従来法では、全般的
に、成形される粘度が低く、カッティング断面も含めた
成形性の面で問題点があり、また、棒状ピッチにおいて
は、限定された棒径(15mmφ以下)に自然に破断さ
れる長さとなり、棒径、棒長を任意に制御し、棒径20
mmφ程度の太径品を安定的に製造することは不可能で
あった。
In addition, in the conventional method, the viscosity of the molded product is generally low, and there are problems in moldability including the cutting cross section. Further, in the bar-shaped pitch, a limited bar diameter ( (15 mmφ or less), the length will naturally break, and the rod diameter and rod length can be controlled as desired to obtain a rod diameter of 20
It has been impossible to stably manufacture a large-diameter product having a diameter of about mmφ.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上述するよ
うな問題点を解消し、成形性に優れ、形状が良好で製品
中に変形品、端面の角部(エッジ)がなく、内部に水分
を有さず、また、成形後の残留応力や内部空隙による破
断、粉化が起こりにくく、ハンドリング特性にも優れた
棒状ピッチを任意の寸法で成形可能な棒状ピッチの製造
方法を提供することを目的とするものである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems, is excellent in moldability, has a good shape, does not have a deformed product in the product, and has no end surface corners (edges). To provide a method for producing a rod-shaped pitch that does not have water content, is less likely to be broken by residual stress and internal voids after molding, powdering, and is excellent in handling characteristics and can be formed into a rod-shaped pitch with arbitrary dimensions. The purpose is.

【0008】[0008]

【課題を解決するための手段】本発明者らは、前述の目
的を達成するために鋭意検討した結果、溶融ピッチの粘
度を従来行われていない高粘度域に調整した後、ダイス
より押し出し、カッティングすることで、成形性、成形
体緻密性に優れ、かつ形状(棒径、棒長)をコントロー
ルできることを見出し、本発明を完成させるに至った。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies in order to achieve the above-mentioned object, and as a result, after adjusting the viscosity of the molten pitch to a high viscosity range which has not been conventionally performed, extruding from a die, The present invention has been completed by finding that cutting can be excellent in moldability and compactness of a molded body and the shape (bar diameter, bar length) can be controlled by cutting.

【0009】すなわち、本発明は、石炭系あるいは石油
系の溶融ピッチから棒状ピッチを冷却固化成形するにあ
たり、溶融ピッチの粘度を 1,000〜100,000 ポアズに調
整した後溶融ピッチをダイスより押し出し、所定の長さ
に切断することを特徴とする棒状ピッチの製造方法を提
供するものである。ここで、粘度調整後の押出時には溶
融ピッチは加圧押出するのが望ましく、また押出用ダイ
スは加温したダイスを用いるのが好ましい。
That is, according to the present invention, when the rod-shaped pitch is cooled and solidified from the coal-based or petroleum-based molten pitch, the viscosity of the molten pitch is adjusted to 1,000 to 100,000 poise and then the molten pitch is extruded from the die to obtain a predetermined length. The present invention provides a method for manufacturing a rod-shaped pitch, which is characterized by cutting into pieces. Here, at the time of extrusion after adjusting the viscosity, it is desirable to extrude the melt pitch under pressure, and it is preferable to use a heated die as the extrusion die.

【0010】[0010]

【作用】以下に本発明をさらに詳細に説明する。まず、
図1および図2につき本発明の態様の一つについて説明
する。これらの図において同様の部分は同一番号にて示
す。図1の例では、溶融ピッチの粘度調整機として2重
管高圧押出機を用い、押し出し方向は横向き、カッティ
ング方法はギロチン方式または回転刃を採用し、図2の
例は、粘度調整機として2重管高圧押出機を用い、押し
出し方向は下向き、カッティング方式はロールカッティ
ングを採用した場合の構成例である。
The present invention will be described in more detail below. First,
One of the embodiments of the present invention will be described with reference to FIGS. 1 and 2. Similar parts in these figures are indicated by the same reference numerals. In the example of FIG. 1, a double-tube high-pressure extruder is used as a melt pitch viscosity adjuster, the extrusion direction is horizontal, and the cutting method is a guillotine method or a rotary blade, and the example of FIG. 2 is a viscosity adjuster. This is a configuration example in which a heavy-duty high-pressure extruder is used, the extrusion direction is downward, and the cutting method is roll cutting.

【0011】さらに詳しく説明すると、上記構成例にお
いて、冷却成形装置本体1は外管1aおよび内管1bの
2重管になっており、外管1aに温度調節した冷却媒
体、内管1bに溶融ピッチを流し、粘度 1,000〜100,00
0 ポアズの成形維持できる高粘度まで冷却し成形ダイス
2で成形後、高圧ポンプ4によって空中に横方向に押し
出し、任意の長さにカッティング装置(ギロチン方式ま
たは回転刃3あるいはロールカッティング方式11)で
カッティングを行う。カッティングされた棒状ピッチ8
は、ベルトコンベアー7で空冷搬送し、冷却槽内9の水
中に自然落下させ完全に固化する。なお、外管1aには
冷媒ユニット5および温度調節用冷却装置によって冷媒
が流され、内管1b内の溶融ピッチを冷却する。また、
冷却されて高粘度化した溶融ピッチをより容易に押出成
形できるように、ダイス2は加温装置10によって加温
してもよい。
More specifically, in the above configuration example, the cooling molding apparatus main body 1 is a double tube consisting of an outer tube 1a and an inner tube 1b, and a temperature-controlled cooling medium is melted in the outer tube 1a and the inner tube 1b. Pitch is flown and viscosity is 1,000-100,00
0 Poise molding After cooling to a high viscosity that can be maintained and molding with a molding die 2, it is laterally pushed into the air by a high-pressure pump 4 and cut to an arbitrary length with a cutting device (guillotine method or rotary blade 3 or roll cutting method 11). Cut. Cut rod pitch 8
Is conveyed by air cooling on the belt conveyor 7 and naturally falls into the water in the cooling tank 9 to be completely solidified. The outer pipe 1a is supplied with a coolant by the coolant unit 5 and the temperature control cooling device, and cools the molten pitch in the inner pipe 1b. Also,
The die 2 may be heated by the heating device 10 so that the melted pitch that has been cooled and increased in viscosity can be more easily extruded.

【0012】図3には更に他の例を示す。この例では冷
却成形装置本体1は押し出し成形機になっており、冷媒
を流すための外管1a、溶融ピッチを流すための内管1
bおよび冷却されつつある溶融ピッチを強制的に圧送す
るスクリュー1cで構成されている以外は、実質的に図
2と同様の構成である。この例では、スクリューモータ
12によって作動されるスクリュー1cによって加圧・
混合しつつピッチを押し出し成形することができる。こ
の場合にも、ダイス2を加温装置10によって加温して
もよいのは勿論のことである。
FIG. 3 shows still another example. In this example, the cooling molding apparatus main body 1 is an extrusion molding machine, and an outer pipe 1a for flowing a refrigerant and an inner pipe 1 for flowing a molten pitch.
b is substantially the same as that shown in FIG. 2 except that the screw 1c forcibly feeds the molten pitch that is being cooled. In this example, pressure is applied by the screw 1c operated by the screw motor 12.
The pitch can be extruded while mixing. In this case as well, it goes without saying that the die 2 may be heated by the heating device 10.

【0013】図4に示す例は、冷却成形装置本体1は、
冷媒を流すための外管1a、溶融ピッチを流すための内
管1bおよび高圧ポンプ4で送られてきたピッチを攪拌
して溶融ピッチの内管内での温度勾配をなくすためのス
タテックミキサーで例示されているミキサー1dで構成
されている以外は、実質的に図2と同様の構成である。
In the example shown in FIG. 4, the cooling molding apparatus body 1 is
An example is a static mixer for eliminating the temperature gradient in the inner tube of the molten pitch by stirring the outer tube 1a for flowing the refrigerant, the inner tube 1b for flowing the molten pitch, and the pitch sent by the high-pressure pump 4. The configuration is substantially the same as that of FIG. 2 except that the configuration is the mixer 1d.

【0014】図3、図4の方式では、溶融ピッチを固化
直前の高粘度域、言い換えると粘性変形点(Ring & Ba
ll法での軟化点以下)まで混合しながら徐冷却すること
によって、ピッチ内部の温度勾配をほとんど無くし、残
留応力の低減をはかり、ピッチの強度を上げることが可
能となった。また、図3のスクリュー1cや図4のスタ
ティックミキサー1dの内部にも冷媒を通すことによ
り、ピッチの冷却と温度の均一化はいっそう効果的に行
える。
In the system shown in FIGS. 3 and 4, the molten pitch is in the high viscosity region immediately before solidification, in other words, the viscous deformation point (Ring & Ba).
By gradually cooling while mixing to the softening point (below the ll method), it became possible to eliminate the temperature gradient inside the pitch, reduce residual stress, and increase the strength of the pitch. Further, by passing the refrigerant through the screw 1c of FIG. 3 and the static mixer 1d of FIG. 4, the pitch can be cooled and the temperature can be made more uniform.

【0015】ここで、温度勾配(例えば、ピッチ表面−
中心部温度差/棒半径)と強度の関係を簡単に補足す
る。一般に、熱応力は、温度匂配に比例するため、温度
勾配が大きければ、熱応力も大きくなる。物性変形点の
無い完全な弾性体であれば、加熱、冷却途中に生じた熱
応力は、全体面が最終的に一定温度均一になれば自ら無
くなるはずであるが、一定温度になる間に塑性変形や粘
性変形が介在すると、熱応力が残留し残留応力が発生す
る。ピッチの場合は、一定温度になるまで完全固化する
過程で、粘性変形点(換言するとRing & Ball法での軟
化点)が存在するので、熱応力は残留応力として残ると
考えられる。したがって、冷却過程での温度勾配が大き
ければ残留応力は大きくなり、強度的に弱くなるので、
ピッチの強度向上に粘性変形温度領域での徐冷却が大い
に効果的である。
Here, a temperature gradient (for example, pitch surface-
The relationship between the center temperature difference / bar radius) and strength will be briefly supplemented. In general, the thermal stress is proportional to the temperature gradient, so that the larger the temperature gradient, the larger the thermal stress. If it is a perfect elastic body with no physical property deformation point, the thermal stress generated during heating and cooling should disappear by itself when the entire surface finally becomes uniform at a constant temperature, but it becomes plastic during the constant temperature. When deformation or viscous deformation is involved, thermal stress remains and residual stress occurs. In the case of pitch, there is a viscous deformation point (in other words, a softening point in Ring & Ball method) in the process of complete solidification until it reaches a constant temperature, so it is considered that thermal stress remains as residual stress. Therefore, if the temperature gradient in the cooling process is large, the residual stress will be large and the strength will be weakened.
Gradual cooling in the viscous deformation temperature range is very effective in improving the strength of the pitch.

【0016】加えて、高圧圧送もしくは、トルクによる
圧送によって、ピッチ内部の空孔、空洞、内部水分を無
くし、組織の緻密化を行うことが可能となり、このこと
が、ピッチの強度向上に大きく寄与する。
In addition, by high pressure pumping or torque pumping, it becomes possible to eliminate pores, cavities and internal water inside the pitch and to densify the structure, which greatly contributes to the improvement of pitch strength. To do.

【0017】上記の方法において、装置内徐冷の後、先
端成形部を加温してピッチ表面のみを局部的に温めるこ
とで、先端でピッチ表面が成形管(ダイス)内壁と固着
等による抵抗を持たず、安定に連続処理できる。
In the above method, after gradually cooling the inside of the apparatus, the tip molding portion is heated to locally warm only the pitch surface, so that the pitch surface is fixed to the inner wall of the molding pipe (die) at the tip and the resistance due to sticking or the like occurs. It can be stably processed continuously without having.

【0018】いずれの方式も固化直前の高粘度まで冷却
しカッティングすることによって、成形性を有している
ことからカッティングによる変形がなくなる。一方で、
ピッチの表面張力によってカット面には角ばった部分
(エッジ)がなく丸みを有することによって粉化しにく
くなると言った効果がある。また、棒状品にする事によ
って、球状品の問題点である落下衝撃に弱い(粉化し易
い)、安息角が小さいため貯蔵時に不安定(山積み高さ
を大きくできない)と言ったハンドリング特性上の問題
点の解消にも効果がある。また、成形ダイスの孔径、も
しくはカッター刃の動作(回転数)を任意に設定するこ
とで形状(棒径、棒長)を制御することが可能である。
In any of the methods, by cooling to a high viscosity immediately before solidification and cutting, since it has moldability, deformation due to cutting is eliminated. On the other hand,
Due to the surface tension of the pitch, the cut surface does not have angular portions (edges) and has a rounded shape, which has the effect of making it difficult to pulverize. In addition, by using a rod-shaped product, it is vulnerable to drop impact (prone to powdering), which is a problem of spherical products, and unstable at storage (the pile height cannot be increased) due to a small angle of repose. It is also effective in eliminating problems. Further, the shape (bar diameter, bar length) can be controlled by arbitrarily setting the hole diameter of the molding die or the operation (rotation speed) of the cutter blade.

【0019】なお、本発明において、溶融ピッチの粘度
領域を 1,000〜100,000 ポアズとしたのは以下の理由に
よる。即ち、1,000 ポアズ未満では粘性変形点での装置
内徐冷が不十分となり、強度向上効果が得られず、また
成形性、カッティング性ともに低下するため好ましくな
い。一方、100,000 ポアズ超では、固化状態が進み過ぎ
るために、カッティング成形が行いにくく切断面にエッ
ジ等が発生し易くなり、また処理に必要な圧力、トルク
も過大となるため実用的でない。
In the present invention, the viscosity range of the molten pitch is set to 1,000 to 100,000 poise for the following reason. That is, if it is less than 1,000 poise, the slow cooling in the apparatus at the viscous deformation point becomes insufficient, the effect of improving the strength cannot be obtained, and the moldability and the cutting property are deteriorated, which is not preferable. On the other hand, when the porosity exceeds 100,000, the solidified state is too advanced, so that it is difficult to carry out cutting and molding, edges are likely to occur on the cut surface, and the pressure and torque required for the treatment are excessive, which is not practical.

【0020】[0020]

【実施例】以下に本発明を実施例に基づいて具体的に説
明する。
EXAMPLES The present invention will be specifically described below based on examples.

【0021】(実施例1)軟化点(Ring & Ball法 JI
S K 2425)が108℃の溶融ピッチを2重管方法の冷却
成形装置によって、外管に80℃の冷却水、内管に溶融
ピッチを流し、粘度20,000ポアズに調整した後、直径2
0mmの断面円形のダイスより高圧ポンプによって空中
へ横方法に押し出し、ギロチン刃を用いカッティング
し、ベルトコンベアーで空冷搬送した後、冷却槽の水中
を自然落下させ、直径が20mm、長さが100mmの
棒状ピッチを得た。このときのピッチ処理量は、40〜
50kg/hr であった。
Example 1 Softening Point (Ring & Ball Method JI
SK 2425) melted pitch of 108 ° C was cooled to 80 ° C in the outer pipe and melted in the inner pipe by a double pipe cooling machine, and the viscosity was adjusted to 20,000 poise.
A die with a circular cross section of 0 mm was pushed laterally into the air by a high-pressure pump, cut with a guillotine blade, air-cooled and conveyed by a belt conveyor, and then naturally dropped into the water in a cooling tank, with a diameter of 20 mm and a length of 100 mm. A bar pitch was obtained. The pitch processing amount at this time is 40 to
It was 50 kg / hr.

【0022】(実施例2)軟化点(Ring & Ball法 JI
S K 2425)が108℃の溶融ピッチをスクリュー押し出
し方式の冷却成形装置によって、スクリュー部に溶融ピ
ッチを流し、常温の冷却水で冷却し、粘度20,000ポアズ
に調整した後、直径20mmの断面円形のダイスよりス
クリュー押し出しによって空中へ下方向に押し出し、ロ
ールカッティングを用いカッティングし、冷却槽の水中
を自然落下させ、直径が20mm、長さが100mmの
棒状ピッチを得た。このときのピッチ処理量は、40〜
50kg/hr であった。
(Embodiment 2) Softening point (Ring & Ball method JI
SK 2425) melted pitch of 108 ° C is made to flow into the screw part by a screw extrusion type cooling molding device, cooled with normal temperature cooling water, adjusted to a viscosity of 20,000 poise, and then a die with a circular cross section of 20 mm in diameter. Further, it was extruded downward in the air by screw extrusion, cut by roll cutting, and allowed to fall naturally in the water in the cooling tank to obtain a rod-shaped pitch having a diameter of 20 mm and a length of 100 mm. The pitch processing amount at this time is 40 to
It was 50 kg / hr.

【0023】実施例1、2のいずれの場合も、形状が良
好でカッティング面にエッジがなく、円柱の断面を調査
したところ、空洞、空孔、内部水分等は観察されなかっ
た。一方、落下による粉化状態を比較したところ従来方
法で製造した棒ピッチと比べて、表1に示すように粉化
率は低減した。更に、カッティング速度を変えて棒長を
変化させたところ、棒径/棒長=1/1〜1/100の
範囲でカッティング可能であった。なお、ノズルの交換
をすることで、棒径の単独コントロールも可能である。
In each of Examples 1 and 2, the shape was good, the cutting surface had no edges, and the cross section of the cylinder was examined. As a result, cavities, holes, internal moisture, etc. were not observed. On the other hand, when the pulverization state by dropping was compared, the pulverization rate was reduced as shown in Table 1 as compared with the bar pitch manufactured by the conventional method. Furthermore, when the rod length was changed by changing the cutting speed, it was possible to cut within the range of rod diameter / rod length = 1/1 to 1/100. By replacing the nozzle, it is also possible to control the rod diameter independently.

【0024】[0024]

【表1】 [Table 1]

【0025】(実施例3)軟化点(Ring & Ball法 JI
S K 2425)が108℃の溶融ピッチをジャケット式2重
管の冷却装置によって、外側(ジャケット)部に60〜
80℃の冷却温水を流し、内側に溶融ピッチを高圧ポン
プで圧送し、ピッチの温度を約98℃(粘度:20,000〜
20,000ポアズ程度)に調整しながら、直径20mmの断
面円形の成形ダイスで押出し、成形した。この時の高圧
ポンプの必要圧力は、50〜200kg/cm2であり、ピッ
チ処理量は伝熱管1本当り40〜50kg/hr であった。
また、この時、成形ダイス部は温度調整(熱伝トレー
ス:110℃程度)を行い僅かに加温した。ダイスから
の押出し方向は、空中横方法にしても鉛直下方向にして
も成形状態は同じであった。ピッチ成形体のカッティン
グは、上下動するギロチン刃方式もしくは回転刃による
ロールカッティング方式のいずれでも、切断面にエッジ
を残すこと無く、良好なカッティングが可能であること
を確認した。こうして製造された棒状ピッチは、ベルト
コンベアで搬送し、水槽中で完全冷却した。この時空冷
時間の有る無しの差異は認められなかった(切断後直接
水槽内で処理することも可能)。こうして得られた棒状
ピッチは、直径20mmφ(ダイス径)、長さが50〜
100mmであった。
(Embodiment 3) Softening point (Ring & Ball method JI
SK 2425) uses a jacket-type double pipe cooling device to melt the molten pitch of 108 ° C to the outside (jacket) of 60-
Cooled hot water of 80 ° C is flowed, and the molten pitch is pumped inside by a high-pressure pump, and the pitch temperature is about 98 ° C (viscosity: 20,000 ~
While adjusting the pressure to about 20,000 poise), it was extruded and molded by a molding die having a circular cross section with a diameter of 20 mm. At this time, the required pressure of the high-pressure pump was 50 to 200 kg / cm 2 , and the pitch processing amount was 40 to 50 kg / hr per heat transfer tube.
At this time, the molding die portion was slightly heated by adjusting the temperature (heat transfer trace: about 110 ° C.). The extruding direction from the die was the same regardless of whether it was a horizontal method in the air or a vertically downward direction. It was confirmed that good cutting was possible without leaving an edge on the cut surface by using either a guillotine blade system that moves up and down or a roll cutting system that uses a rotary blade for cutting the pitch molded body. The rod-shaped pitch thus manufactured was conveyed by a belt conveyor and completely cooled in a water tank. At this time, no difference was observed with or without air cooling time (it is also possible to process directly in the water tank after cutting). The rod-shaped pitch thus obtained has a diameter of 20 mmφ (die diameter) and a length of 50-
It was 100 mm.

【0026】この方式で試作したピッチは、形状が均一
・良好でカッティング面にエッジがなく、円柱の断面を
調査したところ、空洞、空孔、内部水分等は観察されな
かった。また、ピッチ強度を比較するために、曲げ強度
(JIS 7202)を測定した結果を表2に示す。ここで比較
例として、180℃の溶融ピッチをメルト状態で直接水
槽中に流下させ、急冷によって棒状に冷却固化させたピ
ッチ(棒径14mmφ)の曲げ強度測定結果を合わせて
示す。なお、曲げ強度の測定結果(最大荷重実測値)
は、ピッチの径に影響されるので、径の影響を補正した
相対評価値(表2中)で比較するとこの数値が徐冷の効
果を示しているといえる。本結果より、従来品よりも本
発明方法(2重管成形)で製造したピッチの方が強度が
高くなり徐冷の効果が認められた。また、カッティング
速度を変えて棒長を変化させたところ、棒径/棒長=1
/1〜1/100の範囲でカッティング可能であった。
なお、ノズルサイズを変更することで、棒径自身を単独
にコントロールすることができ、従来よりも太径化した
ピッチの製造が可能となった。
The pitch prototyped by this method had a uniform and good shape and had no edges on the cutting surface, and when a cross section of a cylinder was examined, cavities, holes, internal moisture, etc. were not observed. Table 2 shows the results of measurement of bending strength (JIS 7202) in order to compare pitch strength. Here, as a comparative example, the bending strength measurement results of a pitch (rod diameter 14 mmφ) in which a molten pitch of 180 ° C. is directly flown in a molten state in a water tank and cooled and solidified into a rod shape by rapid cooling is also shown. Bending strength measurement results (maximum load actual measurement value)
Is affected by the diameter of the pitch, and it can be said that this value indicates the effect of slow cooling when compared with the relative evaluation value (in Table 2) in which the effect of the diameter is corrected. From these results, it was confirmed that the pitch produced by the method of the present invention (double pipe molding) had higher strength than the conventional product and the effect of slow cooling was observed. Also, when the rod length was changed by changing the cutting speed, the rod diameter / bar length = 1
Cutting was possible in the range of / 1 to 1/100.
By changing the nozzle size, the rod diameter itself could be controlled independently, and it became possible to manufacture pitches with a larger diameter than before.

【0027】[0027]

【表2】 [Table 2]

【0028】(実施例4)軟化点(Ring & Ball法 JI
S K 2425)が108℃の溶融ピッチをスクリュー押し出
し機によって、外側シリンダー部(7箇所)の温度を常
温の冷却水およびヒーターによって制御し、内側に溶融
ピッチを流し、ピッチの温度を約98℃(粘度:20,000
〜30,000ポアズ程度)に調整しながら、直径20mmの
断面円形ダイスで押出し、成形した。このときのスクリ
ュー回転数は30〜100rpmであり、ピッチ処理量
は30〜140kg/hr (スクリュー回転数によって変
化)であった。また、この時、成形ダイス部は温度調整
(熱伝トレース:110℃程度)を行い僅かに加温し
た。ダイスからの押出し方向は、空中横方向にしても鉛
直下方向にしても成形状態は同じであった。ピッチ成形
体のカッティングは、上下動するギロチン刃方式もしく
は回転刃によるロールカッティング方式のいずれでも、
切断面にエッジを残すこと無く、良好なカッティングが
可能であることを確認した。こうして製造された棒状ピ
ッチは、ベルトコンベアで搬送し、水槽中で完全冷却し
た。この時空冷時間の有る無しの差異は認められなかっ
た(切断後直接水槽内で処理することも可能)。こうし
て得られた棒状ピッチは、直径が20mmφ(ダイス
径)、長さが50〜100mmであった。
(Embodiment 4) Softening point (Ring & Ball method JI
SK 2425) controls the melt pitch of 108 ° C by a screw extruder and the temperature of the outer cylinder part (7 places) by cooling water and a heater at room temperature. Viscosity: 20,000
While adjusting to about 30,000 poise), it was extruded with a circular die having a diameter of 20 mm and molded. The screw rotation speed at this time was 30 to 100 rpm, and the pitch processing amount was 30 to 140 kg / hr (varied depending on the screw rotation speed). At this time, the molding die portion was slightly heated by adjusting the temperature (heat transfer trace: about 110 ° C.). The extrusion state from the die was the same regardless of whether it was in the horizontal direction in the air or vertically downward. The pitch molded body can be cut either by the vertically moving guillotine blade method or the rotary blade roll cutting method.
It was confirmed that good cutting was possible without leaving an edge on the cut surface. The rod-shaped pitch thus manufactured was conveyed by a belt conveyor and completely cooled in a water tank. At this time, no difference was observed with or without air cooling time (it is also possible to process directly in the water tank after cutting). The rod-shaped pitch thus obtained had a diameter of 20 mmφ (die diameter) and a length of 50 to 100 mm.

【0029】この方式で試作したピッチは、形状が均一
・良好でカッティング面にエッジがなく、円柱の断面を
調査したところ、空洞、空孔、内部水分等は観察されな
かった。また、ピッチ強度を比較するために、曲げ強度
(JIS 7202)を測定した結果を表3に示す。ここで比較
例として、180℃の溶融ピッチをメルト状態で直接水
槽中に流下させ、急冷によって棒状に冷却固化させたピ
ッチ(棒径14mmφ)の曲げ強度測定結果を合わせて
示す。なお、曲げ強度の測定結果(最大荷重実測値)
は、ピッチの径に影響されるので、径の影響を補正した
相対評価値(表3中)で比較するとこの数値が徐冷の効
果を示しているといえる。本結果より、従来品よりも本
発明方法(スクリュー押し出し成形)で製造したピッチ
の方が強度が高くなり徐冷の効果が認められた。また、
カッティング速度を変えて棒長を変化させたところ、棒
径/棒長=1/1〜1/100の範囲でカッティング可
能であった。なお、ノズルサイズを変更することで、棒
径自身を単独にコントロールすることができ、従来より
も太径化したピッチの製造が可能となった。
The pitch prototyped by this method had a uniform and good shape and had no edges on the cutting surface, and when a cross section of a cylinder was examined, cavities, holes, internal moisture and the like were not observed. Table 3 shows the results of measurement of bending strength (JIS 7202) in order to compare pitch strength. Here, as a comparative example, the bending strength measurement results of a pitch (rod diameter 14 mmφ) in which a molten pitch of 180 ° C. is directly flown in a molten state in a water tank and cooled and solidified into a rod shape by rapid cooling is also shown. Bending strength measurement results (maximum load actual measurement value)
Is affected by the diameter of the pitch, and it can be said that when compared with the relative evaluation value (in Table 3) in which the effect of the diameter is corrected, this numerical value shows the effect of slow cooling. From these results, the strength of the pitch produced by the method of the present invention (screw extrusion molding) was higher than that of the conventional product, and the effect of slow cooling was confirmed. Also,
When the bar length was changed by changing the cutting speed, it was possible to cut within the range of bar diameter / bar length = 1/1 to 1/100. By changing the nozzle size, the rod diameter itself could be controlled independently, and it became possible to manufacture pitches with a larger diameter than before.

【0030】[0030]

【表3】 [Table 3]

【0031】[0031]

【発明の効果】本発明によれば、従来とは異なって溶融
ピッチを徐冷して高粘度化した後に押出成形するため
に、成形後のピッチの内部の残留応力や空隙が著しく減
少する。このため、ピッチは強度に優れ、ハンドリング
時の粉化、劣化が起こりにくくなった。このことによ
り、製造歩止りの向上、作業環境の改善およびハンドリ
ング性の向上といった大きな効果が得られる。
EFFECTS OF THE INVENTION According to the present invention, unlike the prior art, since the molten pitch is gradually cooled to increase its viscosity and then extrusion-molded, residual stress and voids inside the pitch after molding are significantly reduced. For this reason, the pitch is excellent in strength and is less likely to be powdered or deteriorated during handling. As a result, great effects such as improvement of manufacturing yield, improvement of working environment, and improvement of handling property can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の溶融ピッチの押出成形方法の一例を
説明するための模式図である。
FIG. 1 is a schematic diagram for explaining an example of a melt pitch extrusion molding method of the present invention.

【図2】 本発明の溶融ピッチの押出成形方法の他の例
を説明するための模式図である。
FIG. 2 is a schematic view for explaining another example of the melt pitch extrusion molding method of the present invention.

【図3】 本発明の溶融ピッチの押出成形方法のさらに
他の例を説明するための模式図である。
FIG. 3 is a schematic view for explaining still another example of the melt pitch extrusion molding method of the present invention.

【図4】 本発明の溶融ピッチの押出成形方法のさらに
他の一例を説明するための模式図である。
FIG. 4 is a schematic view for explaining still another example of the melt pitch extrusion molding method of the present invention.

【符号の説明】[Explanation of symbols]

1 冷却成形装置本体(耐圧ジャケット式2重管) 1a 外管 1b 内管 1c スクリュー 1d ミキサー 2 成形ダイス 3 カッティング装置(ギロチン式) 4 高圧ポンプ 5 冷媒ユニット 6 温度調節用冷却装置 7 ベルトコンベアー 8 棒状ピッチ 9 冷却水槽 10 加温装置 11 カッティング装置(ロールカッティング方式) 12 スクリューモータ 1 Cooling molding apparatus main body (pressure resistant jacket type double tube) 1a Outer tube 1b Inner tube 1c Screw 1d Mixer 2 Molding die 3 Cutting device (guillotine type) 4 High pressure pump 5 Refrigerant unit 6 Temperature control cooling device 7 Belt conveyor 8 Rod-shaped Pitch 9 Cooling water tank 10 Heating device 11 Cutting device (roll cutting method) 12 Screw motor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 津 崎 昌 夫 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 安 藤 正 幸 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masao Tsuzaki Masao Tsuzaki Kurashiki City, Okayama Prefecture Mizushima Kawasaki Dori 1-chome (no address) Inside the Mizushima Works, Kawasaki Steel Co., Ltd. (72) Masayuki Ando Kurashiki City, Okayama Prefecture Mizushima Kawasaki Dori 1-chome (without street number) Kawasaki Steel Works Mizushima Steel Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】石炭系あるいは石油系の溶融ピッチから棒
状ピッチを冷却固化成形するにあたり、溶融ピッチの粘
度を 1,000〜100,000 ポアズに調整した後溶融ピッチを
ダイスより押し出し、所定の長さに切断することを特徴
とする棒状ピッチの製造方法。
1. When cooling and solidifying a rod-shaped pitch from a coal-based or petroleum-based molten pitch, the viscosity of the molten pitch is adjusted to 1,000 to 100,000 poise, and then the molten pitch is extruded from a die and cut into a predetermined length. A method for manufacturing a rod-shaped pitch, which is characterized by the following.
【請求項2】石炭系あるいは石油系の溶融ピッチから棒
状ピッチを冷却固化成形するにあたり、溶融ピッチの粘
度を 1,000〜100,000 ポアズに調整した後溶融ピッチを
ダイスより加圧状態で押し出し、所定の長さに切断する
ことを特徴とする棒状ピッチの製造方法。
2. When the rod-shaped pitch is cooled and solidified from a coal-based or petroleum-based molten pitch, the viscosity of the molten pitch is adjusted to 1,000 to 100,000 poise, and then the molten pitch is extruded under pressure from a die to obtain a predetermined length. A method for manufacturing a rod-shaped pitch, which comprises cutting into pieces.
【請求項3】石炭系あるいは石油系の溶融ピッチから棒
状ピッチを冷却固化成形するにあたり、溶融ピッチの粘
度を 1,000〜100,000 ポアズに調整した後溶融ピッチを
加温したダイスより押し出し、所定の長さに切断するこ
とを特徴とする棒状ピッチの製造方法。
3. When cooling and solidifying a rod-shaped pitch from a coal-based or petroleum-based molten pitch, the viscosity of the molten pitch is adjusted to 1,000 to 100,000 poise and then the molten pitch is extruded from a heated die to a predetermined length. A method for manufacturing a rod-shaped pitch, which is characterized by cutting into pieces.
【請求項4】石炭系あるいは石油系の溶融ピッチから棒
状ピッチを冷却固化成形するにあたり、溶融ピッチの粘
度を 1,000〜100,000 ポアズに調整した後溶融ピッチを
加温したダイスより加圧状態で押し出し、所定の長さに
切断することを特徴とする棒状ピッチの製造方法。
4. When cooling and solidifying a rod-shaped pitch from a coal-based or petroleum-based molten pitch, the viscosity of the molten pitch is adjusted to 1,000 to 100,000 poise, and then the molten pitch is extruded from a heated die under pressure. A method for manufacturing a rod-shaped pitch, which comprises cutting to a predetermined length.
JP24155692A 1992-09-10 1992-09-10 Production of rodlike pitch Withdrawn JPH0693270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24155692A JPH0693270A (en) 1992-09-10 1992-09-10 Production of rodlike pitch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24155692A JPH0693270A (en) 1992-09-10 1992-09-10 Production of rodlike pitch

Publications (1)

Publication Number Publication Date
JPH0693270A true JPH0693270A (en) 1994-04-05

Family

ID=17076112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24155692A Withdrawn JPH0693270A (en) 1992-09-10 1992-09-10 Production of rodlike pitch

Country Status (1)

Country Link
JP (1) JPH0693270A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102492453A (en) * 2011-12-12 2012-06-13 宝钢工程技术集团有限公司 Smokeless underwater forming production device for pitch and technology thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102492453A (en) * 2011-12-12 2012-06-13 宝钢工程技术集团有限公司 Smokeless underwater forming production device for pitch and technology thereof

Similar Documents

Publication Publication Date Title
EP1666222B1 (en) Method of manufacturing thermoplastic resin foam particle
JP4799664B2 (en) Die for granulation, granulator, and method for producing expandable thermoplastic resin particles
JPH0546852B2 (en)
US6350328B1 (en) Metal injection molding
JPH0693270A (en) Production of rodlike pitch
CN111716672A (en) Special process method for producing PBT plastic plate
CN102554214B (en) Deformable material, raw material for the same, and manufacturing method thereof
JPS5831895B2 (en) Method for manufacturing bite-sized cheese products
JPH0631726A (en) Manufacture of foamable thermoplastic resin particles
JP2004136643A5 (en)
CN208529475U (en) A kind of illusion-colour PVC film pelletizer
KR20180094519A (en) Polyketone production methods
CN111716673A (en) Special process for producing PET plastic plate
KR200257689Y1 (en) A Manufacturing Device Of The Fluorine Resin Using A Continuous Extrusion Method
JPS6123957B2 (en)
CN220052806U (en) Continuous extrusion equipment for foaming polylactic acid material
CN110862569B (en) Preparation method of polypropylene foaming particles with low melt strength
JPWO2011065561A1 (en) Expandable thermoplastic resin particles and method for producing the same
JP4550646B2 (en) Method for producing foamed molded article made of thermoplastic resin or mixture thereof
JPH05301218A (en) Production of thermoplastic resin particle
CN116675421A (en) Method for eliminating holes of multi-feature silicate product
JP3688412B2 (en) Method for producing molded thermoplastic resin
CN116619531A (en) Method for molding silicate powder product
JP4547947B2 (en) Method for producing extrusion molded body
KR20020085835A (en) Method for preparing hydrophilic resin granule

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991130