JPH069276A - Method for calcining ceramic - Google Patents

Method for calcining ceramic

Info

Publication number
JPH069276A
JPH069276A JP5066434A JP6643493A JPH069276A JP H069276 A JPH069276 A JP H069276A JP 5066434 A JP5066434 A JP 5066434A JP 6643493 A JP6643493 A JP 6643493A JP H069276 A JPH069276 A JP H069276A
Authority
JP
Japan
Prior art keywords
fired
firing
ceramic
oxygen concentration
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5066434A
Other languages
Japanese (ja)
Other versions
JP2601614B2 (en
Inventor
Makio Yamaguchi
眞紀雄 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP5066434A priority Critical patent/JP2601614B2/en
Publication of JPH069276A publication Critical patent/JPH069276A/en
Application granted granted Critical
Publication of JP2601614B2 publication Critical patent/JP2601614B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To shorten a calcination time, while preventing the generation of cracks and blisters. CONSTITUTION:The concentration of oxygen is held at 12-15% in an oven in a temperature region of 700-1000 deg.C and in a holding temperature region of approximately 1000 deg.C. Namely, the oxygen concentration of the atmosphere is enhanced in a process ranging from a temperature region for releasing the crystal water of clay components to a temperature region for transferring a calcination article from a porous state into a dense state. Thereby, organic substances contained in the article are burnt off in a good state in a short time without generating blisters.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はセラミック被焼成体を焼
成するについて焼成中に発生する欠陥を抑え且つ短時間
で焼成できるように改良を加えたセラミックの焼成方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for firing a ceramic which is improved so that defects occurring during firing can be suppressed and firing can be performed in a short time.

【0002】[0002]

【従来の技術】セラミックにおいては、複雑な形状のタ
ーボチャージャーやタービンロータを射出成形、流し込
み成形により成形する場合は、セラミック粉末中に成形
性を高めるために熱可塑性樹脂やワックスなど大量の有
機質バインダーを添加し、セラミック成形体を成形して
いる。有機質バインダーを大量に含有した成形体は、焼
結を行なう前に加熱分解や有機溶剤による溶解などによ
り、有機質バインダーを成形体注から除去する脱脂工程
が必要である。その脱脂の一方法である加熱焼成による
脱脂では、従来より、成形体にクラックや変形が発生す
る虞があり、これを防止しようとすると、時間をかけて
昇温しなければならず、加熱焼成にかなり長い時間がか
かるという問題があった。
2. Description of the Related Art In ceramics, when a turbocharger or turbine rotor having a complicated shape is molded by injection molding or casting, a large amount of organic binder such as thermoplastic resin or wax is added to the ceramic powder to improve the moldability. Is added to form a ceramic molded body. A molded body containing a large amount of an organic binder requires a degreasing step of removing the organic binder from the casting of the molded body by thermal decomposition or dissolution with an organic solvent before sintering. Degreasing by heating and baking, which is one of the methods for degreasing, may cause cracks and deformations in the molded body from the past. To prevent this, the temperature must be raised over time, There was a problem that it took quite a long time.

【0003】また、セラミックのうちでも、特に磁器等
のように、粘土成分を含む被焼成体を焼成する場合にお
いては、内部の有機物が被焼成体中に炭素沈着物として
残ることにより素地の一部が膨れ上がる現象いわゆるブ
クが発生することがある。これを解決しようとすると、
この場合も加熱時間を長くしなければならず、時間がか
かるという不具合があった。
[0003] Among ceramics, particularly in the case of firing a body to be fired containing a clay component such as porcelain, organic matter inside remains as carbon deposits in the body to be fired, and A phenomenon in which the part swells up may occur. When trying to solve this,
In this case as well, the heating time must be lengthened, and there is a problem that it takes time.

【0004】[0004]

【発明が解決しようとする課題】上述したように、セラ
ミック被焼成体においては、有機物を除去するについて
クラックやブクが発生する虞があり、これを防止しよう
とすると加熱焼成に時間がかかるという問題がある。
As described above, in the ceramic object to be fired, there is a possibility that cracks and burrs may occur when removing the organic substance, and if it is attempted to prevent this, it will take time for heating and firing. There is.

【0005】本発明は、このような事情を考慮してなさ
れたものであり、その目的は、クラックやブクの発生を
なくし得ることはもとより、焼成時間の短縮も図ること
ができるセラミックの焼成方法を提供するにある。
The present invention has been made in view of the above circumstances, and an object thereof is a method of firing a ceramic which can eliminate the occurrence of cracks and burrs and can shorten the firing time. To provide.

【0006】[0006]

【課題を解決するための手段】第1の発明におけるセラ
ミックの焼成方法は、セラミック被焼成体を加熱して焼
成体を得る焼成方法において、被焼成体が多孔状態であ
る過程で雰囲気の酸素濃度を高めることにより、前記被
焼成体に内在する可燃物を酸化除去するところに特徴を
有する(請求項1の発明)。
According to a first aspect of the present invention, there is provided a method for firing a ceramic material, comprising: heating a ceramic body to be fired to obtain a fired body; and oxygen concentration of an atmosphere in a process in which the body is in a porous state. Is increased to remove the combustibles existing in the body to be oxidized by oxidation (the invention of claim 1).

【0007】第2の発明におけるセラミックの焼成方法
は、セラミック被焼成体を加熱して焼成体を得る焼成方
法において、前記被焼成体に内在する可燃物が炭化する
温度域以上の温度領域で、雰囲気の酸素濃度を高めるこ
とにより、前記被焼成体に内在する可燃物を酸化除去す
るところに特徴を有する(請求項2の発明)。
A ceramic firing method according to a second aspect of the present invention is a firing method in which a ceramic body to be fired is heated to obtain a fired body, in a temperature range equal to or higher than a temperature range in which a combustible substance contained in the fired body is carbonized. The present invention is characterized in that the combustible substance existing in the body to be fired is oxidized and removed by increasing the oxygen concentration of the atmosphere (the invention of claim 2).

【0008】第3の発明におけるセラミックの焼成方法
は、粘土成分の結晶水が放出される温度域から、被焼成
体が多孔状態から緻密状態に移行する温度域までの過程
で、雰囲気の酸素濃度を高めることにより、前記被焼成
体に内在する可燃物を酸化除去するところに特徴を有す
る(請求項3の発明)。
According to the third aspect of the present invention, in the method for firing a ceramic, the oxygen concentration in the atmosphere is changed from the temperature range where the water of crystallization of the clay component is released to the temperature range where the body to be fired transitions from a porous state to a dense state. Is increased to remove the combustibles existing in the body to be oxidized by oxidation (the invention of claim 3).

【0009】[0009]

【作用】本発明者の調査によれば次のことが判明した。
セラミック被焼成体は、ある温度域となると多孔状態か
ら緻密状態へ移行する。ここで、多孔状態にある間にお
ける酸素濃度を高くすれば、被焼成体に内在する可燃物
(有機物)を良好にしかも短時間で燃焼させ除去するこ
とが可能である。また、被焼成体に内在する可燃物が炭
化する温度域以上の温度領域で酸素濃度を高くしても可
燃物(有機物)を良好にしかも短時間で燃焼させ除去す
ることが可能である。
According to the investigation by the present inventor, the following has been found.
The ceramic fired body transitions from a porous state to a dense state in a certain temperature range. Here, if the oxygen concentration is increased during the porous state, it is possible to satisfactorily burn and remove combustible substances (organic substances) existing in the body to be fired in a short time. Further, even if the oxygen concentration is increased in a temperature range higher than the temperature range in which the combustible substance existing in the fired body is carbonized, the combustible substance (organic substance) can be burned and removed satisfactorily and in a short time.

【0010】しかるに、請求項1の発明においては、セ
ラミック被焼成体が多孔状態である過程で酸素濃度を高
めて、可燃物を酸化除去するから、酸素濃度の高い空気
が被焼成体内に有効に侵入し、可燃物が短時間で良好に
燃焼する。
[0010] In the invention of claim 1, however, the oxygen concentration is increased in the process of the porous body to be burned to oxidize and remove the combustible substances, so that the air having a high oxygen concentration is effectively used in the body to be fired. Intrudes, and combustibles burn well in a short time.

【0011】また請求項2の発明においては、被焼成体
に内在する可燃物が炭化する温度域以上の温度領域で、
雰囲気の酸素濃度を高めることにより、被焼成体に内在
する可燃物を酸化除去するから、この場合も、可燃物が
短時間で良好に燃焼する。
According to the second aspect of the present invention, in a temperature range equal to or higher than the temperature range in which the combustible material in the body to be fired is carbonized,
Increasing the oxygen concentration in the atmosphere oxidizes and removes the combustible substances existing in the body to be fired, and in this case as well, the combustible substances satisfactorily burn in a short time.

【0012】さらに、請求項3の発明においては、セラ
ミック被焼成体に含まれる粘土成分の結晶水が放出され
る温度域から、被焼成体が多孔状態から緻密状態に移行
する温度域までの過程で、雰囲気の酸素濃度を高めるこ
とにより、前記被焼成体に内在する可燃物を酸化除去す
るから、酸素濃度の高い空気が被焼成体内に有効に侵入
し、可燃物が短時間で良好に燃焼する。これにより、ブ
ク発生を抑えつつ焼成時間を短くすることが可能であ
る。
Further, in the invention of claim 3, the process from the temperature range where the water of crystallization of the clay component contained in the ceramic body to be fired is released to the temperature range where the body to be fired is changed from a porous state to a dense state. Thus, by increasing the oxygen concentration of the atmosphere, the combustible substances existing in the body to be burned are oxidized and removed, so that air with a high oxygen concentration effectively penetrates into the body to be burned, and the combustible substances burn well in a short time. To do. Thereby, it is possible to shorten the firing time while suppressing the generation of burrs.

【0013】[0013]

【実施例】以下、本発明の第1の実施例につき図1ない
し図4を参照しながら説明する。図3には燃焼装置を示
している。炉1の炉壁1aには、バーナー2が設けられ
ており、このバーナー2は、それぞれ燃料供給口3およ
び燃焼用空気供給口4から燃料および空気が供給されて
炉内1に向けて燃焼ガス(火炎)を噴射するようになっ
ている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIGS. FIG. 3 shows a combustion device. A burner 2 is provided on a furnace wall 1a of the furnace 1. The burner 2 is supplied with fuel and air from a fuel supply port 3 and a combustion air supply port 4, respectively, and burns a combustion gas toward a furnace 1. It is designed to inject (flame).

【0014】上記炉1の炉壁1aおいては、バーナー2
から若干離れた部位に酸素供給口5が設けられており、
この酸素供給口5には、酸素供給配管系統6が接続され
ている。すなわち、この酸素配管系統6は、酸素貯留器
7からバルブ8、制御弁9、流量計10および電磁弁1
1を通して酸素供給口5に酸素を供給するようなってい
る。
In the furnace wall 1a of the furnace 1, the burner 2
An oxygen supply port 5 is provided at a position slightly away from
An oxygen supply piping system 6 is connected to the oxygen supply port 5. That is, the oxygen piping system 6 includes an oxygen reservoir 7, a valve 8, a control valve 9, a flow meter 10 and a solenoid valve 1.
Oxygen is supplied to the oxygen supply port 5 through 1.

【0015】上記制御弁9は酸素濃度制御装置12によ
って制御されるものである。この酸素濃度制御装置12
には、炉1内の酸素濃度を検出すべく設けられた酸素セ
ンサ13からの出力信号が与えられるようになっている
と共に、温度センサ14からの出力信号が与えられるよ
うになっており、そして酸素濃度制御装置12は、炉1
内の温度が所定温度領域になったときに、あらかじめ設
定された酸素濃度設定値とこの出力信号とを比較してそ
の比較結果に応じて制御弁9を制御し、もって、炉1内
の酸素濃度が酸素濃度設定値となるようにフィードバッ
ク制御する。
The control valve 9 is controlled by the oxygen concentration control device 12. This oxygen concentration control device 12
Is supplied with an output signal from an oxygen sensor 13 provided to detect the oxygen concentration in the furnace 1, and an output signal from a temperature sensor 14, and The oxygen concentration control device 12 is the furnace 1
When the internal temperature reaches a predetermined temperature range, a preset oxygen concentration set value is compared with this output signal, and the control valve 9 is controlled according to the comparison result. Feedback control is performed so that the concentration becomes the oxygen concentration set value.

【0016】さて、セラミック被焼成体である碍子被焼
成体を炉1内に収容して焼成する場合について述べる。
今、この被焼成体の原料組成は、例えば、長石30〜3
4%、珪砂2〜6%、粘土35〜39%、アルミナ3〜
7%、陶石12〜16%としている。図1には胴径が1
25mmで長さが700mmの中実碍子の被焼成体のヒ
ートカーブを示している。いま、炉1内の温度変化につ
いて述べると、図1のヒートカーブDに示した様に最初
にほぼ3.5時間かけてほぼ230℃まで上げ、そこか
らほぼ3時間で700℃まで上げてゆき、そして、ほぼ
3.2時間でほぼ1000℃にまで上げる。この後、炉
1内の温度を1000℃近辺の温度に保持する。そし
て、この温度保持を7.3時間実行したところで、ほぼ
1250℃の焼結温度に上げ、この1250℃を所定時
間保持したのち所定の冷却速度にて冷却する。
Now, description will be given of a case where an insulator firing object, which is a ceramic firing object, is housed in the furnace 1 and fired.
Now, the raw material composition of the object to be fired is, for example, feldspar 30 to 3
4%, silica sand 2-6%, clay 35-39%, alumina 3-
7% and ceramic stone 12-16%. In Figure 1, the body diameter is 1
The heat curve of the object to be fired of a solid insulator having a length of 25 mm and a length of 700 mm is shown. Now, regarding the temperature change in the furnace 1, as shown in the heat curve D of FIG. 1, the temperature is first raised to about 230 ° C. in about 3.5 hours, and then raised to 700 ° C. in about 3 hours. Then, the temperature is raised to about 1000 ° C. in about 3.2 hours. After that, the temperature in the furnace 1 is maintained at a temperature around 1000 ° C. Then, when this temperature holding is performed for 7.3 hours, the temperature is raised to a sintering temperature of about 1250 ° C., this 1250 ° C. is held for a predetermined time, and then cooled at a predetermined cooling rate.

【0017】この場合、炉1内温度が700℃から10
00℃の範囲で、酸素濃度を高めた富酸素空気または酸
素ガスを供給し、且つ炉内酸素濃度が12%〜15%と
なるようにフィードバック制御する。これにより、碍子
被焼成体内の可燃物である有機物が良好に燃焼する。
In this case, the temperature inside the furnace 1 is from 700 ° C to 10 ° C.
In the range of 00 ° C., oxygen-rich air or oxygen gas with an increased oxygen concentration is supplied, and feedback control is performed so that the oxygen concentration in the furnace is 12% to 15%. As a result, the organic matter, which is a combustible substance in the body to be fired on the insulator, satisfactorily burns.

【0018】すなわち、碍子被焼成体の粘土成分は、ほ
ぼ400℃〜650℃の範囲内で結晶水を放出して多孔
状態に変化してゆくが、この間は粒子間に蒸気が充満
し、酸素の侵入は阻止される。そして、図2に示すよう
に、結晶水の放出が完了すると気孔率および通気率が増
加して多孔状態が促進される(ほぼ700℃以上)。こ
のガラス化による焼結が始まって多孔状態が緻密状態へ
と移行する(ほぼ1000℃)。従って、700℃から
1000℃の温度領域で炉内酸素濃度を富化すること
で、酸素が碍子被焼成体内に有効に侵入し、有機物が短
時間で良好に燃焼する。この結果、ブク発生を抑えつつ
焼成時間を短くすることができる。
That is, the clay component of the insulator to be burned releases crystal water within a range of approximately 400 ° C. to 650 ° C. and changes into a porous state, but during this time, vapor is filled between the particles and oxygen is generated. Will be blocked. Then, as shown in FIG. 2, when the release of water of crystallization is completed, the porosity and the air permeability are increased to promote the porous state (about 700 ° C. or higher). Sintering due to this vitrification starts and the porous state shifts to a dense state (approximately 1000 ° C.). Therefore, by enriching the oxygen concentration in the furnace in the temperature range of 700 ° C. to 1000 ° C., oxygen effectively penetrates into the sintered body of the insulator, and the organic matter burns well in a short time. As a result, the firing time can be shortened while suppressing the generation of burrs.

【0019】図1におけるヒートカーブJは、二次空気
により酸素濃度を8%〜10%とした場合の従来のヒー
トカーブを示しており、この従来のヒートカーブJで
は、700℃〜1000℃と、1000℃近辺の温度保
持領域との合計の焼成時間は表1に示すように、ほぼ1
5.5時間であり、これに対して、本実施例のヒートカ
ーブDの場合では同じく表1に示すように10.5時間
であり、5時間も時間短縮できる。
A heat curve J in FIG. 1 shows a conventional heat curve when the oxygen concentration is set to 8% to 10% by the secondary air. The conventional heat curve J is 700 ° C. to 1000 ° C. As shown in Table 1, the total firing time with the temperature holding region around 1000 ° C. is almost 1
In contrast, in the case of the heat curve D of the present embodiment, it is 10.5 hours as shown in Table 1, which can be shortened by 5 hours.

【0020】[0020]

【表1】 また、図1におけるヒートカーブBは酸素濃度を17%
〜21%とした場合を示しており、この場合、表1に示
すように、700℃〜1000℃領域をほぼ2.2時間
で焼成し、ほぼ1000℃近辺の保持領域をほぼ5.8
時間で焼成している。これによっても、ブク発生をなく
し得る。この場合、700℃〜1000℃領域およびほ
ぼ1000℃近辺の保持領域の焼成時間はほぼ合計で8
時間であり、従来の場合に比して焼成時間を7.5時間
も短縮できる。
[Table 1] In addition, the heat curve B in FIG. 1 has an oxygen concentration of 17%.
.About.21%, and in this case, as shown in Table 1, the 700.degree. C. to 1000.degree. C. region is fired in approximately 2.2 hours, and the holding region near 1000.degree. C. is approximately 5.8.
Baking in time. This also eliminates the occurrence of black spots. In this case, the firing time in the 700 ° C. to 1000 ° C. region and the holding region near 1000 ° C. is about 8 in total.
This is time, and the firing time can be shortened by 7.5 hours as compared with the conventional case.

【0021】なお、図4には、胴径が125mmの中実
碍子被焼成体における酸素濃度と熱面積とブク発生有無
との関係を示している。熱面積は「温度」×「時間」
(℃・h)で示されており、特に、ほぼ700℃から1
000℃近辺保持領域(図1の領域B´、C´)におけ
る熱面積を示している。しかして、この図4のカーブK
1とK2との間はブク発生限界ゾーンであり、図4のカ
ーブKは図4中に示す原料組成の素地を焼成した時のブ
ク発生限界の一例を示している。上記カーブK1より上
側領域がブク発生阻止効果が見られる領域となってい
る。例えば、ヒートカーブDの場合(酸素濃度が12〜
15%)、熱面積が10050℃・hとなり、ブク発生
がみられないことが判る。また、ヒートカーブBの場合
(酸素濃度が17〜21%)には、熱面積が7670℃
・hとなり、ブク発生がみられないことが判る。
FIG. 4 shows the relationship between the oxygen concentration, the heat area, and the occurrence of burrs in a solid insulator to-be-baked object having a body diameter of 125 mm. Thermal area is "temperature" x "time"
(° C · h), especially from approximately 700 ° C to 1
The thermal area in the holding region (regions B ′ and C ′ in FIG. 1) around 000 ° C. is shown. Then, this curve K of FIG.
Between 1 and K2 is a burke generation limit zone, and a curve K in FIG. 4 shows an example of a burke generation limit when the base material having the raw material composition shown in FIG. 4 is fired. The region above the curve K1 is the region where the effect of preventing burrs is observed. For example, in the case of heat curve D (oxygen concentration of 12 to
15%), the heat area is 10050 ° C · h, and it is understood that no burrs are generated. In the case of heat curve B (oxygen concentration is 17 to 21%), the heat area is 7670 ° C.
・ It becomes h, and it can be seen that there is no occurrence of blurring.

【0022】次に、図5において本発明の第2の実施例
について述べる。この第2の実施例では、パラフィンワ
ックスを主成分とする有機質バインダーを含んだセラミ
ックス被焼成体から、有機質バインダーを酸化除去して
脱脂するようにしている。すなわち、図5におけるヒー
トカーブSは、本発明の実施例を示しており、加熱開始
からほぼ60℃までを1℃/hの加熱速度で加熱し、ほ
ぼ60℃の温度を70時間で保持し、そして、ほぼ30
時間で180℃まで温度上昇させ、この180℃を30
時間保持し、この後ほぼ550℃まで温度上昇させ、こ
の550℃を所定時間保持して冷却する。
Next, a second embodiment of the present invention will be described with reference to FIG. In the second embodiment, the organic binder is oxidatively removed and degreased from the ceramics sintered body containing the organic binder whose main component is paraffin wax. That is, a heat curve S in FIG. 5 shows an example of the present invention, in which heating from the start of heating to about 60 ° C. is performed at a heating rate of 1 ° C./h, and the temperature of about 60 ° C. is maintained for 70 hours. , And almost 30
The temperature is raised to 180 ° C over a period of time, and this 180 ° C is increased to 30 ° C.
The temperature is maintained for a period of time, after which the temperature is raised to approximately 550 ° C., and this 550 ° C. is maintained for a predetermined period of time and cooled.

【0023】この場合、パラフィンワックスの融点であ
る60〜70℃でワックスがしみだし多孔化が始まり、
しみだしたワックスが熱分解する180℃近辺で多孔化
がすすみ、分解したワックスが燃焼する250℃以上の
温度域(炭化する温度域)でさらに多孔化される。そし
て、本実施例では、このように被焼成体の多孔化が進ん
だ250℃以上の温度領域で酸素を供給し、炉内酸素を
30%にした。この結果、完全に可燃物である有機質バ
インダーを除去でき、よってクラックや変形の発生を防
止でき、しかも脱脂所要時間は250時間と短い。
In this case, the wax exudes and becomes porous at 60 to 70 ° C., which is the melting point of the paraffin wax,
The exuded wax is pyrolyzed around 180 ° C., and then the porosity proceeds to about 180 ° C., and the decomposed wax is further porous in a temperature range of 250 ° C. or higher (carbonization temperature range). Then, in this example, oxygen was supplied in the temperature range of 250 ° C. or higher where the porosity of the body to be fired progressed in this way, and the oxygen in the furnace was set to 30%. As a result, the organic binder, which is a combustible material, can be completely removed, and thus cracks and deformations can be prevented, and the degreasing time is as short as 250 hours.

【0024】従来の大気を供給する方式(これはヒート
カーブTで示す)では、脱脂所要時間は300時間を要
するの比して、本実施例では大幅に時間短縮が図れる。
In the conventional method of supplying the atmosphere (this is shown by the heat curve T), the degreasing time required is 300 hours, whereas in the present embodiment, the time can be greatly shortened.

【0025】[0025]

【発明の効果】本発明は以上の説明から明らかなよう
に、次の効果を得ることができる。請求項1の発明によ
れば、セラミック被焼成体を焼成するについて、被焼成
体が多孔状態である過程で酸素濃度を高めて、可燃物を
酸化除去するから、可燃物が短時間で良好に燃焼でき
て、クラックの発生を抑えつつ焼成時間を短くすること
ができる。
As is apparent from the above description, the present invention can obtain the following effects. According to the first aspect of the present invention, when firing the ceramic object to be fired, since the oxygen concentration is increased and the combustible material is oxidized and removed in the process in which the object to be fired is in a porous state, the combustible material is satisfactorily improved in a short time. It is possible to burn and shorten the firing time while suppressing the generation of cracks.

【0026】請求項2の発明によれば、セラミック被焼
成体を焼成するについて、被焼成体に内在する可燃物が
炭化する温度域以上の温度領域で、雰囲気の酸素濃度を
高めることにより、被焼成体に内在する可燃物を酸化除
去するから、この場合も、可燃物が短時間で良好に燃焼
できて、クラックの発生を抑えつつ焼成時間を短くする
ことができる。
According to the second aspect of the present invention, when the ceramic object to be fired is fired, the oxygen concentration of the atmosphere is increased in a temperature range higher than the temperature range in which the combustible substance in the object is carbonized. Since the combustible substance existing in the fired body is removed by oxidation, the combustible substance can be satisfactorily combusted in a short time also in this case, and the firing time can be shortened while suppressing the generation of cracks.

【0027】請求項3の発明によれば、粘土成分を含む
セラミック被焼成体を焼成するについて、粘土成分の結
晶水が放出される温度域から、被焼成体が多孔状態から
緻密状態に移行する温度域までの過程で、雰囲気の酸素
濃度を高めることにより、前記被焼成体に内在する可燃
物を酸化除去するから、高い酸素濃度の空気が被焼成体
内に有効に侵入し、可燃物が短時間で良好に燃焼するよ
うになり、これにより、ブクの発生を抑えつつ焼成時間
を短くすることができる。
According to the third aspect of the present invention, when the ceramic object to be fired containing the clay component is fired, the object to be fired is changed from the porous state to the dense state from the temperature range where the water of crystallization of the clay component is released. By increasing the oxygen concentration of the atmosphere in the process up to the temperature range, the combustible substances existing in the body to be burned are oxidized and removed, so that air with a high oxygen concentration effectively penetrates into the body to be burned, and the flammable substances are short. Combustion becomes excellent in time, which allows the firing time to be shortened while suppressing the generation of burrs.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例に関連する焼成時間と炉
内温度との関係を示す図
FIG. 1 is a diagram showing a relationship between a firing time and a furnace temperature related to the first example of the present invention.

【図2】炉内温度と気孔率および通気率の変化を示す図FIG. 2 is a diagram showing changes in furnace temperature, porosity, and air permeability.

【図3】焼成装置の概略的構成を示す図FIG. 3 is a diagram showing a schematic configuration of a firing apparatus.

【図4】ブク発生に対する酸素濃度と熱面積の関係を示
す図
FIG. 4 is a diagram showing the relationship between the oxygen concentration and the heat area with respect to the generation of swelling.

【図5】本発明の第2の実施例に関連する焼成時間と炉
内温度との関係を示す図
FIG. 5 is a diagram showing a relationship between firing time and furnace temperature related to the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1は炉、2はバーナー、5は酸素供給口、6は酸素供給
配管系統、9は制御弁、12は酸素濃度制御装置を示
す。
Reference numeral 1 is a furnace, 2 is a burner, 5 is an oxygen supply port, 6 is an oxygen supply piping system, 9 is a control valve, and 12 is an oxygen concentration control device.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 セラミック被焼成体を加熱して焼成体を
得る焼成方法において、被焼成体が多孔状態である過程
で雰囲気の酸素濃度を高めることにより、前記被焼成体
に内在する可燃物を酸化除去することを特徴とするセラ
ミックの焼成方法。
1. A firing method for heating a ceramic body to be fired to obtain a body to be burned, thereby increasing a concentration of oxygen in an atmosphere while the body to be fired is in a porous state so that a combustible substance existing in the body is burned. A method for firing a ceramic, characterized by removing by oxidation.
【請求項2】 セラミック被焼成体を加熱して焼成体を
得る焼成方法において、前記被焼成体に内在する可燃物
が炭化する温度域以上の温度領域で、雰囲気の酸素濃度
を高めることにより、前記被焼成体に内在する可燃物を
酸化除去することを特徴とするセラミックの焼成方法。
2. In a firing method for heating a ceramic body to be fired to obtain a fired body, by increasing an oxygen concentration of an atmosphere in a temperature range equal to or higher than a temperature range in which a combustible substance existing in the body to be fired is carbonized, A method for firing a ceramic, characterized in that a combustible substance existing in the body to be fired is removed by oxidation.
【請求項3】 粘土成分を含むセラミック被焼成体を加
熱して焼成体を得る方法において、粘土成分の結晶水が
放出される温度域から、被焼成体が多孔状態から緻密状
態に移行する温度域までの過程で、雰囲気の酸素濃度を
高めることにより、前記被焼成体に内在する可燃物を酸
化除去することを特徴とするセラミックの焼成方法。
3. A method for obtaining a fired body by heating a ceramic body to be fired containing a clay component, the temperature at which the body to be fired shifts from a porous state to a dense state from a temperature range in which crystallization water of the clay component is released. A method for firing a ceramic, characterized in that a combustible substance existing in the body to be fired is oxidized and removed by increasing an oxygen concentration in an atmosphere in a process up to the zone.
JP5066434A 1992-03-30 1993-03-25 Ceramic firing method Expired - Fee Related JP2601614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5066434A JP2601614B2 (en) 1992-03-30 1993-03-25 Ceramic firing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7369592 1992-03-30
JP4-73695 1992-03-30
JP5066434A JP2601614B2 (en) 1992-03-30 1993-03-25 Ceramic firing method

Publications (2)

Publication Number Publication Date
JPH069276A true JPH069276A (en) 1994-01-18
JP2601614B2 JP2601614B2 (en) 1997-04-16

Family

ID=26407633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5066434A Expired - Fee Related JP2601614B2 (en) 1992-03-30 1993-03-25 Ceramic firing method

Country Status (1)

Country Link
JP (1) JP2601614B2 (en)

Also Published As

Publication number Publication date
JP2601614B2 (en) 1997-04-16

Similar Documents

Publication Publication Date Title
JP4771590B2 (en) Method for firing ceramic honeycomb body
KR20010033449A (en) Method for firing ceramic honeycomb bodies and a tunnel kiln used therefor
US3932310A (en) Reduction firing of ceramics composited with organic binders
JP2008110896A (en) Method of manufacturing ceramic honeycomb structure
HUP9802932A2 (en) Nozzle or tube for discharging molten metal in a casting device and method of making it
JP2601614B2 (en) Ceramic firing method
Klug et al. Microstructure Development of Aluminum Oxide: Graphite Mixture During Carbothermic Reduction
RU2245308C2 (en) Method for binder removing from crude ceramic form
US2392605A (en) Method of preparing zirconium oxide
SU863695A1 (en) Suspension for making intermediate layers of casting ceramic moulds using cast models
US11866375B2 (en) Honeycomb body manufacturing methods
JP4352655B2 (en) Silicon nitride filter sealing method and sealing composition
RU2280536C1 (en) Method for making foamed ceramic filter of titanium carbide
JP2007131495A (en) Refractory material, and waste incinerating/melting furnace
JPH06330726A (en) Remover of particulate substance in exhaust gas for combustion engine
JPH0521042B2 (en)
JPS63285168A (en) Carbon containing refractories
JPS61205673A (en) Method of dewaxing and burning ceramic formed body
JP2902934B2 (en) Degreasing method for manufacturing porous ceramics
JP3370544B2 (en) Flame spray repair method
JPH06279829A (en) Refractory for repairing porous plug and method therefor
JP2610702B2 (en) Ceramic tube firing method
SU759204A1 (en) Method of producing ceramic mould with use of investment patterns
JP3507256B2 (en) Ceramic diffuser cone
JP4677915B2 (en) Refractory and melting furnace made of this refractory

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees