JPH0692878A - Production of styrene - Google Patents

Production of styrene

Info

Publication number
JPH0692878A
JPH0692878A JP4087045A JP8704592A JPH0692878A JP H0692878 A JPH0692878 A JP H0692878A JP 4087045 A JP4087045 A JP 4087045A JP 8704592 A JP8704592 A JP 8704592A JP H0692878 A JPH0692878 A JP H0692878A
Authority
JP
Japan
Prior art keywords
ethylbenzene
styrene
heated
water
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4087045A
Other languages
Japanese (ja)
Inventor
Kazuo Egawa
一雄 江川
Takashi Fujita
尚 藤田
Noriyuki Minato
憲幸 湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP4087045A priority Critical patent/JPH0692878A/en
Publication of JPH0692878A publication Critical patent/JPH0692878A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/40Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals
    • C07C15/42Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals monocyclic
    • C07C15/44Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals monocyclic the hydrocarbon substituent containing a carbon-to-carbon double bond
    • C07C15/46Styrene; Ring-alkylated styrenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To recover condensation heat of a distillate at the top of a distillation column without largely raising pressure at the top of the distillation column at a stage for separating styrene from unreacted ethyl benzene in a styrene distillation in a styrene producing process. CONSTITUTION:A distillation column is operated under 150mmHg pressure at the top of the column and at 85 deg.C temp. at the top of the column and unreacted ethylbenzene flowing out from the top of the column is used as a heat source of an absorption type heat pump. Water or a mixture of ethylbenzene with water is used as a material to be heated for the absorption type heat pump. In the case of water as the material to be heated, generated steam is recovered and used as a heat source for steam for dilution of a dehydrogenating reaction process or for a reboiler of a distillation process. In the case of the mixture of ethylbenzene with water as the material to be heated, generated azeotropic admixture of ethylbenzene with water is recovered and used in the dehydrating reaction process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水蒸気の存在下におけ
るエチルベンゼンの脱水素によりスチレンを製造する方
法に関する。更に詳しくは、スチレン蒸留工程において
未反応エチルベンゼンをスチレンから分離する段階で通
常失われる蒸留塔からの塔頂留出物の凝縮熱を吸収式ヒ
ートポンプにより効率的に回収すると共にこの熱を該ヒ
ートポンプ内の被加熱物である水又は水とエチルベンゼ
ンとの混合物を気化させるために利用する方法に関す
る。
FIELD OF THE INVENTION The present invention relates to a method for producing styrene by dehydrogenation of ethylbenzene in the presence of steam. More specifically, the heat of condensation of the overhead distillate from the distillation column, which is normally lost in the step of separating unreacted ethylbenzene from styrene in the styrene distillation process, is efficiently recovered by an absorption heat pump, and this heat is stored in the heat pump. The present invention relates to a method used for vaporizing water or a mixture of water and ethylbenzene, which is an object to be heated.

【0002】[0002]

【従来の技術】スチレンは、水蒸気の存在下、約590
ないし650℃の温度におけるエチルベンゼンの気相接
触脱水素反応により製造される。そしてこの反応に用い
られる触媒については従来からいろいろな提案がなされ
ている。
BACKGROUND OF THE INVENTION Styrene is about 590 in the presence of steam.
It is produced by the vapor phase catalytic dehydrogenation of ethylbenzene at a temperature of ˜650 ° C. Various proposals have been made for catalysts used in this reaction.

【0003】しかしながら、最近では開発の主眼が触媒
自体から脱水素法における熱の節約、特に吸熱反応であ
る脱水素反応に必要な顕熱を供給するために使用される
多量の希釈剤水蒸気に関して、或いは脱水素反応生成物
からのスチレンの分離に関して熱の節約を図るための手
段へと移っている。
Recently, however, the main focus of development has been to save heat from the catalyst itself in the dehydrogenation process, especially with respect to the large amount of diluent steam used to supply the sensible heat necessary for the dehydrogenation reaction, which is an endothermic reaction. Alternatively, it has turned to a means for conserving heat with respect to the separation of styrene from the dehydrogenation reaction product.

【0004】スチレン製造工程において未反応エチルベ
ンゼンとスチレンを蒸留により分離する場合、その沸点
が互に接近しているため蒸留塔の段数を多くする必要が
あり、熱源として供給する熱が大きいという問題があ
る。しかしながら、従来は蒸留塔からの塔頂留出物は塔
頂冷却器で水により冷却されており、留出物の凝縮熱が
有効に回収されていなかった。
When unreacted ethylbenzene and styrene are separated by distillation in the styrene production process, since the boiling points thereof are close to each other, it is necessary to increase the number of stages of the distillation column, and there is a problem that the heat supplied as a heat source is large. is there. However, conventionally, the overhead distillate from the distillation column has been cooled by water in the overhead cooler, and the heat of condensation of the distillate has not been effectively recovered.

【0005】このため特開昭62−148434号には
未反応エチルベンゼンから粗製スチレンを分離するため
の蒸留塔からの塔頂留出物を熱交換器に供給し、該熱交
換器を通るエチルベンゼン及び水でなる流体との間で間
接的に熱交換させる方法が提案されている。
For this reason, in JP-A-62-148434, an overhead distillate from a distillation column for separating crude styrene from unreacted ethylbenzene is fed to a heat exchanger, and ethylbenzene passing through the heat exchanger and A method of indirectly exchanging heat with a fluid consisting of water has been proposed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、この方
法は間接熱交換器における有効温度差の関係から蒸留塔
塔頂温度として100℃以上が必要となるため、蒸留塔
塔頂圧力を300mmHg以上に上昇させねばならず、
そのために還流比が増加しリボイラーでの熱媒使用量が
増加すると共に蒸留塔塔底温度が上昇することによりス
チレンの熱重合を防止するための重合防止剤の使用量が
増加するという問題がある。
However, this method requires the distillation column overhead temperature to be 100 ° C. or higher due to the difference in effective temperature in the indirect heat exchanger, so that the distillation column overhead pressure is increased to 300 mmHg or more. I have to let
Therefore, there is a problem that the reflux ratio increases, the amount of heat medium used in the reboiler increases, and the bottom temperature of the distillation column rises, so that the amount of polymerization inhibitor used to prevent thermal polymerization of styrene increases. .

【0007】本発明の目的は、スチレン製造工程でのス
チレン蒸留工程において未反応エチルベンゼンをスチレ
ンから分離する段階で蒸留塔塔頂圧力を大きく上昇させ
ることなく蒸留塔塔頂留出物の凝縮熱を回収し、スチレ
ン製造工程で有効に利用する方法を提供することにあ
る。
The object of the present invention is to reduce the heat of condensation of the distillation column overhead distillate without significantly increasing the distillation column overhead pressure in the step of separating unreacted ethylbenzene from styrene in the styrene distillation process in the styrene production process. It is intended to provide a method for recovering and effectively utilizing it in a styrene production process.

【0008】[0008]

【課題を解決するための手段】本発明者等は、上記課題
を解決するために鋭意研究を行った結果、スチレン蒸留
工程における未反応エチルベンゼンとスチレンとの分離
の際に蒸留塔の塔頂圧力を50〜290mmHgに保持
しつつ塔頂留出物を吸収式ヒートポンプに供給し、該ヒ
ートポンプ内の被加熱物と間接熱交換させることによ
り、塔頂留出物の凝縮熱を有効に回収出来ることを見い
出し本発明を完成した。
Means for Solving the Problems The inventors of the present invention have conducted diligent research to solve the above-mentioned problems, and as a result, the top pressure of a distillation column at the time of separating unreacted ethylbenzene and styrene in a styrene distillation step. The column top distillate is supplied to an absorption heat pump while maintaining 50 to 290 mmHg, and the heat of condensation of the column top distillate can be effectively recovered by indirectly exchanging heat with the object to be heated in the heat pump. They have found the present invention and completed the present invention.

【0009】即ち、本発明は、エチルベンゼンを水蒸気
の存在下で脱水素反応工程に付し、脱水素反応生成物を
冷却して、炭化水素からなる気相、水蒸気の凝縮物から
なる水相及び粗製スチレン、未反応エチルベンゼン、軽
質分及び重質分からなる有機相の三相に分離し、有機相
を蒸留工程に付しスチレンを分離、回収するところのエ
チルベンゼンの脱水素反応によるスチレンの製造法にお
いて、該蒸留工程における未反応エチルベンゼンとスチ
レンとの分離の際に蒸留塔の塔頂圧力を50〜290m
mHgに保持しつつ塔頂留出物を吸収式ヒートポンプに
供給し、該ヒートポンプの被加熱物と間接熱交換せし
め、被加熱物を塔頂留出物より高い温度で0.6〜4.
0kg/cm2 の圧力下で気化させて上記脱水素工程及
び/又はリボイラー熱源に供給することを特徴とするス
チレンの製造法である。
That is, according to the present invention, ethylbenzene is subjected to a dehydrogenation reaction step in the presence of steam, and the dehydrogenation reaction product is cooled to obtain a gas phase composed of hydrocarbons, an aqueous phase composed of a condensed product of steam, and In the method for producing styrene by dehydrogenation reaction of ethylbenzene, where the organic phase is separated into three phases consisting of crude styrene, unreacted ethylbenzene, light and heavy components, and the organic phase is subjected to a distillation process to separate and recover styrene. , The top pressure of the distillation column during the separation of unreacted ethylbenzene and styrene in the distillation step is 50 to 290 m.
The overhead distillate is supplied to an absorption heat pump while being maintained at mHg to be indirectly heat-exchanged with the object to be heated of the heat pump, and the object to be heated is heated at a temperature higher than that of the overhead distillate by 0.6 to 4.
A method for producing styrene, which comprises vaporizing under a pressure of 0 kg / cm 2 and supplying the gas to the dehydrogenation step and / or the reboiler heat source.

【0010】(具体的説明)以下、本発明の方法を添付
図面を用いて詳細に説明する。図1は、エチルベンゼン
の脱水素反応によりスチレンを製造する本発明方法の代
表例を模式的に示したものである。
(Detailed Description) The method of the present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 schematically shows a typical example of the method of the present invention for producing styrene by dehydrogenation of ethylbenzene.

【0011】エチルベンゼンの脱水素反応によるスチレ
ンの製造は、その反応の特性上希釈用スチームの存在
下、約600℃またはそれ以上の温度および大気圧以下
の低圧条件で行われる。図1において希釈用スチームの
大部分(1次スチームと称する)はスチーム過熱器(図
示せず)を経てライン1を通して供給される。また、エ
チルベンゼンおよび希釈用スチームの残部(2次スチー
ムと称する)はライン2を通して供給されポイントAで
ライン1を通して供給される希釈用スチームと合流され
ライン3を通して脱水素反応部100に供給される。
The production of styrene by the dehydrogenation reaction of ethylbenzene is carried out at a temperature of about 600 ° C. or higher and a low pressure condition of atmospheric pressure or lower in the presence of steam for dilution due to the characteristics of the reaction. In FIG. 1, most of the dilution steam (referred to as primary steam) is supplied through line 1 through a steam superheater (not shown). In addition, ethylbenzene and the rest of the diluting steam (referred to as secondary steam) are supplied through line 2 and merge with the diluting steam supplied through line 1 at point A, and are supplied to dehydrogenation reaction section 100 through line 3.

【0012】脱水素反応部100から流出される脱水素
反応生成物はライン4を通して熱交換器101に供給さ
れ、ここでライン5を通して供給されるエチルベンゼン
および2次スチームを加熱することで所定の温度に冷却
される。熱交換器101からの流出物はライン6を通し
て熱回収・分離部102に供給され、水または空気との
間接熱交換により更に冷却され、主に炭化水素(例え
ば、メタン、エチレン、芳香族炭化水素類、水素、窒
素、二酸化炭素等)からなる気相、水蒸気凝縮物からな
る水相、およびスチレン、未反応エチルベンゼン、軽質
物質(ベンゼン、トルエン等)および重質物質(スチレ
ン重合物)からなる有機相の三相に分離される。
The dehydrogenation reaction product discharged from the dehydrogenation reaction section 100 is supplied to a heat exchanger 101 through a line 4, where ethylbenzene and secondary steam supplied through a line 5 are heated to a predetermined temperature. To be cooled. The effluent from the heat exchanger 101 is supplied to the heat recovery / separation unit 102 through the line 6 and further cooled by indirect heat exchange with water or air, and mainly hydrocarbons (for example, methane, ethylene, aromatic hydrocarbons). Phase consisting of compounds, hydrogen, nitrogen, carbon dioxide, etc., an aqueous phase consisting of steam condensate, and organic consisting of styrene, unreacted ethylbenzene, light substances (benzene, toluene, etc.) and heavy substances (styrene polymer) It is separated into three phases.

【0013】上記気相は冷却、断熱圧縮過程を経てベン
トガスとして回収され、他の設備(図示せず)に送られ
る。これら一連の処理は「ベントガス回収」として表示
されている。上記水相はライン7を通して他の設備(図
示せず)に送られる。上記有機相はライン8を通して蒸
留塔103(その主な機能を表すため「ベンゼン・トル
エン塔」と表示してある)に供給され、塔頂から軽質物
質(ベンゼン・トルエン等)がライン9を通して抜き出
され他の設備(図示せず)に送られる。
The gas phase is recovered as vent gas through a cooling and adiabatic compression process and sent to another facility (not shown). These series of treatments are labeled as “vent gas recovery”. The water phase is sent to another facility (not shown) through the line 7. The organic phase is supplied to the distillation column 103 (shown as “benzene / toluene column” to indicate its main function) through the line 8 and light substances (benzene / toluene, etc.) are extracted from the top of the column through the line 9. It is sent out and sent to other equipment (not shown).

【0014】スチレン、未反応エチルベンゼン及び重質
物質(スチレン重合物)は塔底からライン10を通して
抜き出され蒸留塔105(その主な機能を表すため「エ
チルベンゼン塔」と表示してある)に供給される。上記
蒸留塔105は塔頂圧力50mmHgから290mmH
g望ましくは120mmHgから200mmHgで運転
され、塔頂から未反応エチルベンゼンがライン11を通
して抜き出され吸収式ヒートポンプ107に供給され該
ヒートポンプの作動熱源として使用される。なお、本発
明に用いられる吸収式ヒートポンプとは、吸収剤水溶液
の水蒸気吸収時の吸収熱を利用したものであり、一般的
に蒸発器、吸収器、凝縮器、発生器と呼ばれる機器要素
から構成され、例えば吸収剤としてリチウムブロマイド
とかアンモニアを用いたものが挙げられる。
Styrene, unreacted ethylbenzene and a heavy substance (styrene polymer) are withdrawn from the bottom of the column through a line 10 and supplied to a distillation column 105 (shown as "ethylbenzene column" to indicate its main function). To be done. The distillation column 105 has a column top pressure of 50 mmHg to 290 mmHg.
g It is preferably operated at 120 mmHg to 200 mmHg, and unreacted ethylbenzene is extracted from the top of the column through a line 11 and supplied to an absorption heat pump 107 to be used as an operating heat source of the heat pump. The absorption heat pump used in the present invention utilizes heat of absorption when absorbing water vapor of an absorbent aqueous solution, and is generally composed of an evaporator, an absorber, a condenser, and a device element called a generator. Examples thereof include those using lithium bromide or ammonia as an absorbent.

【0015】吸収式ヒートポンプ107内で凝縮された
上記未反応エチルベンゼンはライン12を通して冷却器
108に供給され冷却される。上記冷却器108で冷却
された上記未反応エチルベンゼンはライン13を通して
還流槽109に供給され、その一部がライン14を通し
て還流液として上記蒸留塔105の上部に戻され、残部
はライン15を通して抜き出される。上記蒸留塔105
の塔底からはライン25を通してスチレンおよび重質物
質(スチレン重合物)が抜き出され蒸留塔110(その
主な機能を表すため「スチレン塔」と表示してある)に
供給され、塔頂からスチレンがライン26を通して抜き
出しされ製品として回収される。重質物質(スチレン重
合物)は塔底からライン27を通して抜き出され、他の
設備(図示せず)に送られる。
The unreacted ethylbenzene condensed in the absorption heat pump 107 is supplied to the cooler 108 through the line 12 and cooled. The unreacted ethylbenzene cooled by the cooler 108 is supplied to the reflux tank 109 through the line 13, a part of the unreacted ethylbenzene is returned to the upper portion of the distillation column 105 as a reflux liquid through the line 14, and the rest is extracted through the line 15. Be done. The distillation tower 105
Styrene and heavy substances (styrene polymer) are extracted from the bottom of the column through line 25 and supplied to the distillation column 110 (denoted as "styrene column" to indicate its main function), and from the top of the column. Styrene is extracted through line 26 and collected as a product. The heavy substance (styrene polymer) is withdrawn from the bottom of the column through a line 27 and sent to another facility (not shown).

【0016】そして、吸収式ヒートポンプ107の被加
熱物が水の場合はライン16およびライン18を通して
水が上記吸収式ヒートポンプ107に供給され、該ヒー
トポンプで0.6kg/cm2 Aから4.0kg/cm
2 A望ましくは0.8kg/cm2 Aから1.5kg/
cm2 Aの低圧スチームが製造され、ライン19を通し
て抜き出される。上記低圧スチームの使用用途は広く例
えば、蒸留塔リボイラー熱媒として使用する場合は上記
低圧スチームはライン20、21および22を通して蒸
留塔リボイラー104、106および111に供給され
る。また、2次スチームとして使用する場合は上記低圧
スチームはライン23を通して抜き出され、ポイントB
でライン24を通して供給されるエチルベンゼンと合流
されライン5を通して熱交換器101に供給される。
When the object to be heated of the absorption heat pump 107 is water, water is supplied to the absorption heat pump 107 through the line 16 and the line 18, and 0.6 kg / cm 2 A to 4.0 kg / is supplied by the heat pump. cm
2 A, preferably 0.8 kg / cm 2 A to 1.5 kg /
A low pressure steam of cm 2 A is produced and withdrawn through line 19. The low-pressure steam is widely used, for example, when used as a distillation column reboiler heat medium, the low-pressure steam is supplied to the distillation column reboilers 104, 106 and 111 through lines 20, 21 and 22. When used as a secondary steam, the low pressure steam is withdrawn through line 23,
Is combined with the ethylbenzene supplied through the line 24 and is supplied to the heat exchanger 101 through the line 5.

【0017】吸収式ヒートポンプ107の被加熱物がエ
チルベンゼンおよび水混合物の場合はライン16を通し
て水が供給されると共にライン17を通してエチルベン
ゼンが供給されポイントCで合流されライン18を通し
て上記吸収式ヒートポンプ107に供給される。該ヒー
トポンプで0.6kg/cm2 Aから4.0kg/cm
2 A望ましくは0.8kg/cm2 Aから1.5kg/
cm2 Aで共沸混合物として気化された上記エチルベン
ゼンおよび水共沸混合物はライン19およびライン23
を通して抜き出されポイントBでライン24を通して供
給されるエチルベンゼンと合流され、ライン5を通して
熱交換器101に供給される。尚、上記有機相を分離す
る蒸留工程の他の型式として第1塔で塔頂より軽質物質
(ベンゼン、トルエン等)および未反応エチルベンゼン
を抜き出す型式のものがあるが、この型式の場合は上記
吸収式ヒートポンプは第1塔で使用される。
When the object to be heated of the absorption heat pump 107 is a mixture of ethylbenzene and water, water is supplied through the line 16 and ethylbenzene is supplied through the line 17 and merged at the point C to be supplied to the absorption heat pump 107 through the line 18. To be done. 0.6 kg / cm 2 A to 4.0 kg / cm with the heat pump
2 A, preferably 0.8 kg / cm 2 A to 1.5 kg /
The above-mentioned ethylbenzene and water azeotrope vaporized as an azeotrope at cm 2 A are the lines 19 and 23.
Is combined with the ethylbenzene supplied through line 24 at point B and supplied to heat exchanger 101 through line 5. As another type of the distillation step for separating the organic phase, there is a type in which light substances (benzene, toluene, etc.) and unreacted ethylbenzene are withdrawn from the top of the first tower. A heat pump is used in the first tower.

【0018】[0018]

【実施例】以下、本発明を実施例により更に具体的に説
明するが、本発明はこれらの実施例により限定されるも
のではない。
EXAMPLES The present invention will now be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0019】実施例1 蒸留塔105を塔頂圧力150mmHg、塔頂温度85
℃で運転し、塔頂よりライン11を通して未反応エチル
ベンゼンを抜き出し吸収式ヒートポンプ107に供給
し、該ヒートポンプの作動熱源として使用した。吸収式
ヒートポンプ107には、ライン16および18を通し
て85℃の水が供給され、該ヒートポンプ内で上記未反
応エチルベンゼンの凝縮熱により加熱され、1.2kg
/cm2 Aのスチーム(温度105℃)が製造された。
上記スチームはライン19を通して抜き出されその80
%がライン23を通して抜き出され2次スチームとして
供給され、残部がライン22を通して抜き出されスチレ
ン塔リボイラー111に供給され必要熱媒量の50%と
して使用された。吸収式ヒートポンプ107で回収され
た熱は蒸留塔105の塔頂より抜き出された未反応エチ
ルベンゼンの凝縮熱の48%に相当する量であった。
Example 1 The distillation column 105 was set at a column top pressure of 150 mmHg and a column top temperature of 85.
Operating at 0 ° C., unreacted ethylbenzene was withdrawn from the top of the column through line 11 and supplied to the absorption heat pump 107, which was used as an operating heat source for the heat pump. The absorption heat pump 107 is supplied with water at 85 ° C. through lines 16 and 18, and is heated by the heat of condensation of the unreacted ethylbenzene in the heat pump to obtain 1.2 kg.
/ Cm 2 A steam (temperature 105 ° C) was produced.
The steam is extracted through line 19 at 80
% Was withdrawn through line 23 and supplied as secondary steam, and the remainder was withdrawn through line 22 and supplied to styrene column reboiler 111 and used as 50% of the required heat medium amount. The heat recovered by the absorption heat pump 107 was 48% of the heat of condensation of the unreacted ethylbenzene extracted from the top of the distillation column 105.

【0020】実施例2 蒸留塔105を実施例1と同様に塔頂圧力150mmH
g、塔頂温度85℃で運転し、塔頂よりライン11を通
して未反応エチルベンゼンを抜き出し吸収式ヒートポン
プ107に供給し、該ヒートポンプの作動熱源として使
用した。吸収式ヒートポンプ107には、ライン16を
通して85℃の水が供給されると共にライン17を通し
て85℃のエチルベンゼンが供給され、該ヒートポンプ
内で上記未反応エチルベンゼンの凝縮熱により加熱さ
れ、1.2kg/cm2 Aの圧力で気化され温度95℃
のエチルベンゼンおよび水共沸混合物が製造された。上
記エチルベンゼンおよび水共沸混合物はライン19およ
びライン23を通して抜き出されポイントBでライン2
4を通して供給されるエチルベンゼンと合流され、ライ
ン5を通して熱交換器101に供給された。上記吸収式
ヒートポンプで気化されたエチルベンゼン量は脱水素反
応部100に供給されるエチルベンゼン量の50%であ
った。吸収式ヒートポンプ107で回収された熱は蒸留
塔105の塔頂より抜き出された未反応エチルベンゼン
の凝縮熱の48%に相当する量であった。
Example 2 As in Example 1, the top pressure of the distillation column 105 was 150 mmH.
g, operating at a tower top temperature of 85 ° C., unreacted ethylbenzene was extracted from the tower top through a line 11 and supplied to an absorption heat pump 107, which was used as an operating heat source of the heat pump. The absorption heat pump 107 is supplied with water at 85 ° C. through a line 16 and ethylbenzene at 85 ° C. through a line 17, and is heated by the heat of condensation of the unreacted ethylbenzene in the heat pump to 1.2 kg / cm 2. Vaporized at a pressure of 2 A and temperature is 95 ℃
An ethyl benzene and water azeotrope was prepared. The ethylbenzene and water azeotrope is withdrawn through line 19 and line 23 and at point B line 2
It was combined with ethylbenzene supplied through No. 4 and was supplied to the heat exchanger 101 through line 5. The amount of ethylbenzene vaporized by the absorption heat pump was 50% of the amount of ethylbenzene supplied to the dehydrogenation reaction section 100. The heat recovered by the absorption heat pump 107 was an amount corresponding to 48% of the heat of condensation of unreacted ethylbenzene extracted from the top of the distillation column 105.

【0021】[0021]

【発明の効果】本発明の方法によれば、スチレンの製造
工程でのスチレン蒸留工程において未反応エチルベンゼ
ンをスチレンから分離する段階で蒸留塔塔頂圧力を大き
く上昇させることなく吸収式ヒートポンプを利用して蒸
留塔塔頂留出物の凝縮熱を回収できる。回収した熱はス
チレン蒸留工程でのリボイラー熱源或いは脱水素反応工
程での希釈用スチーム又はエチルベンゼンの気化熱源と
してスチレン製造工程内で有効に利用できる。
EFFECTS OF THE INVENTION According to the method of the present invention, an absorption heat pump is used without significantly increasing the overhead pressure of the distillation column in the step of separating unreacted ethylbenzene from styrene in the styrene distillation step in the styrene production step. The heat of condensation of the distillation overhead of the distillation column can be recovered. The recovered heat can be effectively used in the styrene production process as a reboiler heat source in the styrene distillation process or as a vaporization heat source for diluting steam or ethylbenzene in the dehydrogenation reaction process.

【図面の簡単な説明】[Brief description of drawings]

【図1】エチルベンゼンの脱水素反応によりスチレンを
製造する本発明方法の代表例を示した模式図である。
FIG. 1 is a schematic view showing a typical example of the method of the present invention for producing styrene by dehydrogenation reaction of ethylbenzene.

【符号の説明】[Explanation of symbols]

100 脱水素反応部 101 熱交換器 102 熱回収・分離部 103 蒸留塔 104 リボイラー 105 蒸留塔 106 リボイラー 107 吸収式ヒートポンプ 108 冷却器 109 還流槽 110 蒸留塔 111 リボイラー 100 Dehydrogenation Reaction Section 101 Heat Exchanger 102 Heat Recovery / Separation Section 103 Distillation Tower 104 Reboiler 105 Distillation Tower 106 Reboiler 107 Absorption Heat Pump 108 Cooler 109 Reflux Tank 110 Distillation Tower 111 Reboiler

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 エチルベンゼンを水蒸気の存在下で脱水
素反応工程に付し、脱水素反応生成物を冷却して、炭化
水素からなる気相、水蒸気の凝縮物からなる水相及び粗
製スチレン、未反応エチルベンゼン、軽質分及び重質分
からなる有機相の三相に分離し、有機相を蒸留工程に付
しスチレンを分離、回収するところのエチルベンゼンの
脱水素反応によるスチレンの製造法において、 該蒸留工程における未反応エチルベンゼンとスチレンと
の分離の際に蒸留塔の塔頂圧力を50〜290mmHg
に保持しつつ塔頂留出物を吸収式ヒートポンプに供給
し、該ヒートポンプの被加熱物と間接熱交換せしめ、被
加熱物を塔頂留出物より高い温度で0.6〜4.0kg
/cm2 の圧力下で気化させて上記脱水素工程及び/又
はリボイラー熱源に供給することを特徴とするスチレン
の製造法。
1. Ethylbenzene is subjected to a dehydrogenation reaction step in the presence of steam, the dehydrogenation reaction product is cooled, and a gas phase consisting of a hydrocarbon, an aqueous phase consisting of a condensate of steam and crude styrene, In the method for producing styrene by the dehydrogenation reaction of ethylbenzene, in which the organic phase is separated into three phases of reaction ethylbenzene, a light component and a heavy component, and the organic phase is subjected to a distillation process to separate and recover styrene, At the time of separating unreacted ethylbenzene and styrene at 50 to 290 mmHg.
While maintaining the above, the overhead distillate is supplied to an absorption heat pump to indirectly exchange heat with the object to be heated of the heat pump, and the object to be heated is heated to a temperature higher than that of the overhead distillate by 0.6 to 4.0 kg.
A method for producing styrene, which comprises vaporizing under a pressure of / cm 2 and supplying the gas to the dehydrogenation step and / or the reboiler heat source.
【請求項2】 被加熱物が水である請求項1に記載の方
法。
2. The method according to claim 1, wherein the object to be heated is water.
【請求項3】 被加熱物が水とエチルベンゼンとの混合
物である請求項1に記載の方法。
3. The method according to claim 1, wherein the material to be heated is a mixture of water and ethylbenzene.
JP4087045A 1992-04-08 1992-04-08 Production of styrene Pending JPH0692878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4087045A JPH0692878A (en) 1992-04-08 1992-04-08 Production of styrene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4087045A JPH0692878A (en) 1992-04-08 1992-04-08 Production of styrene

Publications (1)

Publication Number Publication Date
JPH0692878A true JPH0692878A (en) 1994-04-05

Family

ID=13903973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4087045A Pending JPH0692878A (en) 1992-04-08 1992-04-08 Production of styrene

Country Status (1)

Country Link
JP (1) JPH0692878A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100335287B1 (en) * 1999-10-25 2002-05-03 유현식 An improved process using the heat exchange apparatus before the input of styrene monomer purification process
JP2005529951A (en) * 2002-06-12 2005-10-06 ストーン アンド ウェブスター インコーポレーテッド EB / SM splitter heat recovery
KR100730630B1 (en) * 2005-07-25 2007-06-20 삼성토탈 주식회사 Method for producing styrene for energy saving
JP2014505674A (en) * 2010-12-13 2014-03-06 ルムス テクノロジー インコーポレイテッド Process for producing styrene from ethylbenzene using azeotropic vaporization and low water to ethylbenzene total ratio
CN105566030A (en) * 2014-10-24 2016-05-11 中国石油化工股份有限公司 Method for separating BTX
CN105669353A (en) * 2014-11-20 2016-06-15 中国石油化工股份有限公司 Ethylbenzene and styrene separation method
CN105669354A (en) * 2014-11-20 2016-06-15 中国石油化工股份有限公司 Ethylbenzene dehydrogenation reaction product separation method
CN107540510A (en) * 2016-06-29 2018-01-05 中石化上海工程有限公司 The energy-saving process method of styrene piece-rate system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100335287B1 (en) * 1999-10-25 2002-05-03 유현식 An improved process using the heat exchange apparatus before the input of styrene monomer purification process
JP2005529951A (en) * 2002-06-12 2005-10-06 ストーン アンド ウェブスター インコーポレーテッド EB / SM splitter heat recovery
KR100730630B1 (en) * 2005-07-25 2007-06-20 삼성토탈 주식회사 Method for producing styrene for energy saving
JP2014505674A (en) * 2010-12-13 2014-03-06 ルムス テクノロジー インコーポレイテッド Process for producing styrene from ethylbenzene using azeotropic vaporization and low water to ethylbenzene total ratio
JP2016166214A (en) * 2010-12-13 2016-09-15 ルムス テクノロジー インコーポレイテッド Method of producing styrene from ethylbenzene using azeotropic vaporization and low overall water to ethylbenzene ratio
CN105566030A (en) * 2014-10-24 2016-05-11 中国石油化工股份有限公司 Method for separating BTX
CN105669353A (en) * 2014-11-20 2016-06-15 中国石油化工股份有限公司 Ethylbenzene and styrene separation method
CN105669354A (en) * 2014-11-20 2016-06-15 中国石油化工股份有限公司 Ethylbenzene dehydrogenation reaction product separation method
CN105669353B (en) * 2014-11-20 2018-04-06 中国石油化工股份有限公司 Ethylbenzene styrene separation process
CN105669354B (en) * 2014-11-20 2018-04-06 中国石油化工股份有限公司 ethylbenzene dehydrogenation reaction product separation method
CN107540510A (en) * 2016-06-29 2018-01-05 中石化上海工程有限公司 The energy-saving process method of styrene piece-rate system

Similar Documents

Publication Publication Date Title
JPS62148434A (en) Manufacture of styrene
US4311019A (en) Process for producing cold and/or heat with use of an absorption cycle
RU2446137C1 (en) Method of producing styrene monomer via oxidative dehydrogenation of ethylbenzene using co2 as soft oxidant
US7922980B2 (en) EB/SM splitter heat recovery
US4167101A (en) Absorption process for heat conversion
KR101276466B1 (en) Method of providing heat for chemical conversion and a process and system employing the method for the production of olefin
US3256355A (en) Process for preparing styrene and recovery of ethylbenzene
US3948623A (en) Anhydride separation
JPH0621084B2 (en) How to recover heat from a low temperature exhaust stream
CN105237370A (en) Method for producing cyclohexanone by cyclohexanol dehydrogenation
JPH0692878A (en) Production of styrene
JPS5947236B2 (en) heat transfer method
US20060149115A1 (en) Refrigeration system for the production and recovery of olefins
JPH01149778A (en) Improvement in ethylene oxide process
US4113787A (en) Aromatic hydrocarbon dehydrogenation process
KR100730630B1 (en) Method for producing styrene for energy saving
US4338476A (en) Alkylaromatic hydrocarbon dehydrogenation process
JP2002544206A (en) Method for recovering 3,4-epoxy-1-butene
RU2802428C1 (en) Method for styrene purification using combined action of falling film reboilers and heat pump technology to obtain a heat source for separating column
NO770144L (en) PROCEDURES FOR CATALYTIC CYLCYLATION OF ISOBUTANE.
JPS60174733A (en) Preparation of 1,3-butadiene
JPH0360702A (en) Heat recovery method
JP2819600B2 (en) Method for producing dimethyl ether
JP2021138646A (en) Method and apparatus for concentrating alkene and/or alkane
JPH0291044A (en) Separation of mixture of acetic acid, water and vinyl acetate