JPH0691816A - Impact damage-resistant composite material - Google Patents

Impact damage-resistant composite material

Info

Publication number
JPH0691816A
JPH0691816A JP28282491A JP28282491A JPH0691816A JP H0691816 A JPH0691816 A JP H0691816A JP 28282491 A JP28282491 A JP 28282491A JP 28282491 A JP28282491 A JP 28282491A JP H0691816 A JPH0691816 A JP H0691816A
Authority
JP
Japan
Prior art keywords
composite material
impact
resin composite
inner layer
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28282491A
Other languages
Japanese (ja)
Inventor
Hitoshi Yoshida
均 吉田
Yasuhiro Ito
康宏 伊藤
Shinichi Miyamoto
真一 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Kawasaki Heavy Industries Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP28282491A priority Critical patent/JPH0691816A/en
Publication of JPH0691816A publication Critical patent/JPH0691816A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To enhance compression strength after an impact is applied without especially increasing the cooling speed at the time of molding. CONSTITUTION:An impact damage-resistant composite material is constituted of an inner layer 1 formed from a thermoplastic resin composite material and the surface layers 2 each having a thickness tB sufficiently smaller than the thickness tA of the inner layer 1 and bonded to both surfaces of the inner layer 1. As the thermoplastic resin composite material constituting the inner layer, a composite material containing PEEK having high toughness as a matrix and reinforced by a carbon fiber can be used and, as the thermosetting resin composite material constituting the surface layers 2, FRP containing an epoxy resin as a matrix and reinforced by an aramide fiber can be used. By this constitution, the thermosetting resin composite material of the surface layers is broken and released to absorb large impact energy and the thermoplastic resin composite material of the inner layer receives no large damage by an impact and large compression strength is held even after an impact is applied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、構造用材料、特に航空
機、宇宙機器、地上高速走行機器等の構造材料として用
いられる耐衝撃損傷性複合材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structural material, in particular, an impact damage resistant composite material used as a structural material for aircraft, space equipment, ground high-speed traveling equipment and the like.

【0002】[0002]

【従来の技術】構造用複合材料の特性評価及び設計許容
値の設定において、近年、複合材料板に、その板厚方向
に所定の衝撃エネルギー、例えば板厚1インチ当り15
00in−lbを与え、これを損傷させた上で板の長さ
方向(面内)に圧縮試験を行い、衝撃損傷後の圧縮強度
(Compression After Impac
t:CAI強度と云う)を測定することが頻繁に行われ
るようになって来た。これは、高強度複合材料が衝撃に
弱く、衝撃を受けると特に圧縮側の強度低下が著しいこ
とから注目されるようになって来たためである。
2. Description of the Related Art Recently, in the evaluation of characteristics of structural composite materials and the setting of design allowable values, a composite material plate has a predetermined impact energy in the plate thickness direction, for example, 15 per inch of plate thickness.
00 in-lb was given and damaged, and then a compression test was carried out in the length direction (in-plane) of the plate to obtain a compression strength after impact damage (Compression After Impac).
The measurement of t: CAI intensity) has become frequent. This is because the high-strength composite material is vulnerable to impact, and when it receives an impact, the strength of the compression side is remarkably reduced.

【0003】このような試験は、米国Supplier
s of Advanced Composite M
aterials Associationが設定した
試験基準SRM2−88で標準化されたところであり、
素材メーカはこの特性向上に、又複合材料のユーザーは
この特性値取得に努めている。
Such a test is conducted by the US supplier.
s of Advanced Composite M
It has been standardized by the test standard SRM2-88 set by the materials Association.
Material manufacturers are working to improve this property, and users of composite materials are working to acquire this property value.

【0004】そして、衝撃エネルギーとして板厚1イン
チ当り1500in−lbを与えた場合におけるCAI
強度が30kgf/mm2というのは一つの大きなハードルで
あり、従来の炭素繊維/エポキシ樹脂複合材料では到達
し得ないレベルであった。一方、近年、この強度に到達
する材料として検討されている熱可塑樹脂ポリエーテル
・エーテル・ケトン(PEEK)をマトリックスとした
炭素繊維複合材料が、衝撃後圧縮強度35kgf/mm2を達
成する高靱性複合材料として注目されている。
Then, the CAI in the case of giving 1500 in-lb per inch of plate thickness as impact energy
The strength of 30 kgf / mm 2 is one big hurdle, which is a level that cannot be reached by the conventional carbon fiber / epoxy resin composite material. On the other hand, in recent years, a carbon fiber composite material with a matrix of thermoplastic resin polyether ether ketone (PEEK), which has been studied as a material reaching this strength, has a high toughness that achieves a compressive strength after impact of 35 kgf / mm 2. It is attracting attention as a composite material.

【0005】しかし、このPEEK樹脂は、成形時の冷
却速度が遅ければ結晶化が高まり、結果としてその複合
材料のCAI強度は低くなる。
However, this PEEK resin has high crystallization when the cooling rate during molding is slow, and as a result, the CAI strength of the composite material is low.

【0006】熱可塑樹脂材料の中で、耐熱性の高い多く
のものは、高強度複合材料のマトリックス樹脂として使
用できる可能性がある。このような材料は、結晶成分と
非晶質成分の混在した状態になる性質を持っており、物
性上では、結晶性が高くなると靱性が低くなり、非晶質
成分が多くなると靱性が高くなる。靱性が高くなれば、
衝撃を受けた場合の損傷量(損傷面積で評価する)が減
少し、損傷による圧縮強度の低下は少なくなる。即ちC
AI強度は高くなる。
Among the thermoplastic resin materials, many of which have high heat resistance can be used as a matrix resin for a high strength composite material. Such a material has a property that a crystalline component and an amorphous component are mixed, and in terms of physical properties, the toughness becomes lower as the crystallinity becomes higher, and the toughness becomes higher as the amorphous component increases. . If the toughness is high,
The amount of damage (evaluated by the damaged area) upon impact is reduced, and the decrease in compressive strength due to damage is reduced. That is, C
The AI intensity is high.

【0007】熱可塑樹脂におけるこのような結晶性は、
成形時の加熱による融解で一旦消滅するが、その冷却過
程で冷却速度が遅ければ、樹脂分子は自然配向して結晶
化する。反対に冷却速度がその結晶化の速度より速い場
合には、融解時の非晶分子状態で固化するため、結晶成
分のない状態が得られる。
Such crystallinity in a thermoplastic resin is
Although it disappears once when it is melted by heating during molding, if the cooling rate is slow in the cooling process, the resin molecules are naturally oriented and crystallized. On the other hand, when the cooling rate is faster than the crystallization rate, the solidification occurs in the amorphous molecular state at the time of melting, so that a state with no crystalline component is obtained.

【0008】発明者等の実験では、前記のPEEK樹脂
/炭素繊維複合材料が衝撃後圧縮強度35kgf/mm2を達
成するには、少なくとも30℃/分以上の冷却速度を与
える必要があることが分かった。しかしながら、通常の
複合材料の成形装置でこのような冷却速度を達成するの
は極めて困難である。又、高速冷却を可能とする成形装
置では、その製作に莫大な費用が掛かること、及び高温
の加熱と高速冷却を繰り返すことにより、熱歪や熱膨張
率の差による内部応力の発生のため装置の寿命が短くな
ること、等の問題がある。従って、通常の成形装置で
は、せいぜい数℃/分が成形速度の現実的上限である。
According to the experiments conducted by the inventors, it is necessary to apply a cooling rate of at least 30 ° C./minute or more in order for the PEEK resin / carbon fiber composite material to achieve a compressive strength after impact of 35 kgf / mm 2. Do you get it. However, it is extremely difficult to achieve such a cooling rate in a usual composite material molding apparatus. In addition, a molding apparatus capable of high-speed cooling requires enormous cost to manufacture, and by repeating high temperature heating and high-speed cooling, internal stress is generated due to thermal strain or a difference in coefficient of thermal expansion. There is a problem such as shortening the life of the. Therefore, in ordinary molding equipment, several degrees C./minute is the practical upper limit of the molding speed at most.

【0009】[0009]

【発明が解決しようとする課題】本発明は従来技術に於
ける上記問題を解決し、成形時の冷却速度を特別に速く
することなく、衝撃が加えられた後でも高い圧縮強度を
有する耐衝撃損傷性複合材料を提供することを課題とす
る。
DISCLOSURE OF THE INVENTION The present invention solves the above problems in the prior art, and has an impact resistance having a high compressive strength even after an impact is applied without particularly increasing the cooling rate during molding. An object is to provide a damaging composite material.

【0010】[0010]

【課題を解決するための手段】本発明の耐衝撃損傷性複
合材料は、上記の課題を解決するため、熱可塑性樹脂複
合材料で形成された内層の表面に、該内層の厚さより充
分小さい厚さの熱硬化性樹脂複合材料で形成された表層
を接合して成ることを特徴とする。
In order to solve the above problems, the impact-damage resistant composite material of the present invention has a thickness sufficiently smaller than the thickness of the inner layer formed on the surface of the inner layer formed of the thermoplastic resin composite material. And a surface layer formed of a thermosetting resin composite material.

【0011】上記の熱可塑性樹脂複合材料としてはポリ
エーテルエーテルケトンをマトリックスとした炭素繊維
複合材料を使用し、上記の熱硬化性樹脂複合材料として
はエポキシ樹脂をマトリックスとしたアラミド繊維複合
材料を使用するのが好ましい。
A carbon fiber composite material using polyether ether ketone as a matrix is used as the thermoplastic resin composite material, and an aramid fiber composite material using an epoxy resin as a matrix is used as the thermosetting resin composite material. Preferably.

【0012】[0012]

【作用】熱可塑性樹脂は、特に高靱性のものでは、それ
自体で耐衝撃損傷性が大きい。又、熱可塑性樹脂に結晶
性があれば、分子断面の拡大を抑え高強度化に寄与する
が、異種材料への接合性(接着性)は低下する。このた
め、熱可塑性樹脂複合材の表面に架橋性の熱硬化系樹脂
複合材料を接着させることは通常考えられない。又、熱
可塑性樹脂マトリックス炭素繊維複合材料は、衝撃によ
る損傷を受けてもその発見が容易でない。更に、表面の
損傷が小さくても、内部は大きく損傷を受けている場合
が多い。
The thermoplastic resin, which has a high toughness, has a large impact damage resistance by itself. Further, if the thermoplastic resin has crystallinity, it contributes to the increase in strength by suppressing the expansion of the molecular cross section, but the bondability (adhesiveness) to different materials decreases. Therefore, it is usually unthinkable to bond the crosslinkable thermosetting resin composite material to the surface of the thermoplastic resin composite material. Further, it is not easy to find the thermoplastic resin matrix carbon fiber composite material even if it is damaged by impact. Further, even if the surface is less damaged, the inside is often greatly damaged.

【0013】本発明によれば、熱可塑性樹脂複合材料に
対して、その表面に、その表面からの直角方向の厚みよ
り小さい厚みの有機繊維を含む熱硬化性樹脂複合材料を
接合させるので、表面側から衝撃を受けると、表層の熱
硬化性樹脂複合材料が熱可塑性樹脂複合材料から剥離し
たり、亀裂や破断したりして衝撃エネルギーを吸収す
る。これは、有機繊維を含む熱硬化性樹脂複合材料は、
圧縮強度は小さいが伸び及び抗張力が大きいので、破壊
に至るまでに大きな歪みエネルギーを吸収するからであ
る。
According to the present invention, a thermosetting resin composite material containing organic fibers having a thickness smaller than the thickness in the direction perpendicular to the surface is joined to the surface of the thermoplastic resin composite material. When an impact is applied from the side, the thermosetting resin composite material of the surface layer is separated from the thermoplastic resin composite material, or cracks or breaks to absorb the impact energy. This is a thermosetting resin composite material containing organic fibers,
This is because the compressive strength is small, but the elongation and tensile strength are large, so that a large strain energy is absorbed before the fracture.

【0014】一方、ここで述べる熱可塑性樹脂複合材料
は、圧縮強度を受け持つ部材としているが、表層の熱硬
化性樹脂複合材料が剥離したり破壊したりすることによ
り衝撃エネルギーを吸収するため、衝撃によって大きな
損傷を発生しないので、衝撃を受けた後でも大きい圧縮
強度を保持することになる。
On the other hand, the thermoplastic resin composite material described here is a member responsible for compressive strength. However, since the thermosetting resin composite material in the surface layer absorbs impact energy by peeling or breaking, shock As a result, a large amount of damage is not generated, so that a large compressive strength is maintained even after an impact.

【0015】又、表層に接着した熱硬化性樹脂複合材料
は、前述したが伸びと抗張力が大きいため、この層の亀
裂や破断の大きさより、接着部の剥離の大きさの方がは
るかに大面積である。又、この剥離の大きさの方が熱可
塑性樹脂複合材料の損傷面積より大きくなることが分っ
ている。このように表層の熱硬化性樹脂複合材料が破断
するか又は大きな損傷を受ければ、外部からの損傷、欠
陥の発見が容易になる。
Further, since the thermosetting resin composite material adhered to the surface layer has large elongation and tensile strength as described above, the size of peeling of the adhesive portion is much larger than the size of cracks or breakage of this layer. Area. Further, it has been found that the size of this peeling is larger than the damaged area of the thermoplastic resin composite material. If the thermosetting resin composite material in the surface layer is broken or greatly damaged in this way, it becomes easy to find damages and defects from the outside.

【0016】[0016]

【実施例】図1に、本発明の実施例の耐衝撃損傷性複合
材料の構成を示す。本実施例の耐衝撃損傷性複合材料
は、内層1を形成する熱可塑性樹脂複合材料として高靱
性を有するPEEKをマトリックスとし炭素繊維を強化
繊維とする複合材料PEEK/CFを採し、その表面の
両面側に、その表面に対して直角方向の厚みtAより充
分小さい厚みtBの熱硬化性樹脂複合材料より成る表層
2を接合させて構成されている。熱硬化性樹脂複合材料
としては、この実施例ではエポキシ樹脂をマトリックス
とし、アラミド繊維、例えばKevlar49(ポリフ
ェニレンテレフタルアミド繊維に対するDupont社
の商品名)の8H朱子織り織布を強化繊維としたFRP
が使用されている。
EXAMPLE FIG. 1 shows the structure of an impact damage resistant composite material according to an example of the present invention. The impact-damage-resistant composite material of the present embodiment is a composite material PEEK / CF having PEEK having high toughness as a matrix and carbon fibers as reinforcing fibers as the thermoplastic resin composite material forming the inner layer 1, and its surface is A surface layer 2 made of a thermosetting resin composite material having a thickness t B , which is sufficiently smaller than a thickness t A in a direction perpendicular to the surface, is bonded to both surface sides. As the thermosetting resin composite material, in this embodiment, an FRP having an epoxy resin as a matrix and an aramid fiber such as Kevlar 49 (trade name of Dupont for polyphenylene terephthalamide fiber) 8H satin woven fabric as a reinforcing fiber
Is used.

【0017】但し、熱可塑性樹脂複合材料のマトリック
ス材としては、熱可塑ポリイミド等他の材料としても良
く、又、熱硬化性樹脂複合材料の有機繊維としては、ア
ラミド繊維の他、高強度ポリエチレン等の他の繊維を用
いることもできる。
However, the matrix material of the thermoplastic resin composite material may be other material such as thermoplastic polyimide, and the organic fiber of the thermosetting resin composite material may be aramid fiber or high strength polyethylene. Other fibers may also be used.

【0018】内層1の熱可塑性樹脂複合材料と表層2の
熱硬化性樹脂複合材料との間の接合には、両者を接着剤
により接着したり、後者を硬化させる時にその樹脂を滲
み出させて前者と接着させるコキュア等の方法を用い
る。
To bond the thermoplastic resin composite material of the inner layer 1 and the thermosetting resin composite material of the surface layer 2 to each other, an adhesive is used to bond them together, or the latter is exuded when being cured. A method such as cocure for adhering to the former is used.

【0019】又、内層1の厚みtAと表層2の厚みtB
ついては、tBはtAより十分小さいことが望ましい。こ
れは、熱可塑性樹脂複合材料であるPEEK/CF等は
本来的に圧縮強度が高いので強度部材としての機能を有
するが、有機繊維を用いた熱硬化性樹脂複合材料である
FRPは、一般に伸び及び引っ張り強度は大きいが圧縮
強度は小さいため、強度部材としては考慮に入れないた
めである。又、衝撃により表層2とその接合界面での損
傷を受けやすくする必要があるためである。
Regarding the thickness t A of the inner layer 1 and the thickness t B of the surface layer 2, it is desirable that t B is sufficiently smaller than t A. This is because thermoplastic resin composite materials such as PEEK / CF originally have high compressive strength and thus have a function as a strength member, but FRP, which is a thermosetting resin composite material using organic fibers, generally has a high elongation. Also, the tensile strength is high, but the compressive strength is low, so it cannot be considered as a strength member. Also, it is necessary to make the surface layer 2 and its bonding interface easily damaged by impact.

【0020】このような構成により、図1に示す耐衝撃
損傷性複合材料が衝撃を受けると、表層2の熱硬化性樹
脂複合材料に衝撃曲げによる引っ張り応力及び剪断応力
が発生し、表層2が内層1から剥離すると共に破断する
ときに、表層2の熱硬化性樹脂複合材料のマトリックス
例えばエポキシ樹脂の十分な接着力とアラミド繊維等の
有機繊維の大きな伸び及び抗張力に対向するエネルギー
分の衝撃エネルギーを吸収して、内層1の熱可塑性樹脂
複合材料の損傷を抑制することになる。そしてこの場
合、表層2が破断すること及び有機繊維を含む樹脂の色
が一般にPEEK/CFのように黒くないことにより、
損傷を発見し易いという効果がある。
With such a structure, when the impact-damage-resistant composite material shown in FIG. 1 is subjected to impact, tensile stress and shear stress due to impact bending occur in the thermosetting resin composite material of the surface layer 2, and the surface layer 2 is When peeled off from the inner layer 1 and ruptured, the matrix of the thermosetting resin composite material of the surface layer 2 has sufficient adhesive force of the epoxy resin and the impact energy corresponding to the large elongation and tensile strength of the organic fiber such as aramid fiber. Will be absorbed and the damage of the thermoplastic resin composite material of the inner layer 1 will be suppressed. And in this case, because the surface layer 2 is broken and the color of the resin containing the organic fiber is not generally black like PEEK / CF,
This has the effect of making it easier to find damage.

【0021】図2は、CAI強度試験を行うための供試
材の構造及び製作方法を示す。内層11はPEEK/C
Fで形成され、その炭素繊維の方向が供試材の長手方向
の軸に対して夫々45°、0°、−45°、90°の方
向に向く各プリプレグ(繊維にPEEKを含浸させて積
層したもの)片を4枚重ね、これを更に4回繰り返して
積層し、これを対称形にして接合して形成されている。
この積層構成を(+45/0/−45/90)4Sと表
現した。そして合計32層から成り、その厚みtAは約
4.3mmである。一方、表層12はエポキシ樹脂をKe
vlar49#181織布に含浸させたプリプレグそれ
ぞれ2層で形成され、その厚みtBは約1mmである。内
層11の両面に表層12を接合し硬化した後、図2
(a)及び(c)に示す如く、幅102mm、長さ152
mmに加工して供試材とする。
FIG. 2 shows the structure and manufacturing method of the test material for carrying out the CAI strength test. Inner layer 11 is PEEK / C
Each prepreg formed of F and having carbon fibers oriented in the directions of 45 °, 0 °, −45 °, and 90 ° with respect to the longitudinal axis of the test material (the fibers are impregnated with PEEK and laminated. Formed by stacking four pieces, repeating this further four times, and stacking these pieces symmetrically.
This laminated structure is expressed as (+ 45/0 / -45 / 90) 4S. It is composed of 32 layers in total, and its thickness t A is about 4.3 mm. On the other hand, the surface layer 12 is made of an epoxy resin Ke.
Vlar49 # 181 woven fabric is impregnated with two layers of prepreg each, and its thickness t B is about 1 mm. After bonding the surface layer 12 to both surfaces of the inner layer 11 and curing the same, as shown in FIG.
As shown in (a) and (c), width 102mm, length 152
It is processed into mm and used as a test material.

【0022】このような供試材により、衝撃エネルギー
として板厚1インチあたり1500in−lbを与えた
場合における衝撃後圧縮強度(CAI強度)を測定した
結果、図2(b)に示すPEEK/CFの内層のみの供
試片(この場合の成形冷却速度は8℃/minである。)
のCAI強度の29kgf/mm2に対して、34kgf/mm2
得られ、約17パーセントCAI強度の増加が認められ
た。
With such a test material, the compressive strength after impact (CAI strength) was measured when impact energy of 1500 in-lb per inch of plate thickness was measured. As a result, PEEK / CF shown in FIG. Specimens having only the inner layer of (the molding cooling rate in this case is 8 ° C./min)
The CAI strength of 29 kgf / mm 2 was 34 kgf / mm 2 , and the CAI strength was increased by about 17%.

【0023】[0023]

【発明の効果】以上の如く本発明によれば、衝撃を受け
ると表層の熱硬化性樹脂複合材料が熱可塑性樹脂複合材
料から剥離したり、亀裂が生じたり破断し、この剥離、
破断の起こる過程において大きな衝撃エネルギーを吸収
し、強度部材である熱可塑性樹脂複合材料は衝撃によっ
て大きな損傷を受けず、衝撃を受けた後にも大きい圧縮
強度を保持することになる。従って、熱可塑性樹脂複合
材料の成形時に冷却速度を高速にしなくても、現状の成
形装置で高い耐衝撃損傷性複合材料を製造することがで
きる。又、このように熱硬化性樹脂複合材料が破断する
か又は大きな損傷を受ければ、外部からの損傷、欠陥の
発見、検査を容易にすることができる。
As described above, according to the present invention, when an impact is applied, the thermosetting resin composite material of the surface layer peels off from the thermoplastic resin composite material, or cracks or breaks.
In the process of fracture, a large impact energy is absorbed, and the thermoplastic resin composite material, which is a strength member, is not greatly damaged by the impact and retains a large compressive strength even after the impact. Therefore, it is possible to manufacture a high impact-damage-resistant composite material with the existing molding apparatus without increasing the cooling rate at the time of molding the thermoplastic resin composite material. In addition, if the thermosetting resin composite material is broken or greatly damaged in this way, it is possible to facilitate external damage and defect detection and inspection.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の耐衝撃損傷性複合材料の構成を示す断
面図である。
FIG. 1 is a cross-sectional view showing a structure of an impact damage resistant composite material of an example.

【図2】(a),(b),(c)は、上記複合材料のC
AI試験の供試材を示し、(a)は斜視図、(b)及び
(c)は断面図である。
2 (a), (b) and (c) are C of the above composite material.
The test material of AI test is shown, (a) is a perspective view, (b) and (c) is sectional drawing.

【符号の説明】[Explanation of symbols]

1 内層(熱可塑性樹脂複合材料) 2 表層(熱硬化樹脂複合材料) 11 供試材内層(PEEK/CF) 12 供試材表層(Epoxy/Kevlar49) 1 Inner layer (thermoplastic resin composite material) 2 Surface layer (thermosetting resin composite material) 11 Specimen inner layer (PEEK / CF) 12 Specimen surface layer (Epoxy / Kevlar49)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 康宏 各務原市川崎町1番地 川崎重工業株式会 社岐阜工場内 (72)発明者 宮本 真一 各務原市川崎町1番地 川崎重工業株式会 社岐阜工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiro Ito 1 Kawasaki-cho, Kakamigahara City Kawasaki Heavy Industries Ltd. Gifu Factory (72) Inventor Shinichi Miyamoto 1 Kawasaki-machi Kakamigahara City Kawasaki Heavy Industries Ltd. Gifu Factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂複合材料で形成された内層
の表面に、該内層の厚さより充分小さい厚さの熱硬化性
樹脂複合材料で形成された表層を接合して成ることを特
徴とする耐衝撃損傷性複合材料。
1. A surface layer made of a thermosetting resin composite material having a thickness sufficiently smaller than the thickness of the inner layer is joined to the surface of an inner layer made of a thermoplastic resin composite material. Impact damage resistant composite material.
【請求項2】 上記の熱可塑性樹脂複合材料がポリエー
テルエーテルケトンをマトリックスとした炭素繊維複合
材料であり、上記の熱硬化性樹脂複合材料がエポキシ樹
脂をマトリックスとしたアラミド繊維複合材料であるこ
とを特徴とする請求項1に記載の耐衝撃損傷性複合材
料。
2. The thermoplastic resin composite material is a carbon fiber composite material using polyetheretherketone as a matrix, and the thermosetting resin composite material is an aramid fiber composite material using an epoxy resin as a matrix. The impact-damage-resistant composite material according to claim 1.
JP28282491A 1991-10-29 1991-10-29 Impact damage-resistant composite material Pending JPH0691816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28282491A JPH0691816A (en) 1991-10-29 1991-10-29 Impact damage-resistant composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28282491A JPH0691816A (en) 1991-10-29 1991-10-29 Impact damage-resistant composite material

Publications (1)

Publication Number Publication Date
JPH0691816A true JPH0691816A (en) 1994-04-05

Family

ID=17657560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28282491A Pending JPH0691816A (en) 1991-10-29 1991-10-29 Impact damage-resistant composite material

Country Status (1)

Country Link
JP (1) JPH0691816A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005238837A (en) * 2004-01-29 2005-09-08 Toray Ind Inc Frp laminate structure
JP2006044264A (en) * 2004-07-08 2006-02-16 Toray Ind Inc Decorative molded article and its production method
JP2007168122A (en) * 2005-12-19 2007-07-05 Toyota Motor Corp Fiber reinforced plastic structure
JP2007283758A (en) * 2006-03-24 2007-11-01 Du Pont Toray Co Ltd High-functionality composite
WO2011108677A1 (en) * 2010-03-04 2011-09-09 Jx日鉱日石エネルギー株式会社 Carbon-fiber-reinforced plastic molded object
JP2011183563A (en) * 2010-03-04 2011-09-22 Jx Nippon Oil & Energy Corp Carbon fiber-reinforced plastic molded body
JP2011183562A (en) * 2010-03-04 2011-09-22 Jx Nippon Oil & Energy Corp Carbon fiber-reinforced plastic molded body
JP2011528296A (en) * 2008-07-18 2011-11-17 ヴェバスト アクチェンゲゼルシャフト Plastic auto parts
CN102661900A (en) * 2012-05-11 2012-09-12 中国航空工业集团公司西安飞机设计研究所 Method for introducing equivalent impact damage of compound material structure
WO2012161348A1 (en) * 2011-05-25 2012-11-29 帝人株式会社 Joint body
JP2013505859A (en) * 2009-09-24 2013-02-21 サイテク・テクノロジー・コーポレーシヨン Thermoplastic composites and methods of making and using them
JP5188636B1 (en) * 2012-05-07 2013-04-24 株式会社泉の台開発 Traffic signal frame and road sign using high-strength fiber composite
JP2014506200A (en) * 2010-12-15 2014-03-13 ザ・ボーイング・カンパニー Controlled fiber-matrix adhesion in polymer fiber composites
WO2015155889A1 (en) * 2014-04-11 2015-10-15 日産自動車株式会社 Shock absorption mechanism and vehicle exterior plate member provided with same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6357580A (en) * 1986-08-22 1988-03-12 ロ−ヌ−プ−ラン・アグロシミ 2,3-dihydrofuran derivative, manufacture and use for manufacturing tetrahydrofuran as intermediate
JPH02170834A (en) * 1988-11-01 1990-07-02 American Cyanamid Co Improved inter-leaf layer in fiber-reinforced resin laminate composite

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6357580A (en) * 1986-08-22 1988-03-12 ロ−ヌ−プ−ラン・アグロシミ 2,3-dihydrofuran derivative, manufacture and use for manufacturing tetrahydrofuran as intermediate
JPH02170834A (en) * 1988-11-01 1990-07-02 American Cyanamid Co Improved inter-leaf layer in fiber-reinforced resin laminate composite

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005238837A (en) * 2004-01-29 2005-09-08 Toray Ind Inc Frp laminate structure
JP2006044264A (en) * 2004-07-08 2006-02-16 Toray Ind Inc Decorative molded article and its production method
JP2007168122A (en) * 2005-12-19 2007-07-05 Toyota Motor Corp Fiber reinforced plastic structure
JP2007283758A (en) * 2006-03-24 2007-11-01 Du Pont Toray Co Ltd High-functionality composite
JP2011528296A (en) * 2008-07-18 2011-11-17 ヴェバスト アクチェンゲゼルシャフト Plastic auto parts
JP2013505859A (en) * 2009-09-24 2013-02-21 サイテク・テクノロジー・コーポレーシヨン Thermoplastic composites and methods of making and using them
JP2011183563A (en) * 2010-03-04 2011-09-22 Jx Nippon Oil & Energy Corp Carbon fiber-reinforced plastic molded body
WO2011108677A1 (en) * 2010-03-04 2011-09-09 Jx日鉱日石エネルギー株式会社 Carbon-fiber-reinforced plastic molded object
JP2011183562A (en) * 2010-03-04 2011-09-22 Jx Nippon Oil & Energy Corp Carbon fiber-reinforced plastic molded body
US9857148B2 (en) 2010-12-15 2018-01-02 The Boeing Company Controlled fiber-matrix adhesion in polymer fiber composites
JP2017114127A (en) * 2010-12-15 2017-06-29 ザ・ボーイング・カンパニーThe Boeing Company Controlled fiber-matrix adhesion in polymer fiber composites
JP2014506200A (en) * 2010-12-15 2014-03-13 ザ・ボーイング・カンパニー Controlled fiber-matrix adhesion in polymer fiber composites
US9339988B2 (en) 2011-05-25 2016-05-17 Teijin Limited Joined body
WO2012161348A1 (en) * 2011-05-25 2012-11-29 帝人株式会社 Joint body
CN103561950A (en) * 2011-05-25 2014-02-05 帝人株式会社 Joint body
JP5604590B2 (en) * 2011-05-25 2014-10-08 帝人株式会社 Zygote
CN103561950B (en) * 2011-05-25 2015-06-24 帝人株式会社 Joint body
JP5188636B1 (en) * 2012-05-07 2013-04-24 株式会社泉の台開発 Traffic signal frame and road sign using high-strength fiber composite
WO2013168572A1 (en) * 2012-05-07 2013-11-14 株式会社泉の台開発 Traffic signal housing and road sign obtained using high-strength fibre composite
CN102661900A (en) * 2012-05-11 2012-09-12 中国航空工业集团公司西安飞机设计研究所 Method for introducing equivalent impact damage of compound material structure
WO2015155889A1 (en) * 2014-04-11 2015-10-15 日産自動車株式会社 Shock absorption mechanism and vehicle exterior plate member provided with same
JPWO2015155889A1 (en) * 2014-04-11 2017-04-13 日産自動車株式会社 Shock absorbing structure and vehicle outer plate member having the same
US10603879B2 (en) 2014-04-11 2020-03-31 Nissan Motor Co., Ltd. Shock absorption structure and vehicle outer panel member having the same

Similar Documents

Publication Publication Date Title
JPH0691816A (en) Impact damage-resistant composite material
Atas et al. An experimental investigation on the low velocity impact response of composite plates repaired by VARIM and hand lay-up processes
US8618004B2 (en) Multifunctional composites
Xue et al. Reduction of thermal residual stress in carbon fiber aluminum laminates using a thermal expansion clamp
US5227216A (en) Fiber/metal laminate
Sweeting et al. The effect of thermal mismatch on Z-pinned laminated composite structures
Bhatia et al. The role of patch-parent configurations on the tensile response of patch repaired carbon/epoxy laminates
US20180066797A1 (en) Fiber reinforced polymer matrix composite structure and high pressure container, and method of manufacturing the same
Aktaş et al. Improving strength performance of adhesively bonded single-lap composite joints
Güemes et al. Experimental analysis of buckling in aircraft skin panels by fibre optic sensors
Ramakrishnan et al. Experimental study of adhesively bonded natural fibre composite–steel hybrid laminates
Zako et al. Intelligent materials system using Epoxy particles for self-repair
Hobbiebrunken et al. Thermomechanical analysis of micromechanical formation of residual stresses and initial matrix failure in CFRP
US20220363015A1 (en) Embedded polymeric insert for increased toughness of adhesive bonded joint
Ogi Influence of thermal history on transverse cracking in a carbon fiber reinforced epoxy composite
Czél et al. Pseudo-ductile carbon/epoxy hybrid composites
Bellini et al. Comparison between long and short beam flexure of a carbon fibre based FML
JPH09226039A (en) Fiber-reinforced plastic member
Tsampas et al. Mechanical performance of novel high Tg polyimide matrix carbon fibre-reinforced laminates
JPH04267139A (en) Carbon fiber reinforced composite material prepreg sheet
Davies-Frey et al. Failure detection of composite materials in sport applications
Hunter et al. Effect of the structural reinforcement of composite adherends on the mechanical strength of adhesive joints: Einfluss strukturverstärkender Fügeteile auf die mechanische Festigkeit von Klebeverbindungen
Sales-Contini et al. Fractographic analysis of composite joints under cryogenic conditions
Lee et al. Woven fabric carbon fibre composites hybrid joints under quasi-static testing
Bellini et al. Analysis of fracture characteristics in aluminium-CFRP hybrid laminate subject to three-point bending loading