JPH0691770A - Fiber-reinforced resin gear - Google Patents

Fiber-reinforced resin gear

Info

Publication number
JPH0691770A
JPH0691770A JP4042968A JP4296892A JPH0691770A JP H0691770 A JPH0691770 A JP H0691770A JP 4042968 A JP4042968 A JP 4042968A JP 4296892 A JP4296892 A JP 4296892A JP H0691770 A JPH0691770 A JP H0691770A
Authority
JP
Japan
Prior art keywords
fiber
fibers
reinforced
gear
reinforced resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4042968A
Other languages
Japanese (ja)
Other versions
JP2959905B2 (en
Inventor
Kaneo Hamashima
兼男 浜島
Shoji Sawai
昭治 沢井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd, Toyota Motor Corp filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP4042968A priority Critical patent/JP2959905B2/en
Publication of JPH0691770A publication Critical patent/JPH0691770A/en
Application granted granted Critical
Publication of JP2959905B2 publication Critical patent/JP2959905B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Gears, Cams (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To provide a fiber-reinforced resin gear in which a strength of a toothed part and wear resistance of the vicinity of a pitch circle of an engaging surface are obtained while enhancing processability in the case of gear cutting. CONSTITUTION:A prepreg containing meta series aramid fiber and a prepreg containing carbon fiber are superposed, and wound in a rod state. Both ends of the rod state are matched in a doughnut state, molded and fixed in a ringlike material. Teeth are cut on an outer periphery of the material, and fibers are oriented in an annular ring state of a tree on an engaging surface 70 of a toothed part 7. A reinforced part 7a reinforced by aramid fiber is formed on an outermost periphery of the part 7, and a composite reinforced part 7b reinforced by aramid fiber and carbon fiber is formed at its central side. The part 7b is disposed at a position corresponding to a pitch circle 73.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は繊維強化樹脂歯車に関す
る。この歯車は例えば自動車のカムシャフトタイミング
ギヤ等に利用できる。
FIELD OF THE INVENTION The present invention relates to a fiber-reinforced resin gear. This gear can be used, for example, as a camshaft timing gear of an automobile.

【0002】[0002]

【従来の技術】繊維強化樹脂歯車は、噛み合い音が低
い、軽量で回転慣性力が小さい等の利点をもつため、近
年、種々の分野で多用されつつある。ここで、特開昭6
0ー206628号公報に開示されている様に、補強用
短繊維と熱硬化性樹脂とを混練した材料を型のキャビテ
ィに装填し、加熱加圧成形した繊維強化樹脂歯車が知ら
れている。また特開昭60ー206629号公報に開示
されている様に、補強用短繊維と熱硬化性樹脂とからな
るジエニール状のプリプレグを型のキャビティに円周方
向に装填し、加熱加圧成形した繊維強化樹脂歯車が知ら
れている。
2. Description of the Related Art Fiber-reinforced resin gears have been widely used in various fields in recent years because they have advantages such as low meshing noise, light weight and small rotational inertia. Here, JP-A-6
As disclosed in Japanese Unexamined Patent Publication No. 0-206628, a fiber reinforced resin gear is known in which a material obtained by kneading reinforcing short fibers and a thermosetting resin is loaded into a mold cavity and heat-pressed. Further, as disclosed in JP-A-60-206629, a denier prepreg composed of reinforcing short fibers and a thermosetting resin is circumferentially loaded into a mold cavity and heat-pressed. Fiber-reinforced resin gears are known.

【0003】また、特開平2ー241729号公報に開
示されている様に、プリプレグを渦巻状に巻いて棒状と
するとともに、その棒状の両端を合わせてドーナツ状と
したリング状予備成形材を成形固化してリング状素材を
形成し、リング状素材の外周部を歯切り加工した繊維強
化樹脂歯車が知られている。
Further, as disclosed in Japanese Patent Application Laid-Open No. 2-241729, a prepreg is spirally wound into a rod shape, and both ends of the rod shape are combined to form a doughnut-shaped preform. BACKGROUND ART A fiber-reinforced resin gear is known in which a ring-shaped material is solidified to form a ring-shaped material, and an outer peripheral portion of the ring-shaped material is gear-cut.

【0004】[0004]

【発明が解決しようとする課題】ところで上記した繊維
強化樹脂歯車で用いる強化繊維としては、カーボン繊
維、ガラス繊維、アラミド繊維等が一般的であるが、カ
ーボン繊維のみで補強した歯車では、強度、耐摩耗性は
良いが、カーボン繊維は摩擦係数が小さいためカッター
の刃先が滑る等の理由で難削材であり加工性が極めて悪
く、量産向きでなく、更に、カーボン繊維は高弾性率の
ため、繊維強化樹脂歯車の本来の目的である噛み合い音
の低減に対する効果が小さい。更に。また、ガラス繊維
のみで強化した繊維強化樹脂歯車では、相手歯車に対す
る攻撃性が極めて大きいため、特に高負荷用途を狙った
場合、相手歯車の耐摩耗性の面から致命的である。一
方、メタ系ポリアミド繊維で強化した繊維強化樹脂歯車
では、加工性も良く、音の低減に対して有効であり、か
つ自身の耐摩耗性、相手攻撃性を含めた摩耗特性も良好
である。
Carbon fibers, glass fibers, aramid fibers, etc. are generally used as the reinforcing fibers in the above-mentioned fiber-reinforced resin gears. Although it has good wear resistance, carbon fiber is a difficult-to-cut material due to the small friction coefficient of the cutter because the blade edge of the cutter slips, workability is extremely poor, and it is not suitable for mass production. The effect of reducing the meshing noise, which is the original purpose of the fiber-reinforced resin gear, is small. Furthermore. Further, a fiber-reinforced resin gear reinforced only with glass fibers has extremely great aggression with respect to a mating gear, and therefore is fatal from the viewpoint of wear resistance of the mating gear particularly when aiming for high load applications. On the other hand, the fiber-reinforced resin gear reinforced with the meta-polyamide fiber has good workability, is effective in reducing noise, and has good wear characteristics including its own wear resistance and opponent attack.

【0005】ところで、近年、繊維強化樹脂歯車では、
さらなる歯切り加工の良好性、歯部の耐摩耗性、歯部の
強度、耐負荷性の各面での向上が望まれている。その対
策として、本発明者は、メタ系アラミド繊維等の軟質繊
維とカーボン繊維等の硬質繊維との双方で全域を強化し
た繊維強化樹脂歯車を着想した。しかし、このような強
化は効率的とはいえない。例えばカーボン繊維等の硬質
繊維を歯部の噛み合い面全域に均一に強化することは、
歯切り加工性を悪くする。
By the way, in recent years, in fiber-reinforced resin gears,
It is desired to further improve the goodness of gear cutting, the wear resistance of the teeth, the strength of the teeth, and the load resistance. As a countermeasure, the present inventor has conceived a fiber reinforced resin gear in which the entire region is reinforced with both soft fibers such as meta-aramid fibers and hard fibers such as carbon fibers. However, such strengthening is not efficient. For example, to strengthen hard fibers such as carbon fibers uniformly over the entire meshing surface of the teeth,
Deteriorates gear cutting workability.

【0006】本発明は上記した実情に鑑みなされたもの
であり、その目的は、歯切り加工の際の加工性を高めつ
つ、歯部の強度、耐摩耗性を確保した繊維強化樹脂歯車
を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a fiber-reinforced resin gear that secures the strength and wear resistance of the tooth portion while improving the workability in gear cutting. To do.

【0007】[0007]

【課題を解決するための手段】本発明にかかる繊維強化
樹脂歯車は、プリプレグを巻いて棒状とするとともに、
その棒状の両端を合わせてドーナツ状としたリング状予
備成形材を成形固化したリング状素材を歯切りして、歯
部の噛み合い面にプリプレグを構成する繊維が木の年輪
状に配向した繊維強化樹脂歯車であって、該木の年輪状
に配向した繊維は、最外周部に加工性の良い軟質繊維が
該最外周部の中心側には強度の高い硬質繊維が相対的に
多く配設されていることを特徴とするものである。
A fiber reinforced resin gear according to the present invention has a rod shape formed by winding a prepreg.
A ring-shaped preform that is made into a donut shape by combining both ends of the rod shape is molded and solidified. In the resin gear, the fibers oriented in the annual ring shape of the tree are arranged such that soft fibers having good workability are arranged on the outermost peripheral portion and relatively many hard fibers having high strength are arranged on the center side of the outermost peripheral portion. It is characterized by that.

【0008】本発明にかかる繊維強化樹脂歯車では、歯
部の噛み合い面に繊維が木の年輪状に配向している。こ
こで、木の年輪状とは、繊維が多重に配向していること
をいい、輪状に配向している形態、半輪状、部分輪状に
配向している形態を含む。木の年輪状に配向する繊維
は、最外周部に加工性の良い軟質繊維が相対的に多く配
設されており、最外周部の中心側には強度の高い硬質繊
維が相対的に多く配設されている。
In the fiber-reinforced resin gear according to the present invention, the fibers are oriented on the meshing surfaces of the teeth in the shape of a tree ring. Here, the annual ring shape of a tree means that the fibers are multi-oriented, and includes a ring-oriented shape, a semi-ring shape, and a partial ring shape. Fibers oriented in the shape of tree rings have relatively many soft fibers with good workability arranged at the outermost periphery, and relatively many hard fibers with high strength are arranged at the center side of the outermost periphery. It is set up.

【0009】本発明の繊維強化樹脂歯車で用いる軟質繊
維は、弾性率が硬質繊維よりも低い繊維を意味する。軟
質繊維としては、基本的には歯車を形成可能であれば良
く、特に制約を受けるものではないが、その切削加工性
及び、噛み合い音の低減性の面から、メタ系アラミド繊
維が好ましい。硬質繊維は軟質繊維よりも弾性率が高
く、切削加工性が落ちる繊維を意味する。硬質繊維とし
ては、カーボン繊維、パラ系アラミド繊維、ガラス繊維
を採用できる。カーボン繊維は高弾性率で、高強度かつ
耐摩耗性に優れる。
The soft fiber used in the fiber-reinforced resin gear of the present invention means a fiber having an elastic modulus lower than that of the hard fiber. The soft fiber is basically not limited to any particular one as long as it can form a gear, but a meta-aramid fiber is preferable in terms of its machinability and reduction of meshing noise. The hard fiber means a fiber having a higher elastic modulus than the soft fiber and poor machinability. Carbon fibers, para-aramid fibers, and glass fibers can be used as the hard fibers. Carbon fiber has a high elastic modulus, high strength, and excellent wear resistance.

【0010】また、歯部の噛み合い面のうち、ピッチ円
に対応する部位、または、歯部の高さ方向においてピッ
チ円と歯元との間の部位は、硬質繊維が相対的に多い構
成が好ましい。その主たる理由は、歯部の噛み合い面の
うち耐摩耗性が特に要求される部位は、ピッチ円付近、
あるいは、ピッチ円よりも僅かに径内側である場合が多
いからである。
In the meshing surface of the tooth portion, the portion corresponding to the pitch circle or the portion between the pitch circle and the tooth root in the height direction of the tooth portion has a relatively large amount of hard fibers. preferable. The main reason for this is that among the meshing surfaces of the teeth, the part where wear resistance is particularly required is near the pitch circle,
Alternatively, in many cases, the diameter is slightly inside the pitch circle.

【0011】本発明の繊維強化樹脂歯車においては、繊
維の総量としては特に制約を受けることなく、歯車の要
求特性に応じて任意に設定すれば良いが、歯部の強度及
び成形性の面を考慮すると、繊維の総体積率は50%前
後、特に40〜60%程度が好ましい。このうち、主要
な繊維は軟質繊維とすることができる。高強度、高耐摩
耗性をもつ硬質繊維(例えばカーボン繊維又はパラ系ア
ラミド繊維)は、繊維の総量中の例えば5〜50%にで
きる。
In the fiber-reinforced resin gear of the present invention, the total amount of fibers is not particularly limited and may be arbitrarily set according to the required characteristics of the gear. Considering this, the total volume ratio of the fibers is preferably about 50%, and particularly preferably about 40 to 60%. Of these, the main fibers can be soft fibers. The hard fiber having high strength and high abrasion resistance (for example, carbon fiber or para-aramid fiber) can be, for example, 5 to 50% of the total amount of the fiber.

【0012】但し、カーボン繊維を局部的に集中した部
位では、カーボン繊維の含有率は、耐摩耗性向上という
観点からは、該部位における繊維の総量中30%以上、
加工性の観点からは70%以下であることが好ましい。
本発明の繊維強化樹脂歯車に使用するマトリックス樹脂
としては、フェノ−ル樹脂、エポキシ樹脂、ポリイミド
樹脂等の各種熱硬化樹脂、あるいは、PES、PEE
K、PAI等の各種熱可塑性樹脂であって良い。即ち、
軟質繊維、硬質繊維と何らかの方法で複合化可能な樹脂
であれば良い。
However, in the region where the carbon fibers are locally concentrated, the carbon fiber content is 30% or more of the total amount of the fibers in the region from the viewpoint of improving wear resistance.
From the viewpoint of workability, it is preferably 70% or less.
Examples of the matrix resin used in the fiber-reinforced resin gear of the present invention include various thermosetting resins such as phenol resin, epoxy resin, and polyimide resin, or PES and PEE.
Various thermoplastic resins such as K and PAI may be used. That is,
Any resin can be used as long as it can be combined with the soft fiber or the hard fiber by some method.

【0013】[0013]

【作用】木の年輪状に配向した繊維は、最外周部に加工
性の良い軟質繊維が最外周部の中心側には強度の高い硬
質繊維が相対的に多く配設されている。そのため、歯部
の最外周部よりも中心側の部位、即ち相手歯車の歯部が
接し易い部位、例えばピッチ円付近では硬質繊維が相対
的に多く配設されている。また歯切り加工の際には、軟
質繊維から加工されることになる。
With respect to the fibers oriented in a tree ring shape, soft fibers having good workability are arranged on the outermost peripheral portion, and relatively many hard fibers having high strength are arranged on the center side of the outermost peripheral portion. Therefore, a relatively large amount of hard fibers is arranged in a portion closer to the center than the outermost peripheral portion of the tooth portion, that is, a portion where the tooth portion of the mating gear easily contacts, for example, near the pitch circle. In addition, during the gear cutting process, the soft fiber is processed.

【0014】[0014]

【実施例】【Example】

(実施例1) (1)プリプレグの製造 溶剤によりワニス状に溶融させたフェノ−ル樹脂を用
い、そのフェノ−ル樹脂を平織のアラミド繊維布に含浸
させ、その後に、この溶剤を乾燥除去した。これにより
アラミド繊維布とフェノ−ル樹脂とから成るプリプレグ
シートを作成した。そしてこのプリプレグシートを、図
2に示す様に平行四辺形状に切断し、プリプレグ1とし
た。プリプレグ1は、辺1a〜1dをもち、辺1cの直
角方向に対して辺1aが角度θ(5°)傾斜している。
ここで、プリプレグ1は、長さL1が235mm、幅L
2が228mm、厚み0.2mmである。このプリプレ
グ1では図2に示す様にアラミド繊維1x、1yの繊維
配向は辺1cに対して0°と90°である。
(Example 1) (1) Production of prepreg Using a phenol resin melted in a varnish form with a solvent, a plain woven aramid fiber cloth was impregnated with the phenol resin, and then the solvent was dried and removed. . Thus, a prepreg sheet made of aramid fiber cloth and phenol resin was prepared. Then, this prepreg sheet was cut into parallelogram shapes as shown in FIG. The prepreg 1 has sides 1a to 1d, and the side 1a is inclined at an angle θ (5 °) with respect to the direction perpendicular to the side 1c.
Here, the prepreg 1 has a length L1 of 235 mm and a width L.
2 is 228 mm and the thickness is 0.2 mm. In this prepreg 1, as shown in FIG. 2, the fiber orientations of the aramid fibers 1x and 1y are 0 ° and 90 ° with respect to the side 1c.

【0015】また、上記フェノ−ル樹脂を平織のカーボ
ン繊維布に含浸させ、溶剤を乾燥除去し、これによりカ
ーボン繊維布とフェノ−ル樹脂とから成るプリプレグシ
ートを作成した。そしてこのプリプレグシートを、図3
に示す様に平行四辺形状に切断し、プリプレグ2とし
た。プリプレグ2は、辺2a〜2dをもち、辺2cの直
角方向に対して辺2aが角度θ(5°)傾斜している。
ここで、プリプレグ2は、長さL3が235mm、幅L
4が40mm、厚み0.3mmである。プリプレグシ−
ト2では図3に示す様にカーボン繊維2x、2yの繊維
配向は辺2cに対して0°と90°である。
Further, a plain weave carbon fiber cloth was impregnated with the above-mentioned phenol resin and the solvent was removed by drying, whereby a prepreg sheet composed of the carbon fiber cloth and the phenol resin was prepared. Then, this prepreg sheet is shown in FIG.
As shown in (1), it was cut into parallelogram shapes to obtain prepreg 2. The prepreg 2 has sides 2a to 2d, and the side 2a is inclined at an angle θ (5 °) with respect to the direction perpendicular to the side 2c.
Here, the prepreg 2 has a length L3 of 235 mm and a width L.
4 is 40 mm and the thickness is 0.3 mm. Prepreg
In G2, as shown in FIG. 3, the fiber orientations of the carbon fibers 2x and 2y are 0 ° and 90 ° with respect to the side 2c.

【0016】上記したプリプレグ1を構成するアラミド
繊維布について説明する。即ち、繊維材質はメタ系アラ
ミド(帝人(株)「コーネックス」)であり、フィラメ
ント特性として伸びは27%、弾性率は1250kg/
mm2 、ヤーン特性として番手は20tex、クロス特
性として目付は130g/m2 である。また、上記した
プリプレグ2を構成するカーボン繊維布について説明す
る。即ち、繊維材質はグラファイト(東邦レーヨン
(株)「ベスファイト」)であり、フィラメント特性と
して強度は380kg/mm2 、伸びは1.6%、弾性
率は23500kg/mm2 、ヤーン特性として番手は
67tex、クロス特性として目付は236g/m2
ある。
The aramid fiber cloth constituting the above prepreg 1 will be described. That is, the fiber material is meta-aramid (Teijin Co., Ltd. “Conex”), and the filament characteristics have an elongation of 27% and an elastic modulus of 1250 kg /
mm 2, count as yarn properties 20Tex, basis weight as a cross characteristic is 130 g / m 2. Further, the carbon fiber cloth constituting the above prepreg 2 will be described. That is, the fiber material was graphite (“Besfight” manufactured by Toho Rayon Co., Ltd.), and the filament characteristics were strength 380 kg / mm 2 , elongation 1.6%, elastic modulus 23500 kg / mm 2 , yarn count was 67 tex, and the fabric weight per unit area is 236 g / m 2 .

【0017】ここで、メタ系アラミド繊維は、低弾性率
で機械加工性に優れ、歯車の噛み合い面等の発生音を低
く押える特徴を持つ。また、カーボン繊維は、高弾性率
であり、強度に優れ、かつ摩擦係数が小さく耐摩耗性に
優れる特徴をもつ。 (2)リング状素材の製造 次に、図1(A)に示す様に、平行四辺形状に切断した
アラミド繊維系のプリプレグ1の上にカーボン繊維系の
プリプレグ2を所定の配置で重ね合わせる。このとき辺
1bと辺2bとを合わせ、辺2aと辺1aとを合わせて
いる。本例では、重ね合わせた状態では、プリプレグ2
の一辺2cは他のプリプレグ1の一辺1cから寸法L5
(30mm)離れている。重ね合わせた後、図1(B)
に示す様にプリプレグ1を一辺1cから、プリプレグ2
とともに渦巻き状に巻き取り、棒状とする。次に、図1
(C)に示す様に、棒状としたプリプレグ1の一端部と
他端部とが合わさる様に合せ部3aを形成し、プリプレ
グ1、2を湾曲させてリング状予備成形材3を得た。こ
こで、リング状予備成形材3の合せ部3a(渦巻き棒の
合せ)は、同部の強度低下を避けるべくオーバーラップ
させた構造とされている。オーバーラップの長さは、図
1のプリプレグ1、2の切断時にその形状を工夫するこ
とにより任意に設定できる。
Here, the meta-aramid fiber has a characteristic that it has a low elastic modulus, is excellent in machinability, and suppresses the sound generated at the meshing surfaces of gears and the like. Further, the carbon fiber has a high elastic modulus, excellent strength, a small friction coefficient, and excellent wear resistance. (2) Production of ring-shaped material Next, as shown in FIG. 1 (A), a carbon fiber prepreg 2 is superposed in a predetermined arrangement on an aramid fiber prepreg 1 cut into parallelogram shapes. At this time, the side 1b and the side 2b are aligned, and the side 2a and the side 1a are aligned. In this example, the prepreg 2 in the stacked state
One side 2c is a dimension L5 from one side 1c of the other prepreg 1.
(30 mm) apart. Figure 1 (B) after overlapping
Prepreg 1 from one side 1c to prepreg 2 as shown in
Along with this, it is wound into a spiral and made into a rod shape. Next, FIG.
As shown in (C), a mating portion 3a was formed so that one end and the other end of the rod-shaped prepreg 1 were aligned, and the prepregs 1 and 2 were curved to obtain a ring-shaped preform material 3. Here, the mating portion 3a (coil rod matching) of the ring-shaped preform material 3 has an overlapping structure in order to avoid a decrease in strength of the same portion. The length of the overlap can be arbitrarily set by devising the shape when cutting the prepregs 1 and 2 in FIG.

【0018】この予備成形材3の断面組織は、図4に模
式的に示す様に、中心部にアラミド繊維層Aが存在し、
その外側にアラミド繊維とカーボン繊維との交互積層部
Bがあり、最外周に再度アラミド繊維層Aが存在する複
合構造となっている。このようにして得たリング状予備
成形材3を、図5に示す様に、合せ部3aが180°対
向するように2本重ね合せた状態で、図6に示す金型4
にセットする。このとき金型4内には、中央孔5eをも
つリング状の鋼製インサ−ト5を配置している。この金
型4は、キャビティの底部に位置決め用突部40aをも
つ下型40と、下型40のキャビティに挿入されるリン
グ状加圧面41aをもつ円筒状の加圧パンチ41と、加
圧パンチ41の中央孔41bに挿通された中子42とで
構成されている。そして、中子42でインサート5を保
持するとともに、キャビティ内に上下に2個重ねて配置
したリング状予備成形材3を、加圧パンチ41で矢印E
方向に押圧して加熱圧縮成形を行い、これによりプリプ
レグ1、2中の樹脂成分を固化させ、図7に示すリング
状素材6を形成した。この際の成形条件は、温度180
℃、圧力250kgf/cm2 、加圧時間15分であ
る。
The cross-sectional structure of the preformed material 3 has an aramid fiber layer A at the center, as schematically shown in FIG.
An alternate laminated portion B of aramid fibers and carbon fibers is provided on the outer side thereof, and an aramid fiber layer A is again present on the outermost periphery to form a composite structure. As shown in FIG. 5, the two ring-shaped preforms 3 thus obtained are stacked so that the mating portions 3a face each other by 180 °, and the mold 4 shown in FIG.
Set to. At this time, a ring-shaped steel insert 5 having a central hole 5e is arranged in the mold 4. The mold 4 includes a lower die 40 having a positioning protrusion 40a at the bottom of the cavity, a cylindrical pressure punch 41 having a ring-shaped pressure surface 41a inserted into the cavity of the lower die 40, and a pressure punch. The core 42 is inserted through the central hole 41 b of the core 41. Then, the insert 5 is held by the core 42, and the ring-shaped preforms 3 vertically stacked in the cavity are pressed by the pressure punch 41 to the arrow E.
By pressing in the direction, heat compression molding was performed, thereby solidifying the resin components in the prepregs 1 and 2, and the ring-shaped material 6 shown in FIG. 7 was formed. The molding condition at this time is a temperature of 180.
° C., a pressure 250 kgf / cm 2, is 15 minutes pressing time.

【0019】図7に示すリング状素材6では、鋼製イン
サ−ト5の凹部5a及び凸部5bと繊維強化樹脂部分の
内周部とは強固に結合している。図8にリング状素材6
の断面を示す。図8に示す様に、半径方向つまり矢印Y
方向においてリング状素材6の最外周部には、アラミド
繊維で強化された強化部7aが形成されている。更に強
化部7aよりも中心側の部位Y3には、アラミド繊維と
カーボン繊維とで強化された断面リング状をなす複合強
化部7bが形成されている。更に複合強化部7bのリン
グで包囲された部分には、アラミド繊維で強化された強
化部7cが形成されている。更に複合強化部7bよりも
中心側つまり軸芯K側には、アラミド繊維で強化された
強化部7dが形成されている。
In the ring-shaped material 6 shown in FIG. 7, the concave portions 5a and the convex portions 5b of the steel insert 5 and the inner peripheral portion of the fiber reinforced resin portion are firmly bonded. The ring-shaped material 6 in FIG.
The cross section of is shown. As shown in FIG. 8, the radial direction, that is, the arrow Y
In the outermost peripheral portion of the ring-shaped material 6 in the direction, a reinforced portion 7a reinforced with aramid fiber is formed. Further, a composite reinforced portion 7b having a ring-shaped cross section reinforced with aramid fibers and carbon fibers is formed at a portion Y3 closer to the center than the reinforced portion 7a. Further, a reinforced portion 7c reinforced with aramid fibers is formed in the portion of the composite reinforced portion 7b surrounded by the ring. Further, a reinforced portion 7d reinforced with aramid fiber is formed on the center side of the composite reinforced portion 7b, that is, on the shaft core K side.

【0020】即ち、図8においては、黒色で塗り潰した
域は、アラミド繊維とカーボン繊維とで強化された複合
強化部7bであり、また、塗り潰していない域は、アラ
ミド繊維のみで強化された強化部7a、7c、7dであ
る。ここで、リング状素材6は、内径L7が40.0m
m、外径L9が79.0、厚さtが10mm、インサー
ト5の外径L8が55mmである。またリング状素材6
の繊維強化部分の繊維総量は体積率で50%であり、そ
のうち80%がアラミド繊維、20%がカーボン繊維で
ある。
That is, in FIG. 8, the black filled area is the composite reinforced portion 7b reinforced with aramid fibers and carbon fibers, and the unfilled area is reinforced with only aramid fibers. The parts 7a, 7c and 7d. Here, the ring-shaped material 6 has an inner diameter L7 of 40.0 m.
m, the outer diameter L9 is 79.0, the thickness t is 10 mm, and the outer diameter L8 of the insert 5 is 55 mm. Ring material 6
The total amount of fibers in the fiber-reinforced portion is 50% by volume, of which 80% is aramid fibers and 20% is carbon fibers.

【0021】(3)歯切り加工 図7に示すリング状素材6を用い、そのリング状素材6
の外周部に、カッターにより切削加工を施すことにより
歯切り加工を行い、図9〜図11に示す様に、外周部に
歯部7をもつ繊維強化樹脂歯車8を得た。このとき繊維
が一部切断される。この繊維強化樹脂歯車8の歯車諸元
は以下の様である。即ち、種類はインボリュートハスバ
歯車であり、歯先直径は79.0mm、歯元直径は6
6.9mm、ピッチ円直径は73.9mm、全歯たけは
6.05mm、歯数は32、直角モジュールは2.0、
歯直角圧力角は18.0°、ねじれ角は30°である。
(3) Gear cutting processing The ring-shaped material 6 shown in FIG.
Tooth cutting was performed by cutting the outer peripheral portion with a cutter to obtain a fiber reinforced resin gear 8 having tooth portions 7 on the outer peripheral portion as shown in FIGS. 9 to 11. At this time, some of the fibers are cut. The specifications of the fiber-reinforced resin gear 8 are as follows. That is, the type is an involute helical gear, the tip diameter is 79.0 mm, and the root diameter is 6
6.9 mm, pitch circle diameter 73.9 mm, total tooth depth 6.05 mm, number of teeth 32, right angle module 2.0,
The pressure angle at right angles to the teeth is 18.0 °, and the twist angle is 30 °.

【0022】本実施例にかかる繊維の配向形態を図9、
図10に示す。図9は主として歯部7の噛み合い面70
における木の年輪状の繊維配向を示す。また図10は木
の年輪状に配向した繊維を省略し、噛み合い面70にお
ける他の繊維配向を示す。図9に示す様に、本実施例に
かかる繊維強化樹脂歯車8では、歯部7の噛み合い面7
0では、繊維100が木の年輪状に配向している。また
歯部7の最外周面としての歯先面75では、ほぼ周方向
にのびる繊維101と、歯車の軸芯Kにそってのびる繊
維102とが交差して配向している。また、歯部7の軸
端面76では、ほぼ周方向にのびる繊維103と、歯車
の軸芯Kに対してほぼ放射方向にのびる繊維104とが
交差して配向している。また図10に示す様に、歯部7
の噛み合い面70では、周方向にのびる繊維103のう
ち歯切りの際に切断された端部103aが噛み合い面7
0の表面で表出している。ここで、本実施例では前記し
た様に、歯車の軸芯に対してほぼ放射方向にのびる繊維
104が配向しているので、歯部7の歯元72付近の強
度増加に有利である。
The orientation form of the fibers according to this embodiment is shown in FIG.
As shown in FIG. FIG. 9 mainly shows the meshing surface 70 of the tooth portion 7.
Shows the annual ring-shaped fiber orientation of the tree in. Further, in FIG. 10, fibers oriented in a tree ring shape are omitted and other fiber orientations in the meshing surface 70 are shown. As shown in FIG. 9, in the fiber-reinforced resin gear 8 according to this embodiment, the meshing surface 7 of the tooth portion 7 is
At 0, the fibers 100 are oriented like tree rings. Further, on the tooth crest surface 75 as the outermost peripheral surface of the tooth portion 7, the fibers 101 extending substantially in the circumferential direction and the fibers 102 extending along the axis K of the gear intersect and are oriented. Further, on the shaft end surface 76 of the tooth portion 7, a fiber 103 extending substantially in the circumferential direction and a fiber 104 extending substantially in the radial direction with respect to the shaft axis K of the gear are intersecting and oriented. Further, as shown in FIG.
In the meshing surface 70 of, the end portion 103a of the fiber 103 extending in the circumferential direction, which is cut during gear cutting, is meshed with the meshing surface 7
It is exposed on the surface of 0. Here, in the present embodiment, as described above, the fibers 104 extending substantially in the radial direction with respect to the axis of the gear are oriented, which is advantageous for increasing the strength of the tooth portion 7 near the root 72.

【0023】本実施例にかかる繊維強化樹脂歯車8で
は、図11に示す様に、半径方向においてつまり歯部7
の高さ方向において、歯部7の最外周部にはアラミド繊
維で強化された強化部7aが形成されている。更に、強
化部7aよりも中心側の部位Y3には、アラミド繊維と
カーボン繊維とで強化された複合強化部7bが形成され
ている。更に、図12に示す様に、複合強化部7bのリ
ングで包囲された部分には、アラミド繊維で強化された
強化部7cが形成されている。更に、複合強化部7bよ
りも中心側には、アラミド繊維で強化された強化部7d
が形成されている。
In the fiber-reinforced resin gear 8 according to this embodiment, as shown in FIG. 11, the tooth portion 7 is formed in the radial direction.
In the height direction of, the reinforced portion 7a reinforced with aramid fiber is formed on the outermost peripheral portion of the tooth portion 7. Further, a composite reinforced portion 7b reinforced with aramid fiber and carbon fiber is formed at a portion Y3 closer to the center than the reinforced portion 7a. Further, as shown in FIG. 12, a reinforced portion 7c reinforced with aramid fibers is formed in the portion of the composite reinforced portion 7b surrounded by the ring. Furthermore, the reinforced portion 7d reinforced with aramid fiber is located closer to the center than the composite reinforced portion 7b.
Are formed.

【0024】換言すれば本実施例では、歯部7の最外周
部にはアラミド繊維が相対的に多く配設され、その最外
周部の中心側にはカーボン繊維が相対的に多く配設され
ている。ここで、複合強化部7bにおいては、繊維の割
合は、アラミド繊維:カーボン繊維=50:50(体積
比)となっている。なお、複合強化部7bの繊維構成比
は、使用する繊維クロスの目付量を変えることにより、
任意に設定できる。
In other words, in this embodiment, a relatively large amount of aramid fiber is arranged at the outermost peripheral portion of the tooth portion 7, and a relatively large amount of carbon fiber is arranged at the center side of the outermost peripheral portion. ing. Here, in the composite reinforced portion 7b, the fiber ratio is aramid fiber: carbon fiber = 50: 50 (volume ratio). The fiber composition ratio of the composite reinforced portion 7b can be changed by changing the basis weight of the fiber cloth used.
It can be set arbitrarily.

【0025】ところで、歯車の使用に当っては、歯部7
のうち応力的に最も厳しい部位が歯元72である。また
耐摩耗性が必要な部位が歯部7の噛み合い面70のう
ち、ピッチ円73付近、または、ピッチ円73よりもや
や径内方の部位、即ち半径方向におけるピッチ円73と
歯元72との間の部位である。この点本実施例では、図
11から理解できる様に、歯部7の歯元72付近及びピ
ッチ円73付近には、耐摩耗性及び強度に優れるカーボ
ン繊維とアルミド繊維の双方で強化された複合強化部7
bが位置している。そのため、歯部7の歯元72の強度
増加を図ることができ、更にピッチ円73に対応する部
位、及び、ピッチ円73よりもやや径内方の部位におい
て、前記複合強化部7bが位置しているので、噛み合い
面70における耐摩耗性の向上を図ることができる。
By the way, when using the gear, the tooth portion 7
The most severe part of the stress is the root 72. Further, the portion requiring wear resistance is a portion of the meshing surface 70 of the tooth portion 7 near the pitch circle 73 or a portion slightly inward of the pitch circle 73, that is, the pitch circle 73 and the root 72 in the radial direction. It is the part between. In this respect, in this example, as can be understood from FIG. 11, a composite reinforced with both carbon fiber and aluminide fiber, which is excellent in wear resistance and strength, is provided in the vicinity of the root 72 and the pitch circle 73 of the tooth portion 7. Strengthening part 7
b is located. Therefore, it is possible to increase the strength of the tooth base 72 of the tooth portion 7, and further, the composite strengthening portion 7b is located at a portion corresponding to the pitch circle 73 and a portion slightly inward of the pitch circle 73. Therefore, the wear resistance of the meshing surface 70 can be improved.

【0026】ここで、アラミド繊維とカーボン繊維とか
らなる断面リング状をなす複合強化部7bは、図1
(A)に示す工程において2種類のプリプレグ1、2を
重ね合せるに際し、その配置を変えることにより任意に
位置調整できる。 (他の実施例)実施例1と全く同様にアラミド繊維で形
成したプリプレグ1と、カーボン繊維で形成したプリプ
レグ2を用い、両方のプリプレグ1、2の切断長さのみ
を変更した。そして、繊維の総体積率は実施例1の場合
と同様に50%とするものの、繊維中のアラミド繊維と
カーボン繊維との比のみを表1に示す様に変更し、実施
例1と同様の成形工程、歯切り加工工程を経て、実施例
1の場合と外形が全く同一の繊維強化樹脂歯車(NO.
a〜NO.f)を作成した。
Here, the composite reinforcing portion 7b having a ring-shaped cross section made of aramid fiber and carbon fiber is shown in FIG.
When the two types of prepregs 1 and 2 are superposed in the step shown in (A), the position can be arbitrarily adjusted by changing the arrangement. (Other Examples) Just as in Example 1, a prepreg 1 made of aramid fibers and a prepreg 2 made of carbon fibers were used, and only the cutting lengths of both prepregs 1 and 2 were changed. The total volume ratio of the fibers is 50% as in the case of Example 1, but only the ratio of the aramid fibers to the carbon fibers in the fibers is changed as shown in Table 1, and the same as in Example 1. After the molding process and the gear cutting process, the fiber reinforced resin gear (NO.
a-NO. f) was created.

【0027】[0027]

【表1】 ここで、他の実施例としてのNO.a〜NO.fにかか
る繊維強化樹脂歯車でも、歯部7の噛み合い面70で
は、アラミド繊維とカーボン繊維とが木の年輪状に配向
している。また、実施例1の場合と同様に、歯部7の最
外周部にはアラミド繊維で強化された強化部7aが形成
されており、強化部7aよりも中心側に、複合強化部7
bが形成されており、複合強化部7bのリングで包囲さ
れた部分には、アラミド繊維で強化された強化部7cが
形成されている。
[Table 1] Here, NO. a-NO. Also in the fiber-reinforced resin gear according to f, the aramid fibers and the carbon fibers are oriented in a tree ring shape at the meshing surface 70 of the tooth portion 7. Further, as in the case of Example 1, a strengthened portion 7a reinforced with aramid fiber is formed on the outermost peripheral portion of the tooth portion 7, and the composite strengthened portion 7 is located closer to the center than the strengthened portion 7a.
b is formed, and the reinforced portion 7c reinforced with aramid fiber is formed in the portion of the composite reinforced portion 7b surrounded by the ring.

【0028】(比較例)比較例1として、実施例1と全
く同様の外観をもつ繊維強化樹脂歯車において、繊維の
総体積率を50%としたままで、繊維をアラミド繊維の
みとした歯車を形成した(NO.g)。また、比較例2
として、繊維をカーボン繊維のみとした歯車を作成した
(NO.h)。また、比較例3として、繊維の総体積率
50%にてアラミド繊維が80%、カーボン繊維が20
%の比率となる様に、カーボン繊維とアラミド繊維とを
一体的に混織した混織布を用い、繊維強化樹脂歯車を作
成した(NO.i)。更に、比較例4として、繊維の総
体積率50%にてアラミド繊維が40%、カーボン繊維
が60%の比率となる様に、前記したプリプレグ1とプ
リプレグ2を重ね合わせ、実施例1の場合と同様に繊維
強化樹脂歯車を作成した(NO.j)。
(Comparative Example) As Comparative Example 1, a fiber reinforced resin gear having exactly the same appearance as that of Example 1 was used, in which the total volume percentage of fibers was 50% and the fibers were aramid fibers only. Formed (NO.g). In addition, Comparative Example 2
As a result, a gear having only carbon fibers was prepared (NO.h). Further, as Comparative Example 3, aramid fiber is 80% and carbon fiber is 20% at a total volume ratio of 50%.
A fiber-reinforced resin gear was prepared by using a mixed woven fabric in which carbon fibers and aramid fibers were integrally mixed and woven so that the ratio became% (NO.i). Further, as Comparative Example 4, the prepreg 1 and the prepreg 2 described above were superposed so that the ratio of aramid fiber was 40% and carbon fiber was 60% at a total volume ratio of fiber of 50%. A fiber-reinforced resin gear was prepared in the same manner as in (NO.j).

【0029】比較例3と比較例4とでは、カーボン繊維
は歯部の噛み合い面全域にわたって複合化されている
点、実施例1とは異なる。なお比較例1〜比較例4を表
2に示す。
Comparative Example 3 and Comparative Example 4 differ from Example 1 in that the carbon fibers are compounded over the entire meshing surface of the tooth portion. Table 2 shows Comparative Examples 1 to 4.

【0030】[0030]

【表2】 (試験)実施例1の繊維強化樹脂歯車、他の実施例の繊
維強化樹脂歯車、及び比較例1〜4の繊維強化樹脂歯車
を用い、以下述べる(1)歯切り加工性、(2)歯部の
歯先の曲げ強さ、(3)歯部の噛み合い面の耐摩耗性の
試験を行った。 (1)歯切りの加工性の試験 刃先がダイヤモンドチップで構成された歯具をもつ歯切
り加工機を用い、1本の歯具で加工できる個数により加
工性を判定した。判定は、歯車の当初の加工精度をJI
S4級に設定し、この精度範囲より外れるときを加工限
度とした。試験結果を図13に示す。ここで、図13の
縦軸が加工可能数を示し、横軸が繊維中のカーボン繊維
の含有体積率を示す。即ち図13の左端がアラミド繊維
のみの場合、右端がカーボン繊維のみの場合を示してい
る。図13に示す様に、もっとも歯切り加工性が良いの
が、アラミド繊維のみで強化したNO.gである。そし
て、NO.a、NO.b、NO.c、NO.d、NO.
e、NO.f、NO.jの順に、つまりカーボン繊維の
含有量の増加に伴って加工可能数は減少する。なかで
も、カーボン繊維のみで強化したNO.hでは、加工可
能数は最も少ない。また、実施例1とNO.iとではカ
ーボン繊維の割合は同じ値(20%)であるものの、N
O.iでは、混織布を用いて歯部の噛み合い面の全域に
カーボン繊維を配置しているため、加工可能数は150
個付近であるのに対して、実施例1では外周部がアラミ
ド繊維のみで強化された強化部7aとされているため、
加工可能数は170個付近と増加している。即ち、実施
例1は歯切り加工性が良いことがわかる。また、NO.
jでは、歯部の噛み合い面の全域にカーボン繊維を配置
しているので、加工可能数は50個付近であり、歯切り
加工性が悪かった。このことから、難削材としてのカー
ボン繊維を歯部7の外周部に設けないことは、歯切り加
工性の向上に有効であることがわかる。 (2)歯部7の歯先の曲げ強さ試験 この試験では、歯車を固定し、歯部7のピッチ円付近に
曲げ荷重を加えて破断荷重の測定を行った。その結果を
図14に示す。図14の縦軸が曲げ荷重、横軸が繊維中
のカーボン繊維の含有体積率を示す。
[Table 2] (Test) Using the fiber-reinforced resin gear of Example 1, the fiber-reinforced resin gear of other Examples, and the fiber-reinforced resin gears of Comparative Examples 1 to 4, (1) gear cutting workability and (2) teeth are described below. The bending strength of the tooth tip of the tooth portion and the wear resistance of the meshing surface of the tooth portion (3) were tested. (1) Test of workability of gear cutting The workability was determined by the number of pieces that can be processed with one tooth using a gear cutting machine having a tooth having a cutting edge made of a diamond tip. The judgment is based on JI based on the initial machining accuracy of the gear.
It was set to S4 grade, and when it was out of this accuracy range, it was set as the processing limit. The test results are shown in FIG. Here, the vertical axis of FIG. 13 represents the number of machinable materials, and the horizontal axis represents the carbon fiber content volume ratio in the fiber. That is, FIG. 13 shows the case where the left end is only aramid fibers and the right end is only carbon fibers. As shown in Fig. 13, the best workability for gear cutting is NO. It is g. And NO. a, NO. b, NO. c, NO. d, NO.
e, NO. f, NO. The processable number decreases in the order of j, that is, as the carbon fiber content increases. Among them, NO. In h, the number that can be processed is the smallest. In addition, as compared with Example 1 and NO. The ratio of carbon fiber is the same as that of i (20%), but N
O. In i, since the carbon fibers are arranged in the entire meshing surface of the teeth using the mixed woven fabric, the number of processable pieces is 150.
In the first embodiment, the outer peripheral portion is the reinforced portion 7a reinforced only with the aramid fiber, while the number of the reinforced portion 7a is about the
The number that can be processed has increased to around 170. That is, it is understood that Example 1 has good gear cutting workability. In addition, NO.
In j, since the carbon fibers were arranged all over the meshing surface of the tooth portion, the number of machinable was around 50, and the gear cutting workability was poor. From this, it is understood that not providing the carbon fiber as the difficult-to-cut material on the outer peripheral portion of the tooth portion 7 is effective in improving the gear cutting workability. (2) Bending Strength Test of Tooth Tip of Tooth 7 In this test, the gear was fixed and a bending load was applied to the vicinity of the pitch circle of the tooth 7 to measure the breaking load. The result is shown in FIG. The vertical axis in FIG. 14 represents the bending load, and the horizontal axis represents the carbon fiber content volume ratio in the fiber.

【0031】図14に示す試験結果より、もっとも曲げ
荷重が小さいのが、アラミド繊維のみで強化したNO.
gである。そして、NO.a、NO.b、NO.c、N
O.d、NO.e、NO.f、NO.jの順に、つまり
カーボン繊維の含有率の増加に伴って曲げ荷重が増加す
る。なかでもカーボン繊維が100%のNO.hでは、
曲げ荷重が最も大きい。
According to the test result shown in FIG. 14, the bending load is the smallest, that is, NO.
It is g. And NO. a, NO. b, NO. c, N
O. d, NO. e, NO. f, NO. The bending load increases in the order of j, that is, as the carbon fiber content increases. Among them, NO. In h,
The bending load is the largest.

【0032】(3)耐摩耗性試験 この試験では、表面を窒化処理した鋼(SCr20)製
のドライブギヤを用い、3kg−mの駆動トルクを加え
て、2000rpmの回転数で前記の各種歯車を駆動さ
せ、50時間経過後の歯部7の噛み合い面70の摩耗量
を測定した。その試験結果を図15に示す。図15の縦
軸が噛み合い面の摩耗量、横軸が繊維中のカーボン繊維
の含有体積率を示す。
(3) Abrasion resistance test In this test, a drive gear made of steel (SCr20) whose surface was nitrided was used, and a driving torque of 3 kg-m was applied to the above various gears at a rotation speed of 2000 rpm. The amount of wear of the meshing surface 70 of the tooth portion 7 after driving for 50 hours was measured. The test results are shown in FIG. The vertical axis of FIG. 15 represents the amount of wear of the meshing surface, and the horizontal axis represents the carbon fiber content volume ratio in the fiber.

【0033】図15に示す試験結果より、アラミド繊維
のみ複合化したNO.gでは摩耗量が80μmを超えて
おり、最も摩耗量が大きい。そして、NO.a、NO.
b、NO.c、NO.d、NO.e、NO.f、NO.
jの順に、つまり、カーボン繊維含有率の増加に伴って
摩耗量が減少する。なかでもカーボン繊維のみで構成し
たNO.hでは摩耗量は最も少ない。
From the test results shown in FIG. 15, NO. In g, the wear amount exceeds 80 μm, and the wear amount is the largest. And NO. a, NO.
b, NO. c, NO. d, NO. e, NO. f, NO.
The wear amount decreases in the order of j, that is, as the carbon fiber content increases. Among them, the NO. At h, the amount of wear is the smallest.

【0034】ここで、実施例1とNO.iとでカーボン
繊維の含有率は同じ値である。しかし、混織布を用いて
歯部の噛み合い面の全域にカーボン繊維を配置している
NO.iでは、摩耗量は50μm程度であるのに対し
て、ピッチ円付近にカーボン繊維を集中的に複合化した
実施例1では摩耗量は18μm程度と極めて少ない。従
って、ピッチ円付近にカーボン繊維を集中的に複合化す
ることにより、急激に摩耗量が減少することがわかる。
Here, the first embodiment and NO. The carbon fiber content is the same for i. However, the carbon fiber is arranged all over the meshing surface of the tooth part by using the mixed woven fabric. For i, the amount of wear is about 50 μm, whereas in Example 1 in which carbon fibers are intensively compounded near the pitch circle, the amount of wear is extremely small, about 18 μm. Therefore, it can be seen that the amount of wear is drastically reduced by concentrating the carbon fibers in the vicinity of the pitch circle.

【0035】(総合評価)さて、歯切り加工性、更には
歯車の噛み合い音(ガタ打ち音)を考慮すると、高弾性
率のカーボン繊維の量は少ない方が良い。また歯部7の
曲げ強さと歯部7の耐摩耗性とを考慮すると、カーボン
繊維の量が多いほど良い。そのため繊維総量を50体積
%とした場合、歯車の噛み合い音の低減という観点から
は、カーボン繊維含有量は繊維総量中60%以下が好ま
しく、さらに、歯切り加工の良好性性という観点から
は、カーボン繊維含有量は繊維総量中50%以下が好ま
しい。
(Comprehensive Evaluation) Considering gear cutting workability and gear meshing noise (backlash noise), it is preferable that the amount of high elastic modulus carbon fiber is small. Considering the bending strength of the tooth portion 7 and the wear resistance of the tooth portion 7, the larger the amount of carbon fiber, the better. Therefore, when the total amount of fibers is 50% by volume, the carbon fiber content is preferably 60% or less in the total amount of fibers from the viewpoint of reducing gear meshing noise, and from the viewpoint of good gear cutting, The carbon fiber content is preferably 50% or less in the total fiber amount.

【0036】以上の結果より、繊維強化樹脂歯車におい
て、歯切り加工の良好性、歯部の強度、噛み合い面の耐
摩耗性、歯車の噛合い音等を共に有する上では、繊維総
量が50%の場合、カーボン繊維含有量は繊維総量中5
0%以下が好ましい。
From the above results, in the fiber reinforced resin gear, the total amount of fibers is 50% in view of good gear cutting, strength of teeth, wear resistance of meshing surfaces, gear meshing noise, etc. In the case of, the carbon fiber content is 5 out of the total fiber amount.
0% or less is preferable.

【0037】[0037]

【発明の効果】本発明の繊維強化樹脂歯車によれば、歯
部において、繊維は、最外周部に加工性の良い軟質繊維
が最外周部の中心側には強度の高い硬質繊維が相対的に
多く配設されている。そのため、歯部の最外周部よりも
中心側の部位、即ち、相手歯車の歯部が接しやすい部
位、例えばピッチ円付近に、硬質繊維が相対的に多く配
設されることになり、耐摩耗性の確保の面で有利であ
る。また歯切り加工の際には、軟質繊維から切削するこ
とになり、歯切り加工性の向上を図り得る。
According to the fiber-reinforced resin gear of the present invention, in the tooth portion, the fibers are soft fibers having good workability in the outermost peripheral portion, and hard fibers having high strength are relatively disposed in the center side of the outermost peripheral portion. Many are installed in. Therefore, a relatively large amount of hard fibers will be disposed in a portion closer to the center than the outermost peripheral portion of the tooth portion, that is, in a portion where the tooth portion of the mating gear easily contacts, for example, in the vicinity of the pitch circle, and wear resistance is increased. It is advantageous in terms of securing the sex. In addition, during the gear cutting process, cutting is performed from soft fibers, so that the gear cutting workability can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)(B)(C)はアラミド繊維系のプリプ
レグとカーボン繊維系のプリプレグとでドーナツ状の補
強体を形成する工程を示す図である。
1 (A), (B), and (C) are diagrams showing a process of forming a doughnut-shaped reinforcing body with an aramid fiber-based prepreg and a carbon fiber-based prepreg.

【図2】アラミド繊維系のプリプレグの展開図である。FIG. 2 is a development view of an aramid fiber-based prepreg.

【図3】カーボン繊維系のプリプレグの展開図である。FIG. 3 is a development view of a carbon fiber-based prepreg.

【図4】リング状予備成形材のV−V断面を模式的に示
す図である。
FIG. 4 is a view schematically showing a VV cross section of the ring-shaped preform material.

【図5】リング状予備成形材を2個重ねた状態の斜視図
である。
FIG. 5 is a perspective view showing a state where two ring-shaped preforms are stacked.

【図6】金型内で2個重ねたリング状予備成形材を圧縮
成形する際の断面図である。
FIG. 6 is a cross-sectional view at the time of compression molding two ring-shaped preforms stacked in a mold.

【図7】リング状素材の斜視図である。FIG. 7 is a perspective view of a ring-shaped material.

【図8】リング状素材を断面の模式的に示す図である。FIG. 8 is a diagram schematically showing a cross section of a ring-shaped material.

【図9】木の年輪状の繊維の配向とともに示す繊維強化
樹脂歯車の歯部の部分斜視図である。
FIG. 9 is a partial perspective view of a tooth portion of a fiber-reinforced resin gear, showing the orientation of annual ring-shaped fibers of a tree.

【図10】繊維の配向の一部を示す繊維強化樹脂歯車の
歯部の部分斜視図である。
FIG. 10 is a partial perspective view of a tooth portion of a fiber-reinforced resin gear showing a part of fiber orientation.

【図11】歯部付近の斜視図である。FIG. 11 is a perspective view of the vicinity of a tooth portion.

【図12】歯元を除去して示す歯部付近の斜視図であ
る。
FIG. 12 is a perspective view of the vicinity of a tooth portion shown with a tooth root removed.

【図13】加工可能数とカーボン繊維含有率との関係を
示すグラフである。
FIG. 13 is a graph showing the relationship between the number of machinable and the carbon fiber content.

【図14】曲げ荷重とカーボン繊維含有率との関係を示
すグラフである。
FIG. 14 is a graph showing the relationship between bending load and carbon fiber content.

【図15】摩耗量とカーボン繊維含有率との関係を示す
グラフである。
FIG. 15 is a graph showing the relationship between the amount of wear and the carbon fiber content.

【符号の説明】[Explanation of symbols]

図中、1はプリプレグ、2はプリプレグ、3はリング状
予備成形材、4は金型、6はリング状素材、7は歯部、
70は噛み合い面を示す。
In the figure, 1 is a prepreg, 2 is a prepreg, 3 is a ring-shaped preforming material, 4 is a mold, 6 is a ring-shaped material, 7 is a tooth portion,
Reference numeral 70 denotes an engaging surface.

【手続補正書】[Procedure amendment]

【提出日】平成5年10月8日[Submission date] October 8, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】アラミド繊維系のプリプレグとカーボン繊維系
のプリプレグとでドーナツ状の補強体を形成する工程を
示す図である。
FIG. 1 is a diagram showing a step of forming a doughnut-shaped reinforcing body with an aramid fiber-based prepreg and a carbon fiber-based prepreg.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】プリプレグを巻いて棒状とするとともに、
その棒状の両端を合わせてドーナツ状としたリング状予
備成形材を成形固化したリング状素材を歯切りして、歯
部の噛み合い面にプリプレグを構成する補強繊維が木の
年輪状に配向した繊維強化樹脂歯車であって、 該木の年輪状に配向した繊維は、最外周部に加工性の良
い軟質繊維が該最外周部の中心側には強度の高い硬質繊
維が相対的に多く配設されていることを特徴とする繊維
強化樹脂歯車。
1. A prepreg is wound into a rod shape, and
A doughnut-shaped ring-shaped preform formed by combining both ends of the rod-shaped material is solidified and cut into pieces, and the reinforcing fibers that make up the prepreg on the meshing surface of the teeth are oriented in the shape of a tree ring. Reinforced resin gears, in which the fibers oriented in a tree ring shape, soft fibers with good workability are arranged on the outermost peripheral portion, and relatively many hard fibers having high strength are arranged on the center side of the outermost peripheral portion. Fiber-reinforced resin gears characterized by being used.
【請求項2】軟質繊維はメタ系アラミド繊維であり、硬
質繊維はカーボン繊維であり、歯部の噛み合い面のう
ち、少なくともピッチ円に対応する部位及び歯部の高さ
方向においてピッチ円と歯元との間の部位は、硬質繊維
が相対的に多いことを特徴とする請求項1にかかる繊維
強化樹脂歯車。
2. The soft fiber is a meta-aramid fiber, the hard fiber is a carbon fiber, and the pitch circle and the tooth are at least in a portion corresponding to the pitch circle in the meshing surface of the tooth portion and in the height direction of the tooth portion. The fiber-reinforced resin gear according to claim 1, wherein the portion between the root and the base has a relatively large amount of hard fibers.
JP4042968A 1992-02-28 1992-02-28 Fiber reinforced resin gear Expired - Lifetime JP2959905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4042968A JP2959905B2 (en) 1992-02-28 1992-02-28 Fiber reinforced resin gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4042968A JP2959905B2 (en) 1992-02-28 1992-02-28 Fiber reinforced resin gear

Publications (2)

Publication Number Publication Date
JPH0691770A true JPH0691770A (en) 1994-04-05
JP2959905B2 JP2959905B2 (en) 1999-10-06

Family

ID=12650842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4042968A Expired - Lifetime JP2959905B2 (en) 1992-02-28 1992-02-28 Fiber reinforced resin gear

Country Status (1)

Country Link
JP (1) JP2959905B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121237A (en) * 2005-02-03 2005-05-12 Shin Kobe Electric Mach Co Ltd Resin gear
JP2010216650A (en) * 2009-02-19 2010-09-30 Shin Kobe Electric Mach Co Ltd Method of manufacturing of resin gear
JP2013127282A (en) * 2011-12-19 2013-06-27 Shin Kobe Electric Mach Co Ltd Resin gear
WO2018147324A1 (en) * 2017-02-09 2018-08-16 東レ株式会社 Preform element, preform using same, and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102410287B1 (en) * 2021-04-05 2022-06-22 주식회사 디케이솔루션 Helical gear forming device using fiber-reinforced plastic

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121237A (en) * 2005-02-03 2005-05-12 Shin Kobe Electric Mach Co Ltd Resin gear
JP2010216650A (en) * 2009-02-19 2010-09-30 Shin Kobe Electric Mach Co Ltd Method of manufacturing of resin gear
JP2013127282A (en) * 2011-12-19 2013-06-27 Shin Kobe Electric Mach Co Ltd Resin gear
WO2018147324A1 (en) * 2017-02-09 2018-08-16 東レ株式会社 Preform element, preform using same, and method for producing same
JPWO2018147324A1 (en) * 2017-02-09 2019-12-12 東レ株式会社 Preform element, preform using the same, and manufacturing method thereof

Also Published As

Publication number Publication date
JP2959905B2 (en) 1999-10-06

Similar Documents

Publication Publication Date Title
US7814809B2 (en) Plastic gear
US5098346A (en) Sprocket
JP4852142B2 (en) Toothed power transmission belt
CA1147579A (en) Heavy duty cogged belt
JP3310484B2 (en) Fiber reinforced resin composite
JPH0691770A (en) Fiber-reinforced resin gear
JP3317619B2 (en) Hollow shaft with taper
JPH064299B2 (en) Phenolic resin gear and its manufacturing method
JP2953203B2 (en) Fiber reinforced resin gear
JP2959907B2 (en) Fiber reinforced resin gear
JP2959906B2 (en) Fiber reinforced resin gear
JPS5920906B2 (en) Driven gear in engine
JPS5941056B2 (en) Resin gear in engine
JPH05240326A (en) Gear made of fiber reinforced resin
JPH06210756A (en) Helical gear made of fiber-reinforced resin and its manufacture
JP4513697B2 (en) Manufacturing method of resin metal composite bevel gear
JP2013127282A (en) Resin gear
JP3785214B2 (en) Fiber reinforced composite resin gear
EP1875102B1 (en) Power transmission belt for transmitting high loads
JP2850722B2 (en) Phenolic resin gear and its manufacturing method
JP2011220463A (en) Resin gear
JP3692691B2 (en) Fiber reinforced plastic tubular body
JPS58170963A (en) Gear made of fiber reinforcing plastics
JP4771208B2 (en) FRP cylinder and manufacturing method thereof
CN1050698A (en) Continuous fibre reinforced plastic gear and autofrettage thereof

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 13