JPH0691750B2 - Inverter device - Google Patents

Inverter device

Info

Publication number
JPH0691750B2
JPH0691750B2 JP58004938A JP493883A JPH0691750B2 JP H0691750 B2 JPH0691750 B2 JP H0691750B2 JP 58004938 A JP58004938 A JP 58004938A JP 493883 A JP493883 A JP 493883A JP H0691750 B2 JPH0691750 B2 JP H0691750B2
Authority
JP
Japan
Prior art keywords
circuit
capacitor
voltage
output
rectifier circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58004938A
Other languages
Japanese (ja)
Other versions
JPS59129583A (en
Inventor
太志 岡本
正孝 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP58004938A priority Critical patent/JPH0691750B2/en
Priority to DE3400580A priority patent/DE3400580C3/en
Priority to FR848400511A priority patent/FR2539563B1/en
Priority to GB08400936A priority patent/GB2133940B/en
Publication of JPS59129583A publication Critical patent/JPS59129583A/en
Publication of JPH0691750B2 publication Critical patent/JPH0691750B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/425Arrangements for improving power factor of AC input using a single converter stage both for correction of AC input power factor and generation of a high frequency AC output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/338Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in a self-oscillating arrangement
    • H02M3/3385Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in a self-oscillating arrangement with automatic control of output voltage or current
    • H02M3/3387Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in a self-oscillating arrangement with automatic control of output voltage or current in a push-pull configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/09Boost converter, i.e. DC-DC step up converter increasing the voltage between the supply and the inverter driving the motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、交流電源を入力として高周波電圧を出力する
インバータ装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to an inverter device that inputs a AC power supply and outputs a high frequency voltage.

〔従来の技術〕[Conventional technology]

従来、この種のインバータ装置は第1図に示すように、
交流電源たる商用電源ACをダイオードブリッジよりなる
整流回路DBで全波整流し、整流回路DBから出力される脈
流電圧を平滑用コンデンサC0にて平滑した直流電圧を高
周波インバータ回路Iの電源入力端に印加し、トランジ
スタQ1,Q2、発振トランスT1、抵抗R1,R2及びコンデンサ
C1にて形成される高周波インバータ回路Iを平滑された
直流電圧で動作させ、負荷LDにほぼ一定の高周波電圧を
供給するようになっていった。
Conventionally, this type of inverter device has been used as shown in FIG.
The commercial power supply AC, which is an AC power supply, is full-wave rectified by the rectifier circuit DB consisting of a diode bridge, and the pulsating voltage output from the rectifier circuit DB is smoothed by the smoothing capacitor C 0, and the DC voltage is input to the high frequency inverter circuit I. Applied to the terminals, transistors Q 1 and Q 2 , oscillation transformer T 1 , resistors R 1 and R 2 and capacitors
The high frequency inverter circuit I formed by C 1 was operated with a smoothed DC voltage, and a constant high frequency voltage was supplied to the load LD.

しかしながら、このような従来例にあっては平滑用コン
デンサC0を用いて直流電圧を得るようにしているため入
力力率が悪くなるという欠点があった。そこで、入力力
率を改善するために第2図に示すように平滑用チョーク
コイリL0を直列挿入したものもあったが、この場合、入
力力率が改善されるものの、高価で形状の大きい平滑用
チョークコイルL0を必要とする上、損失も大きくなると
いう欠点があった。更に他の従来例として、第3図に示
すように、ダイオードDa、Db、チョークコイルL0、スイ
ッチング用トランジスタQ3及びスイッチ制御回路COにて
形成されるチョッパー回路CHを設けたものがあったが、
回路構成が複雑になり高価になるという決定があった。
However, in such a conventional example, since the smoothing capacitor C 0 is used to obtain the DC voltage, the input power factor is deteriorated. Therefore, in order to improve the input power factor, there is also one in which a smoothing choke coil L 0 is inserted in series as shown in FIG. 2. In this case, although the input power factor is improved, it is expensive and has a large shape. The smoothing choke coil L 0 is required, and the loss is large. Still another conventional example is, as shown in FIG. 3, provided with a diode Da, Db, a choke coil L 0 , a switching transistor Q 3 and a chopper circuit CH formed by a switch control circuit CO. But,
It was decided that the circuit configuration would be complicated and expensive.

〔発明の目的〕[Object of the Invention]

本発明は、上記の点に鑑みて為されたものであり、入力
力率を悪くすることなく略一定の高周波電圧を出力する
ことができ、しかも回路構成が簡単で安価なインバータ
装置を提供することを目的とする。
The present invention has been made in view of the above points, and provides an inverter device that can output a substantially constant high-frequency voltage without deteriorating the input power factor and that has a simple circuit configuration and is inexpensive. The purpose is to

〔発明の開示〕[Disclosure of Invention]

{実施例1) 第4図は本実施例を示すもので、T2はトランス、C0′は
コンデンサ、D2は整流用ダイオード、D3は逆流阻止用ダ
イオードであり、トランスT2の一次巻線n1はダイオード
D1を介してチョークコイルL0′に並列接続されている。
トランスT2の1次巻線n1には高周波インバータ回路Iの
動作電流が所定方向に流れ、トランスT2の2次巻線n2
力をダイオードD2にて整流した直流電圧にてコンデンサ
C0′が充電され、このコンデンサC0′の両端電圧を逆流
阻止用ダイオードD3及びチョークコイルL0′を介して高
周波インバータ回路Iの電源入力端に引火されるように
なっており、回路Aはチョッパー回路の如く動作するも
のである。高周波インバータ回路Iの構成は前記従来例
と略同一であり、コンデンサC1と発振トランスT1の1次
巻線n1とで振動回路が形成され、この振動回路と主トラ
ンジスタQ2との直列回路が電源入力端に並列接続される
とともに、両トランジスタQ1,Q2のベースには発振トラ
ンスT1の帰還巻線n3の両端が夫々接続されている。R1
両トランジスタQ1,Q2のドライブ電流を供給するドライ
ブ抵抗であり、ドライブ抵抗R1と帰還巻線n3とで両トラ
ンジスタQ1,Q2を交互にオンさせるためのバイアス回路
が形成されている。
{Example 1) Fig. 4 illustrates an embodiment, T 2 is trans, C 0 'denotes a capacitor, D 2 is a rectifying diode, D 3 is reverse-blocking diode, the primary of the transformer T 2 Winding n 1 is a diode
It is connected in parallel to the choke coil L 0 ′ via D 1 .
The primary winding n 1 of the transformer T 2 flowing an operating current of the high-frequency inverter circuit I is in the predetermined direction, the capacitor in the DC voltage obtained by rectifying the secondary winding n 2 output of the transformer T 2 at the diode D 2
C 0 ′ is charged, and the voltage across the capacitor C 0 ′ is ignited to the power input terminal of the high frequency inverter circuit I via the backflow prevention diode D 3 and the choke coil L 0 ′. A operates like a chopper circuit. Construction of the high-frequency inverter circuit I is substantially equal to the prior art, the oscillating circuit formed by the capacitor C 1 and the primary winding n 1 of the oscillation transformer T 1, series and the resonant circuit and the main transistor Q 2 The circuit is connected in parallel to the power input terminal, and both ends of the feedback winding n 3 of the oscillation transformer T 1 are connected to the bases of both transistors Q 1 and Q 2 , respectively. R 1 is a drive resistor for supplying a drive current of the transistors Q 1, Q 2, a bias circuit for alternately turning on both transistors Q 1, Q 2 by the drive resistor R 1 and a feedback winding n 3 is Has been formed.

動作 第5図は第4図実施例の各部の電圧波形を示すもので、
同図(a)は発振トランスT1の1次巻線n1の両端電圧、
同図(b)はチョークコイルL0′に流れる電流、同図
(c)は主トランジスタQ2のコレクタ電圧、同図(d)
は主トランジスタQ2のコレクタ電流、同図(e)は従ト
ランジスタQ1のコレクタ電流、同図(f)は従トランジ
スタQ1のコレクタ電圧、同図(g)はトランスT2の1次
巻線n1の電流、同図(h)はトランスT2の2次巻線n2
電流を示している。また第6図は高周波インバータ回路
Iから出力される高周波電圧を示すものである。
Operation FIG. 5 shows the voltage waveform of each part of the embodiment shown in FIG.
The figure (a) shows the voltage across the primary winding n 1 of the oscillation transformer T 1 .
The figure (b) shows the current flowing through the choke coil L 0 ′, the figure (c) shows the collector voltage of the main transistor Q 2 , and the figure (d).
Is the collector current of the main transistor Q 2 , (e) is the collector current of the slave transistor Q 1 , (f) is the collector voltage of the slave transistor Q 1 , and (g) is the primary winding of the transformer T 2 . The current of the line n 1 and the figure (h) show the current of the secondary winding n 2 of the transformer T 2 . Further, FIG. 6 shows a high frequency voltage output from the high frequency inverter circuit I.

まず最初に高周波インバータ回路Iの動作について説明
する。いま整流回路DBにて全波整流された直流電圧によ
りドライブ抵抗R1を通して両トランジスタQ1,Q2にベー
ス電流が供給されると、両トランジスタQ1,Q2が同時に
オン状態となり、チョークコイルL0′にて安定化された
電流が流れるが、このとき、主トランジスタQ2のコレク
タ電流が発振トランスT1の1次巻線n1及びコンデンサC1
よりなる振動回路を介して流れ、振動回路において所定
の共振周波数による共振が開始され、発振トランスT1
帰還巻線n3に誘起される電圧によって両トランジスタ
Q1,Q2が交互にオンオフされる。即ち帰還巻線n3に誘起
される電圧によって例えば主トランジスタQ2のベース電
流が増加すると、従トランジスタQ1が逆バイアスとなっ
てベース電流が減少し、ドライブ抵抗R1に流れる電流は
主トランジスタQ2のベース電流となり、主トランジスタ
Q2はよりオン状態となり、従トランジスタQ1はオフ状態
となる。
First, the operation of the high frequency inverter circuit I will be described. When the base current is supplied to both transistors Q 1 and Q 2 through the drive resistor R 1 by the DC voltage that is full-wave rectified by the rectifier circuit DB, both transistors Q 1 and Q 2 are turned on at the same time, and the choke coil is turned on. L stabilized current flows at 0 '. at this time, first collector current of the main transistor Q 2 is the oscillation transformer T 1 winding n 1 and capacitor C 1
Flowing through the oscillator circuit, resonance at a predetermined resonance frequency is started in the oscillator circuit, and both transistors are driven by the voltage induced in the feedback winding n 3 of the oscillation transformer T 1.
Q 1 and Q 2 are turned on and off alternately. That is, for example, when the base current of the main transistor Q 2 increases due to the voltage induced in the feedback winding n 3 , the slave transistor Q 1 is reverse-biased and the base current decreases, and the current flowing through the drive resistor R 1 is the main transistor. It becomes the base current of Q 2 and becomes the main transistor.
Q 2 is turned on more, and the slave transistor Q 1 is turned off.

次に帰還巻線n3に誘起される電圧が減少すると、従トラ
ンジスタQ1が順バイアスされてオン状態に移行するとと
もに、主トランジスタQ2が逆バイアスされてオフ状態に
移行する。この時、チョークコイルL0′に流れる電流は
主トランジスタQ2から従トランジスタQ1に流れ始め、発
振トランスT1に流れる電流は共振用のコンデンサC1に流
れて、発振トランスT1の2次巻線n2の出力の極性が反転
する。このとき、帰還巻線n3に誘起される電圧も反転し
て従トランジスタQ1を順バイアス、主トランジスタQ2
逆バイアスする。この時、振動回路は共振を続け、従ト
ランジスタQ1のオンによってチョークコイルL0′に電磁
エネルギが蓄積される。
Next, when the voltage induced in the feedback winding n 3 decreases, the sub-transistor Q 1 is forward biased to be turned on, and the main transistor Q 2 is reverse biased to be turned off. At this time, the current flowing in the choke coil L 0 ′ begins to flow from the main transistor Q 2 to the slave transistor Q 1 , and the current flowing in the oscillation transformer T 1 flows to the resonance capacitor C 1 and the secondary of the oscillation transformer T 1 . The polarity of the output of winding n 2 is reversed. At this time, the voltage induced in the feedback winding n 3 is also inverted to forward bias the slave transistor Q 1 and reverse bias the main transistor Q 2 . At this time, the oscillating circuit continues to resonate, and electromagnetic energy is accumulated in the choke coil L 0 ′ when the secondary transistor Q 1 is turned on.

振動回路の共振が進み帰還巻線n3に誘起される電圧が減
少すると、従トランジスタQ1がオフ、主トランジスタQ2
がオンする。この場合、トランジスタQ1,Q2のスイッチ
ングが夫々コレクタ電圧が低い時に行われるためスイッ
チングロスが少なくなるとともに、電源投入時における
コレクタ電流はチョークコイルL0′により制限を受ける
ため突入電流が少なくなる。また、発振波形が矩形波と
なっているため、回路構成が簡単になる。
When the resonance of the oscillating circuit advances and the voltage induced in the feedback winding n 3 decreases, the slave transistor Q 1 turns off and the main transistor Q 2
Turns on. In this case, since switching of the transistors Q 1 and Q 2 is performed when the collector voltage is low, respectively, the switching loss is reduced, and the collector current when the power is turned on is limited by the choke coil L 0 ′, and the inrush current is reduced. . Moreover, since the oscillation waveform is a rectangular wave, the circuit configuration is simplified.

次に、回路Aの動作について説明する。今高周波インバ
ータ回路Iの従トランジスタQ1は前述のようにオン、オ
フを繰り返しており、従トランジスタQ1がオンすると、
トランスT2の1次巻線n1に電磁エネルギが蓄積される。
Next, the operation of the circuit A will be described. Now, the slave transistor Q 1 of the high frequency inverter circuit I is repeatedly turned on and off as described above, and when the slave transistor Q 1 is turned on,
Electromagnetic energy is stored in the primary winding n 1 of the transformer T 2 .

次に従トランジスタQ1がオフすると、トランスT2の1次
巻線n1に蓄積されている電磁エネルギはトランスT2の2
次巻線n2を介して放出される。この場合ダイオードD1
よってトランスT2の1次側に電磁エネルギが放出される
のを阻止するようになっている。このようにしてトラン
スT2の2次巻線n2に誘起される電圧はダイオードD2にて
整流され、この直流電圧にてコンデンサC0′が充電され
る。このコンデンサC0′の両端電圧は逆流阻止用ダイオ
ードD3及びチョークコイルL0′を介して高周波インバー
タ回路Iの電源入力端子に所謂補助電源として印加され
ており、整流回路DBから出力される脈流電圧の電圧レベ
ルが所定電圧以下、即ちコンデンサC0′の両端電圧以下
のとき、コンデンサC0′から高周波インバータ回路Iに
電流が供給されるようになっている。なお従トランジス
タQ1にはトランスT2の1次巻線n1に流れる電流とチョー
クコイルL0′及びダイオードD1を介して流れる電流との
合成電流が流れることになる。
Next, when the slave transistor Q 1 is turned off, 2 electromagnetic energy of the transformer T 2 which is stored in the primary winding n 1 of the transformer T 2
It is discharged via the secondary winding n 2 . In this case, the diode D 1 prevents the electromagnetic energy from being emitted to the primary side of the transformer T 2 . In this way, the voltage induced in the secondary winding n 2 of the transformer T 2 is rectified by the diode D 2 , and this DC voltage charges the capacitor C 0 ′. The voltage across the capacitor C 0 ′ is applied as a so-called auxiliary power source to the power source input terminal of the high frequency inverter circuit I via the backflow prevention diode D 3 and the choke coil L 0 ′, and the pulse output from the rectifier circuit DB is output. When the voltage level of the flowing voltage is equal to or lower than a predetermined voltage, that is, the voltage across the capacitor C 0 ′ or less, current is supplied from the capacitor C 0 ′ to the high frequency inverter circuit I. A combined current of the current flowing through the primary winding n 1 of the transformer T 2 and the current flowing through the choke coil L 0 ′ and the diode D 1 flows through the slave transistor Q 1 .

以上のように高周波インバータ回路Iには整流回路DB及
びコンデンサC0′から電源が供給され、発振トランスT1
の2次巻線n2から出力される高周波電圧は第6図に示す
ように振幅が略一定の電圧となる。ここに最低レベルV
DCは回路Aの回路定数を変えることにより任意に設定す
ることができるようになっている。また、逆流阻止用ダ
イオードD3を設けているので、交流電源たる商用電源AC
に対してコンデンサC0′が接続されていないのと等価で
あり、入力力率を悪くすることがない。しかも、高周波
インバータ回路Iの動作電流(高周波電流)をトランス
T2にて適当レベルに調整してコンデンサC0′を充電して
おり、高周波インバータ回路Iのスイッチング素子を利
用してチョッパー回路を形成しているので、回路構成が
簡単になる。また、チョッパー回路を用いているので、
チョークコイルL0′及びトランスT2を小型化できること
は言うまでもない。
As described above, power is supplied to the high frequency inverter circuit I from the rectifier circuit DB and the capacitor C 0 ′, and the oscillation transformer T 1
The high-frequency voltage output from the secondary winding n 2 has a constant amplitude as shown in FIG. Lowest level V here
DC can be arbitrarily set by changing the circuit constant of the circuit A. In addition, since the reverse current blocking diode D 3 is provided, the commercial power source AC
However, it is equivalent to not connecting the capacitor C 0 ′ and does not deteriorate the input power factor. Moreover, the operating current (high frequency current) of the high frequency inverter circuit I is transferred to the transformer.
Since the capacitor C 0 ′ is charged by adjusting it to an appropriate level at T 2 and the chopper circuit is formed by using the switching element of the high frequency inverter circuit I, the circuit configuration becomes simple. Also, because it uses a chopper circuit,
It goes without saying that the choke coil L 0 ′ and the transformer T 2 can be miniaturized.

(実施例2) 第7図は他の実施例を示すもので、チョークコイルL0
をトランスT2の1次巻線n1にて兼用したものであり、動
作は第4図実施例と同様である。
(Embodiment 2) FIG. 7 shows another embodiment, which is a choke coil L 0 ′.
Is also used as the primary winding n 1 of the transformer T 2 , and the operation is the same as that of the embodiment shown in FIG.

〔発明の効果〕〔The invention's effect〕

本発明は上述のように、交流電源と、交流電源電圧を整
流し脈流電圧を出力する整流回路と、整流回路の出力を
交流に変換するインバータとを備えるインバータ装置に
おいて、上記インバータが相反してオンオフ動作される
一対のスイッチング素子を備え、整流回路の出力端間に
上記インバータの一方のスイッチング素子を会して直列
に接続されたインダクタンス要素と、このインダクタン
ス要素に磁気的に結合された巻線と、この巻線が充電用
ダイオードを介して両端に接続され上記スイッチング素
子のオン期間中に蓄積されたエネルギでスイッチング素
子のオフ時に充電されるコンデンサと、このコンデンサ
と直列に上記整流回路の出力端間に接続されると共に上
記整流回路の出力で上記コンデンサの充電を阻止する方
向に接続されたダイオードとからなる補助電源回路を備
えているので、整流回路および補助電源回路のコンデン
サからインバータに電源を供給でき、このため整流回路
から供給される脈流電圧の谷部においてコンデンサから
電源が供給され、従ってインバータの出力を略一定にす
ることができ、しかも脈流電圧からの充電を阻止する方
向に接続されるダイオードを介してコンデンサを接続し
てあるので、交流電源に対してコンデンサが接続され
ず、このため入力力率が悪くなることがなく、さらにま
たインバータのスイッチング素子を補助電源回路のスイ
ッチング素子として兼用しているので、回路構成を簡素
化することができ、コストを低減できるという効果があ
る。
As described above, the present invention is an inverter device including an AC power supply, a rectifier circuit that rectifies an AC power supply voltage and outputs a pulsating voltage, and an inverter that converts the output of the rectifier circuit into an AC current. A pair of switching elements that are turned on and off, and one of the switching elements of the inverter is connected between the output terminals of the rectifier circuit to connect them in series; and a winding that is magnetically coupled to the inductance element. A wire, a capacitor connected to both ends of this winding via a charging diode when the switching element is turned off by the energy accumulated during the on period of the switching element, and a capacitor connected in series with the capacitor. Connected between the output terminals and connected to the output of the rectifier circuit to prevent charging of the capacitor. Since the auxiliary power supply circuit consisting of the rectifier and the auxiliary power supply circuit is provided, the power can be supplied to the inverter from the capacitor of the rectifier circuit and the auxiliary power supply circuit.Therefore, the power is supplied from the capacitor at the valley of the pulsating current voltage supplied from the rectifier circuit. Therefore, since the output of the inverter can be made almost constant, and the capacitor is connected via the diode connected in the direction to prevent charging from the pulsating voltage, the capacitor is connected to the AC power source. Therefore, the input power factor does not deteriorate, and since the switching element of the inverter is also used as the switching element of the auxiliary power supply circuit, the circuit configuration can be simplified and the cost can be reduced. There is.

【図面の簡単な説明】[Brief description of drawings]

第1図、第2図及び第3図は夫々従来例の回路図、第4
図は本発明の実施例1の回路図、第5図及び第6図は同
上の動作説明図、第7図は本発明の実施例2の回路図で
ある。 AC……交流電源、DB……整流回路、Iは高周波インバー
タ回路、T2はトランス、C0′はコンデンサ、L0′チョー
クコイル、Q1,Q2はトランジスタ、D2はダイオード、D3
は逆流阻止用ダイオードである。
FIG. 1, FIG. 2 and FIG. 3 are circuit diagrams of a conventional example, respectively.
FIG. 7 is a circuit diagram of the first embodiment of the present invention, FIGS. 5 and 6 are operational explanatory diagrams of the same, and FIG. 7 is a circuit diagram of the second embodiment of the present invention. AC: AC power supply, DB: rectifier circuit, I is a high frequency inverter circuit, T 2 is a transformer, C 0 ′ is a capacitor, L 0 ′ choke coil, Q 1 and Q 2 are transistors, D 2 is a diode, D 3
Is a reverse current blocking diode.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】交流電源と、交流電源電圧を整流し脈流電
圧を出力する整流回路と、整流回路の出力を交流に変換
するインバータとを備えるインバータ装置において、上
記インバータが相反してオンオフ動作される一対のスイ
ッチング素子を備え、整流回路の出力端間に上記インバ
ータの一方のスイッチング素子を介して直列に接続され
たインダクタンス要素と、このインダクタンス要素に磁
気的に結合された巻線と、この巻線が充電用ダイオード
を介して両端に接続され上記スイッチング素子のオン期
間中に蓄積されたエネルギでスイッチング素子のオフ時
に充電されるコンデンサと、このコンデンサと直列に上
記整流回路の出力端間に接続されると共に上記整流回路
の出力で上記コンデンサの充電を阻止する方向に接続さ
れたダイオードとからなる補助電源回路を備えて成るこ
とを特徴とするインバータ装置。
1. An inverter device comprising an AC power supply, a rectifier circuit for rectifying an AC power supply voltage to output a pulsating voltage, and an inverter for converting an output of the rectifier circuit into an AC current. An inductance element connected in series between the output terminals of the rectifier circuit via one of the switching elements of the inverter, and a winding magnetically coupled to the inductance element; Between the output of the rectifier circuit, a capacitor that is connected to both ends via a charging diode and that is charged when the switching element is off with the energy stored during the on period of the switching element, and in series with this capacitor. A diode connected to the output of the rectifier circuit in a direction to prevent charging of the capacitor Inverter apparatus characterized in that it comprises an Ranaru auxiliary power supply circuit.
JP58004938A 1983-01-14 1983-01-14 Inverter device Expired - Lifetime JPH0691750B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58004938A JPH0691750B2 (en) 1983-01-14 1983-01-14 Inverter device
DE3400580A DE3400580C3 (en) 1983-01-14 1984-01-10 AC-powered DC power source with downstream inverter
FR848400511A FR2539563B1 (en) 1983-01-14 1984-01-13 HIGH FREQUENCY ALTERNATIVE POWER SOURCE
GB08400936A GB2133940B (en) 1983-01-14 1984-01-13 Ac-dc-ac converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58004938A JPH0691750B2 (en) 1983-01-14 1983-01-14 Inverter device

Publications (2)

Publication Number Publication Date
JPS59129583A JPS59129583A (en) 1984-07-25
JPH0691750B2 true JPH0691750B2 (en) 1994-11-14

Family

ID=11597513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58004938A Expired - Lifetime JPH0691750B2 (en) 1983-01-14 1983-01-14 Inverter device

Country Status (4)

Country Link
JP (1) JPH0691750B2 (en)
DE (1) DE3400580C3 (en)
FR (1) FR2539563B1 (en)
GB (1) GB2133940B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2555306B2 (en) * 1985-07-10 1996-11-20 菊水電子工業 株式会社 Voltage resonance type DC-AC converter
JPS636770A (en) * 1986-06-26 1988-01-12 松下電器産業株式会社 Induction heating cooker
US5063490A (en) * 1989-04-25 1991-11-05 Matsushita Electric Works Ltd. Regulated chopper and inverter with shared switches
JP2929635B2 (en) * 1990-01-31 1999-08-03 東芝ライテック株式会社 Power circuit
GB2264596B (en) * 1992-02-18 1995-06-14 Standards Inst Singapore A DC-AC converter for igniting and supplying a gas discharge lamp
AU672796B2 (en) * 1993-01-14 1996-10-17 H.P.M. Industries Pty Limited Power supply
EP0636284B1 (en) * 1993-01-14 1998-08-26 H.P.M. Industries Pty Limited Power supply
JPH08154378A (en) * 1994-09-30 1996-06-11 Sony Corp Switching power supply circuit
SG68587A1 (en) * 1996-07-27 1999-11-16 Singapore Productivity And Sta An electronic ballast circuit

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2416617A1 (en) * 1978-02-07 1979-08-31 Signaux Entr Electriques CONVERTER FOR THE POWER SUPPLY OF DISCHARGE LAMPS, AND MORE GENERALLY OF ARC LAMPS, AND ITS APPLICATION TO PROJECTORS FOR SUCH LAMPS
US4277728A (en) * 1978-05-08 1981-07-07 Stevens Luminoptics Power supply for a high intensity discharge or fluorescent lamp
US4188660A (en) * 1978-05-22 1980-02-12 Gte Sylvania Incorporated Direct drive ballast circuit
DE2825708B2 (en) * 1978-06-12 1980-06-26 Siemens Ag, 1000 Berlin Und 8000 Muenchen Circuit arrangement for reducing harmonics in the alternating current in the case of direct current consumers that are fed from the alternating current network
JPS56139392U (en) * 1980-03-21 1981-10-21
DE3014419C2 (en) * 1980-04-15 1985-01-10 Siemens AG, 1000 Berlin und 8000 München Ballast for a discharge lamp
DE3025421C2 (en) * 1980-07-04 1985-03-21 Siemens AG, 1000 Berlin und 8000 München Circuit arrangement for supplying a gas discharge lamp from an alternating current network
AU555174B2 (en) * 1981-09-18 1986-09-18 Oy Helvar Electronic ballast for a discharge lamp
DE3137940C2 (en) * 1981-09-24 1985-08-29 Trilux-Lenze Gmbh + Co Kg, 5760 Arnsberg Electronic ballast for at least one fluorescent lamp
DE3312575A1 (en) * 1983-01-08 1984-07-12 Trilux-Lenze Gmbh + Co Kg, 5760 Arnsberg Electronic ballast for fluorescent lamps

Also Published As

Publication number Publication date
GB2133940A (en) 1984-08-01
DE3400580A1 (en) 1984-09-27
DE3400580C3 (en) 1996-01-11
FR2539563A1 (en) 1984-07-20
JPS59129583A (en) 1984-07-25
GB2133940B (en) 1986-09-03
FR2539563B1 (en) 1992-01-24
DE3400580C2 (en) 1990-06-21
GB8400936D0 (en) 1984-02-15

Similar Documents

Publication Publication Date Title
US6366480B2 (en) Switching power supply apparatus
JP3821454B2 (en) Fluorescent lamp lighting device
JPH0691750B2 (en) Inverter device
JP3151932B2 (en) Power supply circuit
JP2513381B2 (en) Power supply circuit
JPH0550234B2 (en)
JPS604676B2 (en) power supply
US5043680A (en) Resonant converter oscillator usable for powering a magnetron
JPH0588067B2 (en)
KR920000361B1 (en) High efficiency driver circuit for ringing converter
JP3082877B2 (en) AC / DC converter
JPH05236749A (en) Ac/dc converter
JP2573241B2 (en) Discharge lamp lighting device
JP3277551B2 (en) Power circuit
JP2581034B2 (en) Switching power supply for multi-scan television receiver
JP2837886B2 (en) Switching power supply circuit
JPH0729751Y2 (en) Inverter device
JPS5925580A (en) Switching regulator
JPH0713431Y2 (en) Power supply circuit
JP2854647B2 (en) Power supply
JPH07112353B2 (en) Power supply
JPH03198668A (en) Inverter device
JP3319882B2 (en) Discharge lamp lighting device
JPH0586131B2 (en)
JP3245954B2 (en) Power circuit