JPH0692602A - Fuel reformer for ammonia synthesis - Google Patents

Fuel reformer for ammonia synthesis

Info

Publication number
JPH0692602A
JPH0692602A JP4243066A JP24306692A JPH0692602A JP H0692602 A JPH0692602 A JP H0692602A JP 4243066 A JP4243066 A JP 4243066A JP 24306692 A JP24306692 A JP 24306692A JP H0692602 A JPH0692602 A JP H0692602A
Authority
JP
Japan
Prior art keywords
fuel
catalyst bed
air
supply pipe
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4243066A
Other languages
Japanese (ja)
Other versions
JPH0742082B2 (en
Inventor
Toshiaki Kakegawa
掛川俊明
Kinji Tsujimura
辻村欽司
Toshio Nakahira
中平敏夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINNENSHIYOU SYST KENKYUSHO KK
SHINNENSHO SYSTEM KENKYUSHO
Original Assignee
SHINNENSHIYOU SYST KENKYUSHO KK
SHINNENSHO SYSTEM KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINNENSHIYOU SYST KENKYUSHO KK, SHINNENSHO SYSTEM KENKYUSHO filed Critical SHINNENSHIYOU SYST KENKYUSHO KK
Priority to JP4243066A priority Critical patent/JPH0742082B2/en
Publication of JPH0692602A publication Critical patent/JPH0692602A/en
Publication of JPH0742082B2 publication Critical patent/JPH0742082B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01BBOILING; BOILING APPARATUS ; EVAPORATION; EVAPORATION APPARATUS
    • B01B1/00Boiling; Boiling apparatus for physical or chemical purposes ; Evaporation in general
    • B01B1/005Evaporation for physical or chemical purposes; Evaporation apparatus therefor, e.g. evaporation of liquids for gas phase reactions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To provide the subject reformer designed to reform alone the low- boiling components in light oil to prevent the fuel feed pipe from blockage, raise mixing speed for fuel with air and prevent catalyst poisoning. CONSTITUTION:The objective reformer is equipped with a catalyst bed 22 to reform part of light oil fuel into a hydrogen gas-contg. reformed gas, an air feed pipe 31 to feed the catalyst bed with air through its heat exchange with the reformed gas, a fuel feed pipe 29 to feed the catalyst bed with fuel through its heat exchange with the catalyst bed, and a fuel evaporator 53 connected to the fuel feed pipe 29. The fuel evaporator has a fuel evaporating member 56 set in between a fuel evaporating chamber 55 and a fuel feeding chamber 54; by feeding this fuel evaporating member 56 with hot air, only the low-boiling components in fuel are evaporated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、車両に搭載しエンジン
排気中のNOX 処理を行うのに好適なアンモニア合成用
燃料改質装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ammonia synthesizing fuel reformer suitable for being mounted on a vehicle and for treating NO x in engine exhaust.

【0002】[0002]

【従来の技術】一般に、ガソリンエンジン排気中のNO
X 処理は、その排気を触媒床に導入することにより、通
常行われているが、車両用ディーゼルエンジンの場合に
は、排気中の酸素量が多いために触媒が使用できず、専
ら燃焼改善により排気中のNOX を低減させている。
2. Description of the Related Art Generally, NO in a gasoline engine exhaust gas
The X treatment is usually carried out by introducing the exhaust gas into the catalyst bed, but in the case of a vehicle diesel engine, the catalyst cannot be used because the amount of oxygen in the exhaust gas is large, and the combustion is mainly improved. NO x in the exhaust is reduced.

【0003】一方、定置用ディーゼルエンジンの分野に
おいては、排気中のNOX 処理にあたって、アンモニア
ボンベを備え、NOx 処理触媒床にエンジンの排気と共
にアンモニアを導入させ、下記反応によりNOX を還元
処理する方式(SCR法)が採用されている。
On the other hand, in the field of stationary diesel engines, for treating NO x in the exhaust gas, an ammonia cylinder is provided, and ammonia is introduced into the NO x treating catalyst bed together with the engine exhaust gas, and the NO x is reduced by the following reaction. The method (SCR method) is adopted.

【0004】 2NH3 +2NO+(1/2)O2 =2N2 +3H2O しかしながら、この方式では、アンモニアボンベを定期
的に充填、或いは交換をしなければならないという問題
を有しており、重量、メンテナンス等の点で車両用とし
ては不向きであり、実用化には到っていない。
2NH 3 + 2NO + (1/2) O 2 = 2N 2 + 3H 2 O However, this method has a problem that the ammonia cylinder must be periodically charged or replaced, and the weight, It is unsuitable for a vehicle in terms of maintenance, etc., and has not yet been put into practical use.

【0005】一方、アンモニアは、現在、主としてH2
ガスとN2 ガスを触媒上で直接合成する方法によって製
造されている。H2 ガスを得る手段としては、炭素質
(コークス、石炭、重油、天然ガス等)を水蒸気を吹き
込みながら空気で燃焼、分解してH2 を取り出す方法が
一般的に行われている。しかしながら、ここで得られる
粗ガスには、硫黄分、CO、N2 等が大量に混合してい
るため、このままではアンモニアの合成に使うことがで
きない。そこで、湿式脱硫器を用いる脱硫、水性ガ
ス変成反応によるCOのCO2 への変換、高圧水洗に
よるCO2 の除去、銅アンモニア法またはメタノール
合成法による残留COの除去、といった処理を行ってア
ンモニア合成の当量であるN2 :H2 =1:3の混合ガ
スを得るようにしている。
On the other hand, ammonia is currently mainly H 2
It is produced by a method of directly synthesizing gas and N 2 gas on a catalyst. As a means for obtaining H 2 gas, a method is generally used in which carbonaceous materials (coke, coal, heavy oil, natural gas, etc.) are blown with steam to be burned with air and decomposed to take out H 2 . However, since the crude gas obtained here contains a large amount of sulfur, CO, N 2, etc., it cannot be used as it is for the synthesis of ammonia. Therefore, desulfurization using a wet desulfurizer, conversion of CO to CO 2 by a water gas shift reaction, removal of CO 2 by high-pressure water washing, and removal of residual CO by a copper ammonia method or a methanol synthesis method are carried out to perform ammonia synthesis. Of N 2 : H 2 = 1: 3, which is an equivalent amount of N 2 .

【0006】しかしながら、上記処理には大規模な装
置、設備が必要であり、これを車両に搭載することは不
可能である。そこで、本出願人は、軽油を燃料とするデ
ィーゼルエンジンに着目し、車両に搭載可能なアンモニ
ア製造装置を特開平1−280617号公報により提案
している。
However, the above processing requires a large-scale device and equipment, which cannot be mounted on a vehicle. Therefore, the applicant of the present invention has focused on a diesel engine that uses light oil as a fuel, and has proposed an ammonia production apparatus that can be mounted on a vehicle in Japanese Patent Application Laid-Open No. 1-280617.

【0007】これを図4により説明する。ディーゼルエ
ンジン1の燃料である軽油を燃料タンク2から電磁弁3
を経て、適宜の与熱手段を設けた燃料改質装置に導入す
ると共に、8気圧程度に保たれているブレーキ用エアタ
ンク5から高圧空気を燃料改質装置4に導入し、800
℃、8気圧の条件下で、下式に示す部分酸化反応を行わ
せる。
This will be described with reference to FIG. Light oil, which is the fuel for the diesel engine 1, is supplied from the fuel tank 2 to the solenoid valve 3
After being introduced into the fuel reforming device provided with an appropriate heating means, high pressure air is introduced into the fuel reforming device 4 from the brake air tank 5 which is maintained at about 8 atm.
The partial oxidation reaction shown in the following formula is carried out under conditions of ° C and 8 atm.

【0008】 Cn 2n+(n/2)O2 =nCO+nH2 この反応生成ガス(窒素を含む)を芳香族ポリイミドか
らなる水素分離膜6に加圧状態のまま導入する。芳香族
ポリイミドからなる水素分離膜6は、水素と窒素の一部
を通過させるが、一酸化炭素は通過させないような仕様
のものを使用する。この水素分離膜6を通過したガス
は、加圧ポンプ9により8気圧にまで加圧して、アンモ
ニア合成反応器10に導入される。アンモニア合成反応
器10により、合成されたアンモニアは、アンモニア吸
着分離ベッドである固体酸層11に導入され、100℃
に保たれた固体酸層11において吸着され、次いで40
0℃に加熱されることにより脱離され、脱離したアンモ
ニアはアンモニアタンク12に貯蔵される。このアンモ
ニア分離、脱離操作は、一定時間毎に切り替わる制御手
段(図示せず)で、2層を交互に加熱、冷却させること
により、連続的にアンモニアの吸着、脱離を行うように
操作する。また未反応の窒素、水素ガスはポンプ13に
より、アンモニア合成反応器10に還流させる。
C n H 2n + (n / 2) O 2 = nCO + nH 2 This reaction product gas (including nitrogen) is introduced into the hydrogen separation membrane 6 made of aromatic polyimide in a pressurized state. The hydrogen separation membrane 6 made of aromatic polyimide has a specification that allows hydrogen and a part of nitrogen to pass through but does not allow carbon monoxide to pass through. The gas that has passed through the hydrogen separation membrane 6 is pressurized to 8 atm by the pressure pump 9 and introduced into the ammonia synthesis reactor 10. Ammonia synthesized by the ammonia synthesis reactor 10 is introduced into the solid acid layer 11, which is an ammonia adsorption / separation bed, and the temperature is 100 ° C.
Is adsorbed in the solid acid layer 11 kept at
It is desorbed by being heated to 0 ° C., and the desorbed ammonia is stored in the ammonia tank 12. This ammonia separation / desorption operation is performed by a control means (not shown) that switches at regular intervals so that the two layers are alternately heated and cooled to continuously adsorb and desorb ammonia. . Further, unreacted nitrogen and hydrogen gases are returned to the ammonia synthesis reactor 10 by the pump 13.

【0009】上記水素分離膜6を通過しなかった一酸化
炭素、窒素等のガスは、エンジン1に導入して燃焼させ
る。このようにして貯蔵されたアンモニアは、エンジン
1の回転、負荷センサおよびNOx 濃度センサからの信
号に応じて、電子制御装置15により制御弁16を制御
し排気ガス中に供給される。アンモニアを混合した排気
ガスは、NOx 処理用触媒床17に導入され、NOx
還元処理される。
Gases such as carbon monoxide and nitrogen that have not passed through the hydrogen separation membrane 6 are introduced into the engine 1 and burned. The ammonia thus stored is supplied into the exhaust gas by controlling the control valve 16 by the electronic control unit 15 in response to the rotation of the engine 1, the load sensor and the signal from the NO x concentration sensor. The exhaust gas mixed with ammonia is introduced into the NO x treatment catalyst bed 17, and the NO x is reduced.

【0010】上記システムは要するに、燃料改質装置4
において燃料の一部を改質し水素を含む改質ガスを発生
させ、この改質ガスを用いてディーゼル燃焼のプロセス
を改善すると共に、改質ガス中の水素からアンモニアを
合成してエンジンから排出されるNOx を還元処理によ
り分解し、これによりエンジンから排出されるNOxお
よび煤の大幅な低減を狙うものである。
The above-mentioned system is basically the fuel reformer 4
At the same time, a part of the fuel is reformed to generate a reformed gas containing hydrogen, and the reformed gas is used to improve the process of diesel combustion, and ammonia is synthesized from hydrogen in the reformed gas and discharged from the engine. The NOx generated is decomposed by a reduction treatment, and the aim is to greatly reduce the NOx and soot emitted from the engine.

【0011】前記燃料改質装置4については、特開平3
−179121号公報に提案されている。これを図3に
より説明すると、アルミナセメントで形成されるハウジ
ング21と、ハウジング21内に配設される触媒床22
と、ハウジング21の一端に連結され断熱材23にて覆
われる熱交換器25と、ハウジング21の他端に連結さ
れる燃料気化器26とを有する。触媒床22の触媒は、
ニッケル系円柱ペレット状のものを使用する。
The fuel reformer 4 is described in Japanese Patent Laid-Open No. Hei 3
-179121. This will be described with reference to FIG. 3. A housing 21 made of alumina cement and a catalyst bed 22 provided in the housing 21.
And a heat exchanger 25 connected to one end of the housing 21 and covered with the heat insulating material 23, and a fuel vaporizer 26 connected to the other end of the housing 21. The catalyst in the catalyst bed 22 is
Use nickel-based cylindrical pellets.

【0012】ハウジング21の内周面で触媒床22の回
りには、コイル状に燃料気化用コイル27が設けられ、
該コイル27の一端は第1の燃料供給管29によりハウ
ジング21の上流側に連結されている。また、ハウジン
グ21内には燃料点火用のグロープラグ30が設けられ
ている。また、エアタンク5の空気は熱交換器25内を
通って空気供給管31からハウジング21の上流側に供
給される。この空気供給管31には電気ヒータ32が設
けられている。
A fuel vaporizing coil 27 is provided in a coil shape around the catalyst bed 22 on the inner peripheral surface of the housing 21.
One end of the coil 27 is connected to the upstream side of the housing 21 by the first fuel supply pipe 29. Further, a glow plug 30 for igniting fuel is provided in the housing 21. Further, the air in the air tank 5 passes through the heat exchanger 25 and is supplied from the air supply pipe 31 to the upstream side of the housing 21. An electric heater 32 is provided in the air supply pipe 31.

【0013】燃料気化器26には電気ヒータ33が設け
られ、気化された燃料を第2の燃料供給管35によりハ
ウジング21内に供給される。燃料タンク2の燃料は、
プランジャポンプ36により電磁弁37を経て燃料気化
器26に供給されると共に、電磁弁39を経て燃料気化
用コイル27に供給される。また、触媒床22の出口お
よび熱交換器25の出口には、温度センサ41、42が
配設されている。
An electric heater 33 is provided in the fuel vaporizer 26, and vaporized fuel is supplied into the housing 21 through a second fuel supply pipe 35. The fuel in the fuel tank 2 is
It is supplied to the fuel vaporizer 26 via the solenoid valve 37 by the plunger pump 36, and is also supplied to the fuel vaporization coil 27 via the solenoid valve 39. Further, temperature sensors 41 and 42 are arranged at the outlet of the catalyst bed 22 and the outlet of the heat exchanger 25.

【0014】上記構成からなる作用について説明する
と、始動時には、電気ヒータ32、33に通電し、空気
供給管の空気を300°C程度に昇温し、燃料気化器2
6を450°C程度に加熱する。ついで、プランジャポ
ンプ36を起動させ、電磁弁39を閉じて電磁弁37を
開く。燃料はプランジャポンプ36により電磁弁37を
経て燃料気化器26に供給され、ここで気化された燃料
は第2の燃料供給管35によりハウジング21内に供給
されると共に、空気供給管31より加熱された空気が供
給される。ここでグロープラグ30が起動され触媒床2
2内で反応が開始され、反応生成ガスは熱交換器25を
通って排出される。
Explaining the operation of the above structure, at the time of starting, the electric heaters 32 and 33 are energized to raise the temperature of the air in the air supply pipe to about 300 ° C.
6 is heated to about 450 ° C. Then, the plunger pump 36 is activated, the solenoid valve 39 is closed, and the solenoid valve 37 is opened. The fuel is supplied to the fuel vaporizer 26 through the solenoid valve 37 by the plunger pump 36, and the fuel vaporized therein is supplied into the housing 21 by the second fuel supply pipe 35 and is heated by the air supply pipe 31. Air is supplied. Here, the glow plug 30 is activated and the catalyst bed 2
The reaction is started in 2 and the reaction product gas is discharged through the heat exchanger 25.

【0015】触媒床22の昇温に伴い出口温度が600
°C程度になると、温度センサ41の出力信号により、
プランジャポンプ36は燃料供給量を増大させると共
に、電磁弁37を閉じて電磁弁39を開く。燃料は、燃
料気化用コイル27に切換えられここで触媒床22の熱
により気化された燃料がハウジング21内に供給され
る。熱交換器25の出口温度が400°C程度になる
と、温度センサ42の出力信号により、電気ヒータ32
およびグロープラグ30への通電を停止する。
As the temperature of the catalyst bed 22 rises, the outlet temperature becomes 600
At about ° C, the output signal of the temperature sensor 41 causes
The plunger pump 36 increases the fuel supply amount and closes the solenoid valve 37 and opens the solenoid valve 39. The fuel is switched to the fuel vaporization coil 27, and the fuel vaporized by the heat of the catalyst bed 22 is supplied into the housing 21. When the outlet temperature of the heat exchanger 25 reaches about 400 ° C., the electric heater 32 is output by the output signal of the temperature sensor 42.
Also, the power supply to the glow plug 30 is stopped.

【0016】[0016]

【発明が解決しようとする課題】しかしながら、図3で
説明した燃料改質装置において、水素の高い収率を得る
ためには、触媒床22の手前で燃料と空気とを充分に混
合しなければならない。そのためには、燃料を充分に蒸
発させる必要があるが、軽油のような高沸点成分の多い
燃料になると、燃料気化用コイル27において燃料の加
熱温度を高めていくと、燃料のクラッキングによりカー
ボンが析出し、燃料供給管29が閉塞してしまうという
問題を有している。また、高沸点成分は、蒸発速度が遅
く空気との混合が不利であることや、硫黄の含有量が多
く触媒を被毒し易いという問題を有している。
However, in the fuel reformer described with reference to FIG. 3, in order to obtain a high hydrogen yield, the fuel and the air must be sufficiently mixed before the catalyst bed 22. I won't. For that purpose, it is necessary to sufficiently evaporate the fuel, but when the fuel has a high boiling point component such as light oil, when the heating temperature of the fuel is raised in the fuel vaporization coil 27, carbon is cracked due to the cracking of the fuel. There is a problem that it deposits and the fuel supply pipe 29 is blocked. Further, the high boiling point component has a problem that the evaporation rate is slow and mixing with air is disadvantageous, and that the content of sulfur is large and the catalyst is easily poisoned.

【0017】本発明は、上記問題を解決するものであっ
て、軽油の低沸点成分のみを改質させることにより、燃
料供給管の閉塞を防止するとともに、燃料と空気との混
合速度を増大させ、触媒の被毒を防止することができる
アンモニア合成用燃料改質装置を提供することを目的と
する。
The present invention is intended to solve the above-mentioned problems. By reforming only the low boiling point component of light oil, the fuel supply pipe is prevented from being blocked and the mixing speed of fuel and air is increased. An object of the present invention is to provide a fuel reformer for ammonia synthesis that can prevent poisoning of the catalyst.

【0018】[0018]

【課題を解決するための手段】そのために本発明のアン
モニア合成用燃料改質装置は、軽油燃料の一部を水素を
含む改質ガスに改質させる触媒床22と、空気を改質ガ
スと熱交換させて触媒床22に供給させる空気供給管3
1と、燃料を触媒床22と熱交換させて触媒床に供給さ
せる燃料供給管29と、燃料供給管29に接続される燃
料蒸発器53とを備え、該燃料蒸発器は、燃料蒸発室5
5と燃料供給室54との間に設けられる燃料蒸発部材5
6とを有し、燃料蒸発部材56に加熱空気を供給するこ
とにより、燃料の低沸点成分のみを蒸発させることを特
徴とする。なお、上記構成に付加した番号は、理解を容
易にするために図面と対比させるためのもので、これに
より本発明の構成が何ら限定されるものではない。
To this end, a fuel reforming apparatus for ammonia synthesis according to the present invention uses a catalyst bed 22 for reforming a part of light oil fuel into a reformed gas containing hydrogen, and air as a reformed gas. Air supply pipe 3 for heat exchange and supply to the catalyst bed 22
1, a fuel supply pipe 29 for exchanging heat with the catalyst bed 22 to supply it to the catalyst bed, and a fuel evaporator 53 connected to the fuel supply pipe 29.
5 and a fuel evaporation member 5 provided between the fuel supply chamber 54
6 is provided, and by supplying heated air to the fuel evaporation member 56, only the low boiling point component of the fuel is evaporated. It should be noted that the numbers added to the above configurations are for comparison with the drawings for easy understanding, and the configurations of the present invention are not limited thereby.

【0019】[0019]

【作用】本発明においては、燃料供給室54に供給され
た加圧燃料は、燃料蒸発部材56に沿って落下し燃料蒸
発室55に至ると、加熱空気により加熱され、軽油中の
低沸点成分は蒸発し、燃料加熱用コイル27に供給さ
れ、蒸発しきれなかった高沸点成分は、燃料タンクに戻
される。燃料加熱用コイル27に供給された低沸点成分
の混合気は、触媒床22によりさらに加熱され、燃料供
給管29を経て混合室24に供給される。また、エアタ
ンク5からのエアは熱交換器25により加熱された後、
空気供給管31から混合室24内に供給される。低沸点
成分の混合気は、触媒床22内で反応が開始され、改質
ガスは熱交換器25を通って排出される。
In the present invention, when the pressurized fuel supplied to the fuel supply chamber 54 falls along the fuel evaporation member 56 and reaches the fuel evaporation chamber 55, it is heated by the heated air and the low boiling point component in the light oil is added. Is evaporated and supplied to the fuel heating coil 27, and the high-boiling point component that cannot be completely evaporated is returned to the fuel tank. The mixture of low-boiling components supplied to the fuel heating coil 27 is further heated by the catalyst bed 22 and supplied to the mixing chamber 24 via the fuel supply pipe 29. In addition, after the air from the air tank 5 is heated by the heat exchanger 25,
It is supplied from the air supply pipe 31 into the mixing chamber 24. The mixture of low-boiling components starts to react in the catalyst bed 22, and the reformed gas is discharged through the heat exchanger 25.

【0020】[0020]

【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。図1は、本発明のアンモニア合成用燃料改質装
置の1実施例を示す断面図である。なお、本発明の燃料
改質装置は、図4で説明した車両に搭載可能なアンモニ
ア製造装置の燃料改質装置に適用されるものである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing an embodiment of the fuel reforming apparatus for ammonia synthesis of the present invention. The fuel reforming apparatus of the present invention is applied to the fuel reforming apparatus of the ammonia production apparatus that can be mounted on the vehicle described in FIG.

【0021】本発明の燃料改質装置51は、部分酸化反
応器52と燃料蒸発器53とからなる。部分酸化反応器
52は、ハウジング21と、ハウジング21の1側に設
けられる混合室24と、ハウジング21内に配設される
触媒床22と、ハウジング21の他側に設けられ断熱材
23にて覆われる熱交換器25とを有し、ハウジング2
1の内周面で触媒床22の回りには、コイル状に燃料加
熱用コイル27が設けられ、該コイル27の一端は燃料
供給管29によ混合室24に接続され、コイル27の他
端は燃料蒸発器53に接続される。また、エアタンク5
の空気は熱交換器25内を通って空気供給管31から混
合室24内に供給される。
The fuel reforming apparatus 51 of the present invention comprises a partial oxidation reactor 52 and a fuel evaporator 53. The partial oxidation reactor 52 includes a housing 21, a mixing chamber 24 provided on one side of the housing 21, a catalyst bed 22 provided inside the housing 21, and a heat insulating material 23 provided on the other side of the housing 21. Housing 2 having a heat exchanger 25 covered
A fuel heating coil 27 is provided in a coil shape around the catalyst bed 22 on the inner peripheral surface of 1, and one end of the coil 27 is connected to the mixing chamber 24 by a fuel supply pipe 29, and the other end of the coil 27 is provided. Is connected to the fuel evaporator 53. Also, the air tank 5
Of the air passes through the heat exchanger 25 and is supplied from the air supply pipe 31 into the mixing chamber 24.

【0022】燃料蒸発器53は、燃料供給室54と、燃
料蒸発室55と、燃料蒸発室55と燃料供給室54との
間に設けられる燃料蒸発部材56と、燃料蒸発室55の
底部に設けられる燃料溜室57と、燃料排出口58とか
らなり、燃料蒸発室55には加熱空気が供給され、燃料
供給室54には加圧燃料が供給される。燃料蒸発部材5
6はセラミックウールの芯からなる。
The fuel evaporator 53 is provided at the fuel supply chamber 54, the fuel evaporation chamber 55, a fuel evaporation member 56 provided between the fuel evaporation chamber 55 and the fuel supply chamber 54, and at the bottom of the fuel evaporation chamber 55. A fuel reservoir 57 and a fuel outlet 58. The fuel evaporation chamber 55 is supplied with heated air, and the fuel supply chamber 54 is supplied with pressurized fuel. Fuel evaporation member 5
6 is a core of ceramic wool.

【0023】上記構成からなる本発明の作用について説
明する。燃料供給室54に供給された加圧燃料は、燃料
蒸発部材56に沿って落下し燃料蒸発室55に至ると、
250℃〜350℃の加熱空気により加熱され、軽油中
の低沸点成分は蒸発し、燃料加熱用コイル27に供給さ
れる。蒸発しきれなかった高沸点成分は、燃料溜室57
に溜まり、オーバーフローした燃料は燃料排出口58か
ら燃料タンクに戻される。
The operation of the present invention having the above structure will be described. When the pressurized fuel supplied to the fuel supply chamber 54 falls along the fuel evaporation member 56 and reaches the fuel evaporation chamber 55,
It is heated by heated air at 250 ° C. to 350 ° C., the low boiling point component in the light oil evaporates, and is supplied to the fuel heating coil 27. The high boiling point component that cannot be completely evaporated is stored in the fuel storage chamber 57.
The fuel that has accumulated and has overflowed is returned from the fuel discharge port 58 to the fuel tank.

【0024】燃料加熱用コイル27に供給された低沸点
成分の混合気は、触媒床22によりさらに加熱され、燃
料供給管29を経て混合室24に供給される。また、エ
アタンク5からのエアは熱交換器25により加熱された
後、空気供給管31から混合室24内に供給される。低
沸点成分の混合気は、触媒床22内で反応が開始され、
改質ガスは熱交換器25を通って排出される。
The mixture of low boiling point components supplied to the fuel heating coil 27 is further heated by the catalyst bed 22 and supplied to the mixing chamber 24 via the fuel supply pipe 29. Further, the air from the air tank 5 is heated by the heat exchanger 25 and then supplied from the air supply pipe 31 into the mixing chamber 24. The mixture of low-boiling components starts to react in the catalyst bed 22,
The reformed gas is discharged through the heat exchanger 25.

【0025】図2は本発明の他の実施例を示している。
なお、図1の実施例と同一の構成については同一番号を
付けて説明を省略する。本実施例においては、燃料蒸発
室55と燃料供給室54との間に支持部材59を設け、
この支持部材59上に燃料蒸発部材56を垂らすように
設け、燃料蒸発部材56上から加圧燃料を滴下させるよ
うにする。なお、燃料供給室54で加圧燃料を滴下させ
るのではなく、図1の実施例と同様に燃料供給室54を
加圧燃料で満たすようにしてもよい。
FIG. 2 shows another embodiment of the present invention.
The same components as those in the embodiment of FIG. 1 are designated by the same reference numerals and the description thereof will be omitted. In this embodiment, a support member 59 is provided between the fuel evaporation chamber 55 and the fuel supply chamber 54,
The fuel evaporation member 56 is provided so as to hang down on the support member 59, and the pressurized fuel is dropped from the fuel evaporation member 56. Instead of dropping the pressurized fuel in the fuel supply chamber 54, the fuel supply chamber 54 may be filled with the pressurized fuel as in the embodiment of FIG.

【0026】[0026]

【発明の効果】以上の説明から明らかなように本発明に
よれば、軽油の低沸点成分のみを改質させることによ
り、燃料供給管の閉塞を防止するとともに、燃料と空気
との混合速度を増大させ、触媒の被毒を防止することが
できる。
As is apparent from the above description, according to the present invention, the fuel supply pipe is prevented from being clogged and the mixing speed of the fuel and air is improved by reforming only the low boiling point component of the light oil. And poisoning of the catalyst can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のアンモニア合成用燃料改質装置の1実
施例を示す断面図である。
FIG. 1 is a sectional view showing an embodiment of a fuel reforming apparatus for ammonia synthesis of the present invention.

【図2】本発明のアンモニア合成用燃料改質装置の他の
実施例を示す断面図である。
FIG. 2 is a cross-sectional view showing another embodiment of the fuel reforming apparatus for ammonia synthesis of the present invention.

【図3】従来の燃料改質装置の断面図である。FIG. 3 is a sectional view of a conventional fuel reformer.

【図4】本発明が適用される窒素酸化物低減装置の構成
図である。
FIG. 4 is a configuration diagram of a nitrogen oxide reduction device to which the present invention is applied.

【符号の説明】[Explanation of symbols]

22…触媒床、29…燃料供給管、31…空気供給管、
53…燃料蒸発器 54…燃料供給室、55…燃料蒸発室、56…燃料蒸発
部材
22 ... Catalyst bed, 29 ... Fuel supply pipe, 31 ... Air supply pipe,
53 ... Fuel evaporator 54 ... Fuel supply chamber, 55 ... Fuel evaporation chamber, 56 ... Fuel evaporation member

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中平敏夫 茨城県つくば市苅間2530番地 財団法人 日本自動車研究所内 株式会社新燃焼シス テム研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshio Nakahira 2530, Kuma, Tsukuba-shi, Ibaraki Japan Automobile Research Institute, Inc. Shin Combustion System Research Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】軽油燃料の一部を水素を含む改質ガスに改
質させる触媒床と、空気を改質ガスと熱交換させて触媒
床に供給させる空気供給管と、燃料を前記触媒床と熱交
換させて触媒床に供給させる燃料供給管と、該燃料供給
管に接続される燃料蒸発器とを備え、該燃料蒸発器は、
燃料蒸発室と燃料供給室との間に設けられる燃料蒸発部
材とを有し、燃料蒸発部材に加熱空気を供給することに
より、燃料の低沸点成分のみを蒸発させることを特徴と
するアンモニア合成用燃料改質装置。
1. A catalyst bed for reforming a part of light oil fuel into a reformed gas containing hydrogen, an air supply pipe for exchanging heat of air with the reformed gas to supply the reformed gas to the catalyst bed, and a fuel for the catalyst bed. A fuel supply pipe for exchanging heat with the catalyst bed to supply the catalyst bed, and a fuel evaporator connected to the fuel supply pipe.
A fuel vaporization member provided between the fuel vaporization chamber and the fuel supply chamber, for supplying only heated air to the fuel vaporization member to vaporize only the low boiling point component of the fuel, for ammonia synthesis Fuel reformer.
JP4243066A 1992-09-11 1992-09-11 Fuel reformer for ammonia synthesis Expired - Lifetime JPH0742082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4243066A JPH0742082B2 (en) 1992-09-11 1992-09-11 Fuel reformer for ammonia synthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4243066A JPH0742082B2 (en) 1992-09-11 1992-09-11 Fuel reformer for ammonia synthesis

Publications (2)

Publication Number Publication Date
JPH0692602A true JPH0692602A (en) 1994-04-05
JPH0742082B2 JPH0742082B2 (en) 1995-05-10

Family

ID=17098293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4243066A Expired - Lifetime JPH0742082B2 (en) 1992-09-11 1992-09-11 Fuel reformer for ammonia synthesis

Country Status (1)

Country Link
JP (1) JPH0742082B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7344687B2 (en) 2002-05-08 2008-03-18 Nissan Motor Co., Ltd. Fuel reforming system
WO2008149516A1 (en) * 2007-05-31 2008-12-11 Panasonic Corporation Hydrogen producing apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7344687B2 (en) 2002-05-08 2008-03-18 Nissan Motor Co., Ltd. Fuel reforming system
WO2008149516A1 (en) * 2007-05-31 2008-12-11 Panasonic Corporation Hydrogen producing apparatus
US8221511B2 (en) 2007-05-31 2012-07-17 Panasonic Corporation Hydrogen producing apparatus
JP5344935B2 (en) * 2007-05-31 2013-11-20 パナソニック株式会社 Hydrogen generator

Also Published As

Publication number Publication date
JPH0742082B2 (en) 1995-05-10

Similar Documents

Publication Publication Date Title
US5953908A (en) Method and apparatus for heating a catalytic converter to reduce emissions
CA1070501A (en) Hydrogen-rich gas generator
US20060075744A1 (en) Apparatus and method for regenerating a particulate filter of an exhaust system of an internal combustion engine
US8397509B2 (en) Catalytic engine
US6835219B2 (en) Rapid startup of fuel processor using water adsorption
US20090035192A1 (en) Catalytic EGR oxidizer for IC engines and gas turbines
WO2006021852A1 (en) Integrated fuel injection system for on-board fuel reformer
JP2008513326A (en) Method for catalytic partial oxidation of liquid hydrocarbonaceous fuel
JP2009511648A (en) Method for vaporizing and reforming liquid fuel
EP1633460B1 (en) Process and apparatus for catalytic conversion of hydrocarbons for generating a gas rich in hydrogen
US4499864A (en) Hydride cold start container in fuel treatment and distribution apparatus and method
JP5199076B2 (en) Drain water treatment method and hydrogen production system in hydrogen production
US4366782A (en) Method of fuel treatment and distribution
JP2004189585A (en) Gaseous hydrogen producing system
JPS5943954A (en) Method of treating fuel of internal combustion engine for automobile
JPH0692602A (en) Fuel reformer for ammonia synthesis
US4408572A (en) Ether cold starter in alcohol fuel treatment and distribution apparatus and method
JPH0610411B2 (en) Vehicle fuel reformer
JPH0373753B2 (en)
JP4660982B2 (en) Hydrogen supply device
FR2839583A1 (en) FUEL CELL INSTALLATION AND VEHICLE EQUIPPED WITH SUCH AN INSTALLATION
JP4187086B2 (en) Methanol reforming catalyst and apparatus and fuel cell power generator
JP2006104000A (en) Hydrogen gas generation equipment
JP2005126600A (en) Method and apparatus for reforming fuel
US4408571A (en) Methane cold starter in alcohol fuel treatment and distribution method