JPH0692907A - Production of carbonic acid ester - Google Patents

Production of carbonic acid ester

Info

Publication number
JPH0692907A
JPH0692907A JP4242341A JP24234192A JPH0692907A JP H0692907 A JPH0692907 A JP H0692907A JP 4242341 A JP4242341 A JP 4242341A JP 24234192 A JP24234192 A JP 24234192A JP H0692907 A JPH0692907 A JP H0692907A
Authority
JP
Japan
Prior art keywords
acid ester
carbonic acid
catalyst
reaction
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4242341A
Other languages
Japanese (ja)
Inventor
Hiroshi Kaneko
博 金子
Toru Arai
亨 荒井
Kyoji Aoki
恭二 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP4242341A priority Critical patent/JPH0692907A/en
Publication of JPH0692907A publication Critical patent/JPH0692907A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To selectively and advantageously produce a carbonic acid ester with a high catalytic activity under a mild reaction condition, especially a low pressure. CONSTITUTION:This method for production of a carbonic acid ester is characteristically carried out through a catalytic gas-phase reaction of carbon monoxide, oxygen and an alcohol in the presence of a catalyst composed of a divalent copper salt supported on an active carbon fiber.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、一酸化炭素、酸素及び
アルコールから、効率よく炭酸エステルを製造する方法
に関する。炭酸エステルはポリカーボネートやイソシア
ネートの製造原料として、また、種々の有機合成原料と
して非常に有用な化合物である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for efficiently producing carbonic acid ester from carbon monoxide, oxygen and alcohol. Carbonic acid ester is a very useful compound as a raw material for producing polycarbonate and isocyanate, and as a raw material for various organic synthesis.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
炭酸エステルはホスゲンとアルコールから製造されてい
るが、ホスゲンの毒性が非常に強いこと、腐食性のハロ
ゲンを含んだ化合物が副生することから、ホスゲンを用
いない炭酸エステルの製造法が望まれていた。このた
め、触媒を用いて、一酸化炭素、酸素及びアルコールか
ら炭酸エステルを製造する方法が提案されている。例え
ば(Ind. Eng. Chem. Prod. Res. Dev.,19,396 (198
0).)では、液相において、塩化第一銅を触媒として炭
酸エステルを得ている。しかし、このような反応方式で
は反応液中に、反応生成物である水が蓄積してしまい、
その水と触媒が反応することで触媒が変質し、失活が起
こり易いという欠点を有していた。また、種々の有機配
位子、有機塩基助触媒を上記銅塩に添加した液相反応も
提案されているが、蒸留等による炭酸エステルの分離精
製の際に困難を生じるという欠点があった。
2. Description of the Related Art Conventionally, the problems to be solved by the invention
Carbonic acid ester is produced from phosgene and alcohol, but since phosgene is extremely toxic and a compound containing corrosive halogen is produced as a by-product, a method for producing carbonic acid ester without phosgene is desired. It was Therefore, a method of producing a carbonic acid ester from carbon monoxide, oxygen and alcohol using a catalyst has been proposed. For example (Ind. Eng. Chem. Prod. Res. Dev., 19,396 (198
In 0).), Carbonate ester is obtained in the liquid phase using cuprous chloride as a catalyst. However, in such a reaction method, water as a reaction product is accumulated in the reaction solution,
The reaction between the water and the catalyst causes the catalyst to change in quality and is easily deactivated. Further, a liquid phase reaction in which various organic ligands and organic base cocatalysts are added to the copper salt has been proposed, but it has a drawback that difficulty occurs in separating and refining a carbonic acid ester by distillation or the like.

【0003】これらの欠点を克服するために接触気相反
応による炭酸エステル合成が提案されている。すなわ
ち、接触気相反応では、生成した炭酸エステル及び水は
直ちに効率よく触媒から除去されるために触媒の変質の
問題を回避でき、また生成物中への上記有機配位子、有
機塩基助触媒の混入を回避できるため分離精製プロセス
を簡略化することができる。例えば、特公表63−50
360号では、活性炭の担体に塩化第二銅を担持した触
媒を用いた接触気相反応が提示されている。しかし反応
条件が数十気圧と厳しく、かつ触媒活性が充分ではな
い。本発明の目的は、このような問題点を解決し、穏や
かな反応条件下において効率よく炭酸エステルを製造す
る方法を提供することである。
In order to overcome these drawbacks, carbonic acid ester synthesis by catalytic gas phase reaction has been proposed. That is, in the catalytic gas phase reaction, the generated carbonic acid ester and water are immediately and efficiently removed from the catalyst, so that the problem of catalyst deterioration can be avoided, and the organic ligand and organic base cocatalyst in the product can be avoided. It is possible to simplify the separation and purification process since it is possible to avoid the contamination. For example, Japanese Patent Publication 63-50
No. 360 proposes a catalytic gas phase reaction using a catalyst in which cupric chloride is supported on a carrier of activated carbon. However, the reaction conditions are as severe as several tens of atmosphere, and the catalytic activity is not sufficient. An object of the present invention is to solve such problems and provide a method for efficiently producing a carbonate ester under mild reaction conditions.

【0004】本発明者らは、一酸化炭素、酸素及びアル
コールを接触気相反応させることによる炭酸エステルの
製造法について、鋭意検討を重ねた結果、二価の銅塩を
活性炭素繊維に担持した触媒を用いれば、穏やかな反応
条件下、特に低圧下において、触媒活性、選択性ともに
高くきわめて有利に炭酸エステルが得られることを見い
だし、本発明を完成するに至った。
The inventors of the present invention have conducted extensive studies as to a method for producing a carbonic acid ester by catalytically reacting carbon monoxide, oxygen and an alcohol with each other, and as a result, have carried a divalent copper salt on activated carbon fiber. It has been found that the use of a catalyst makes it possible to obtain a carbonate ester with very high catalytic activity and high selectivity under mild reaction conditions, especially under low pressure, and thus completed the present invention.

【0005】[0005]

【課題を解決するための手段】すなわち、本発明は、二
価の銅塩を活性炭素繊維に担持した触媒の存在下で、一
酸化炭素、酸素及びアルコールを接触気相反応させるこ
とを特徴とする炭酸エステルの製造方法である。以下
に、この発明の方法を詳しく説明する。この発明で用い
られる触媒は、二価の銅塩を活性炭素繊維(以下ACF
と記述)に担持したものである。本発明における二価の
銅塩としては、上述の塩化第二銅や臭化第二銅等のハロ
ゲン化銅または、硝酸銅が好ましく用いられる。ACF
は、その原料をピッチ、ポリアクリルアミド、セルロー
スあるいはフェノールとする何れのACFでもよい。比
表面積が高いACF、すなわち700m2 /gより大き
な比表面積を有するACFが担体として好ましい。また
ACFの形状は適当なバインダー等を加え、成形するこ
とによりフェルト状、ペレット状等任意の形状を用いる
ことができる。接触気相反応の場合においては一般的に
ペレット状が取扱の点で好ましい。これらACFに対す
る銅担持量は0. 1〜30重量%の範囲が活性の点で好
ましい。
That is, the present invention is characterized by carrying out catalytic gas phase reaction of carbon monoxide, oxygen and alcohol in the presence of a catalyst having a divalent copper salt supported on activated carbon fibers. Is a method for producing a carbonate ester. The method of the present invention will be described in detail below. The catalyst used in this invention is a divalent copper salt containing activated carbon fiber (hereinafter referred to as ACF).
And description). As the divalent copper salt in the present invention, the above-mentioned copper halide such as cupric chloride and cupric bromide or copper nitrate is preferably used. ACF
May be any ACF whose raw material is pitch, polyacrylamide, cellulose or phenol. ACF having a high specific surface area, that is, ACF having a specific surface area larger than 700 m 2 / g is preferable as the carrier. The shape of the ACF may be an optional shape such as a felt shape or a pellet shape by adding an appropriate binder or the like and molding. In the case of catalytic gas phase reaction, pellets are generally preferable in terms of handling. The amount of copper supported on these ACFs is preferably in the range of 0.1 to 30% by weight from the viewpoint of activity.

【0006】本製造法に用いるアルコールは、メタノー
ル、エタノール等の脂肪族アルコール、の他、不飽和ア
ルコール、多価アルコールがあげられるが、好ましくは
炭素数1〜4のアルコールである。
Alcohols used in this production method include aliphatic alcohols such as methanol and ethanol, unsaturated alcohols and polyhydric alcohols, with alcohols having 1 to 4 carbon atoms being preferred.

【0007】原料ガスである一酸化炭素及び酸素は、二
酸化炭素、窒素及び他の反応に不活性なガスで希釈して
用いても良い。反応は、好ましくは加圧下で行う。その
際の一酸化炭素分圧は0. 5〜50気圧、好ましくは3
〜30気圧であり、酸素分圧は0. 1〜10気圧、好ま
しくは0. 3〜5気圧の範囲である。
Carbon monoxide and oxygen, which are raw material gases, may be diluted with carbon dioxide, nitrogen and other gases inert to the reaction. The reaction is preferably carried out under pressure. The carbon monoxide partial pressure at that time is 0.5 to 50 atm, preferably 3
-30 atm and oxygen partial pressure in the range of 0.1-10 atm, preferably 0.3-5 atm.

【0008】反応温度は50〜180℃の範囲で行う。
反応温度が低いと活性が充分でなく、反応温度が高いと
一酸化炭素の燃焼反応による二酸化炭素の生成量が増え
るため、好ましくは90〜130℃の範囲で行う。
The reaction temperature is 50 to 180 ° C.
If the reaction temperature is low, the activity is not sufficient, and if the reaction temperature is high, the amount of carbon dioxide produced by the combustion reaction of carbon monoxide increases, so the temperature is preferably in the range of 90 to 130 ° C.

【0009】[0009]

【実施例】以下、本発明を実施例により更に具体的に説
明するが本発明は、これら実施例に限定されるものでは
ない。なお、原料のアルコールにメタノールを用いて示
した以下の実施例においては得られる炭酸エステルは炭
酸ジメチル(以下DMCという)である。また、選択率
は、原料の一酸化炭素及びメタノールに対して、それぞ
れ以下の式を用いて算出した。 S(CO)=R(DMC) /{R(DMC) +R(CO2) } × 100 S(CH3OH) =2R(DMC) /{2R(DMC) +2R(DME) +3R(DMM) } × 100 ここで、S(CO) :原料の一酸化炭素に対する選択率
(%)、S(CH3OH) :原料のメタノールに対する選択率
(%)、R(DMC) :DMC生成量(mmol)、R(CO2) :
二酸化炭素生成量(mmol)、R(DME) :ジメチルエーテ
ル生成量(mmol)、R(DMM) :ジメトキシメタン(メチ
ラール)生成量(mmol)である。
EXAMPLES The present invention will now be described in more detail with reference to examples, but the present invention is not limited to these examples. The carbonate ester obtained in the following examples in which methanol was used as the alcohol of the raw material was dimethyl carbonate (hereinafter referred to as DMC). Further, the selectivity was calculated using the following formulas for the raw material carbon monoxide and methanol. S (CO) = R (DMC) / {R (DMC) + R (CO 2 )} × 100 S (CH 3 OH) = 2R (DMC) / {2R (DMC) + 2R (DME) + 3R (DMM)} × Where S (CO): selectivity (%) of carbon monoxide for the raw material, S (CH 3 OH): selectivity (%) of methanol for the raw material, R (DMC): production amount of DMC (mmol), R (CO 2 ):
Carbon dioxide production (mmol), R (DME): dimethyl ether production (mmol), R (DMM): dimethoxymethane (methylal) production (mmol).

【0010】実施例1 (炭酸エステル製造) 塩化第二銅(0. 318g)をエタノール(100m
l)に溶解した溶液中にピッチ系ACF(大阪ガス製・
FN−200・CF−20)1. 88gを浸漬し、エタ
ノールを留去することによってCuCl2 /ACF触媒
(A−1)を調製した。触媒の化学分析による銅の担持
量は1. 4重量%であった。流通反応器の内径10mm
のハステロイB製反応管に触媒を5ml(重量約1g)
充填した。反応は一酸化炭素を毎分60ml(ST
P)、空気を毎分10ml(STP)、メタノールを毎
分17ml(STP)流し、反応圧7気圧、反応温度で
125℃で行った。生成物の分析はオンラインガスクロ
により、反応中約1時間毎に行った。反応開始後、約1
0時間で反応は定常状態に達した。DMCは4. 6mmol
/g−触媒・ hで生成した。銅1モルあたりの活性で表
すと5. 7×10-3mol /mol-Cu・ sec.となる。DMC
以外の生成物は、CO2 、ジメチルエーテル(DME)
及びジメトキシメタン(DMM)であり、原料のCOに
対するDMC選択率は76%、メタノールに対する選択
率は97%であった。
Example 1 Production of Carbonic Acid Ester Cupric chloride (0.318 g) was added to ethanol (100 m).
Pitch-based ACF (manufactured by Osaka Gas
CuCl 2 / ACF catalyst (A-1) was prepared by immersing 1.88 g of FN-200 / CF-20) and distilling off ethanol. The amount of copper supported by the chemical analysis of the catalyst was 1.4% by weight. Flow reactor inner diameter 10 mm
5 ml of catalyst in a Hastelloy B reaction tube (about 1 g in weight)
Filled. The reaction is 60 ml of carbon monoxide per minute (ST
P), 10 ml of air per minute (STP) and 17 ml of methanol per minute (STP) were flown at a reaction pressure of 7 atm and a reaction temperature of 125 ° C. The analysis of the product was performed by online gas chromatography about every hour during the reaction. About 1 after starting the reaction
The reaction reached a steady state at 0 hours. DMC is 4.6 mmol
/G-catalyst.h. The activity per mol of copper is 5.7 × 10 −3 mol / mol-Cu · sec. DMC
Other products are CO 2 , dimethyl ether (DME)
And dimethoxymethane (DMM), the DMC selectivity to the raw material CO was 76%, and the selectivity to methanol was 97%.

【0011】実施例2 ピッチ系ACFの代わりにPAN(ポリアクリルニトリ
ル)系ACF(東邦レーヨン製FE−300)を用い
て、実施例1と同様に触媒(A−2)を調製した。触媒
の化学分析による銅の担持量は2. 8重量%である。こ
の触媒を用い、実施例1と同様に反応を行った。反応開
始後約5時間で定常状態に達した。DMCは5. 3mmol
/g−触媒・ hで生成した。銅1モルあたりの活性で表
すと3. 3×10-3mol /mol-Cu・ sec.となる。DMC
以外の生成物は、CO2 、ジメチルエーテル(DME)
及びジメトキシメタン(DMM)であり、原料のCOに
対するDMC選択率は78%、メタノールに対する選択
率は94%であった。
Example 2 A catalyst (A-2) was prepared in the same manner as in Example 1 except that a PAN (polyacrylonitrile) -based ACF (FE-300 manufactured by Toho Rayon) was used instead of the pitch-based ACF. The amount of copper supported by the chemical analysis of the catalyst is 2.8% by weight. Using this catalyst, a reaction was carried out in the same manner as in Example 1. A steady state was reached about 5 hours after the start of the reaction. DMC is 5.3 mmol
/G-catalyst.h. The activity per mol of copper is 3.3 × 10 −3 mol / mol-Cu · sec. DMC
Other products are CO 2 , dimethyl ether (DME)
And dimethoxymethane (DMM), the DMC selectivity to the raw material CO was 78%, and the selectivity to methanol was 94%.

【0012】比較例1 ACFの代わりに、活性炭(ツルミコール製HC30
S)を用いて同様に触媒(B−1)を調製した。触媒の
化学分析による銅の担持量は2. 4%である。この触媒
を用い、実施例1と同様に反応を行った。DMCは、
1. 8mmol/g−触媒・hで生成した。銅1モルあたり
の活性で表すと1. 35×10-3mol /mol-Cu・ sec.と
なる。DMC以外の生成物は、CO2、ジメチルエーテ
ル(DME)及びジメトキシメタン(DMM)であり、
原料のCOに対するDMC選択率は84%、メタノール
に対する選択率は89%であった。
Comparative Example 1 Instead of ACF, activated carbon (HC30 manufactured by Tsurumi Coal) was used.
A catalyst (B-1) was similarly prepared using S). The amount of copper supported by the chemical analysis of the catalyst is 2.4%. Using this catalyst, a reaction was carried out in the same manner as in Example 1. DMC is
It was produced at 1.8 mmol / g-catalyst · h. The activity per mol of copper is 1.35 × 10 −3 mol / mol-Cu · sec. Products other than DMC are CO 2 , dimethyl ether (DME) and dimethoxymethane (DMM),
The DMC selectivity with respect to the raw material CO was 84%, and the selectivity with respect to methanol was 89%.

【0013】[0013]

【発明の効果】本発明を用いることにより、穏やかな反
応条件下、特に低圧下において、触媒活性、選択性とも
に高く炭酸エステルを製造することができる。
INDUSTRIAL APPLICABILITY By using the present invention, a carbonate ester can be produced with high catalytic activity and high selectivity under mild reaction conditions, especially under low pressure.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】二価の銅塩を活性炭素繊維に担持した触媒
の存在下で、一酸化炭素、酸素及びアルコールを接触気
相反応させることを特徴とする炭酸エステルの製造方
法。
1. A method for producing a carbonic acid ester, which comprises subjecting carbon monoxide, oxygen and alcohol to a catalytic gas phase reaction in the presence of a catalyst in which a divalent copper salt is supported on activated carbon fibers.
JP4242341A 1992-09-10 1992-09-10 Production of carbonic acid ester Pending JPH0692907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4242341A JPH0692907A (en) 1992-09-10 1992-09-10 Production of carbonic acid ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4242341A JPH0692907A (en) 1992-09-10 1992-09-10 Production of carbonic acid ester

Publications (1)

Publication Number Publication Date
JPH0692907A true JPH0692907A (en) 1994-04-05

Family

ID=17087759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4242341A Pending JPH0692907A (en) 1992-09-10 1992-09-10 Production of carbonic acid ester

Country Status (1)

Country Link
JP (1) JPH0692907A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3703618A1 (en) * 1987-02-06 1988-08-18 Opel Adam Ag Rear axle for a motor vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3703618A1 (en) * 1987-02-06 1988-08-18 Opel Adam Ag Rear axle for a motor vehicle

Similar Documents

Publication Publication Date Title
CN104529701A (en) Process for the reduction of aldehyde concentration in a target stream
UA72617C2 (en) A method for the preparation of vinyl acetate
EP0845452B2 (en) HOAC process III
JPH1053554A (en) Production of acetic acid
EP0046598B1 (en) Process for continuously preparing a diester of oxalic acid
CA2410999C (en) Integrated process for the production of vinyl acetate
SU603330A3 (en) Method of preparing carbonic acid esters
JPH0692907A (en) Production of carbonic acid ester
JP2000063319A (en) Acetic acid reactive distillation process based on carbonylation of dme/methanol
EP0645362A1 (en) Process for producing highly purified acetic acid
JPS6137758A (en) Manufacture of n_acyl_alpha_amino acid
US5117046A (en) Preparation of alkylidene diesters
JPS63101348A (en) Production of 1,1-diester
EP0040414B1 (en) Process for producing acetaldehyde
US4552976A (en) Process for oxidative dicarbonylation of butadiene
US4075413A (en) Process for preparation of diacetoxybutene
CA1055519A (en) Manufacture of butenediol diacetates
EP0289725A1 (en) Method for producing an unsaturated glycol diester
JPH07145108A (en) Continuous production of dimethyl carbonate
US4100361A (en) Manufacture of butenediol diacetates
JPS5926611B2 (en) Method for producing acetic anhydride
JP2870738B2 (en) Method for producing carbonic acid diester
US3965155A (en) Process for preparing vinyl esters of carboxylic acids
JPS628113B2 (en)
WO2003076383A1 (en) Process for vinyl acetate