JPH0691599A - Ultrasonic wave microscopic diameter drilling system - Google Patents

Ultrasonic wave microscopic diameter drilling system

Info

Publication number
JPH0691599A
JPH0691599A JP22774592A JP22774592A JPH0691599A JP H0691599 A JPH0691599 A JP H0691599A JP 22774592 A JP22774592 A JP 22774592A JP 22774592 A JP22774592 A JP 22774592A JP H0691599 A JPH0691599 A JP H0691599A
Authority
JP
Japan
Prior art keywords
machining
ultrasonic
transducer unit
tool
ultrasonic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22774592A
Other languages
Japanese (ja)
Inventor
Kazuyuki Hayashi
和行 林
Kenji Kuwana
賢二 桑名
Kinya Miyashita
欣也 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOUZOU KAGAKU KK
SOZO KAGAKU KK
TEKUNII KK
Original Assignee
SOUZOU KAGAKU KK
SOZO KAGAKU KK
TEKUNII KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOUZOU KAGAKU KK, SOZO KAGAKU KK, TEKUNII KK filed Critical SOUZOU KAGAKU KK
Priority to JP22774592A priority Critical patent/JPH0691599A/en
Priority to PCT/JP1993/000960 priority patent/WO1994001256A1/en
Publication of JPH0691599A publication Critical patent/JPH0691599A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B37/00Boring by making use of ultrasonic energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B35/00Methods for boring or drilling, or for working essentially requiring the use of boring or drilling machines; Use of auxiliary equipment in connection with such methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • B24B1/04Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes subjecting the grinding or polishing tools, the abrading or polishing medium or work to vibration, e.g. grinding with ultrasonic frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/04Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools
    • B28D5/047Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools by ultrasonic cutting
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • G05B19/4163Adaptive control of feed or cutting velocity
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37399Pressure
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45206Ultrasonic drill, mill, machining
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49356Tool with constant force against workpiece during machining

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Abstract

PURPOSE:To automate microscopic drilling of a fine ceramics or the like by connecting an ultrasonic wave piezoelectric transducer unit to a 'Z' axial table by means of oscillating mechanisms, providing a microscopic processing pressure responding mechanism and a position sensor on the 'Z' axial table and conducting an NC control of the 'Z' axial table and the microscopic processing pressure responding mechanism. CONSTITUTION:An ultrasonic wave piezoelectric transducer unit 6 equipped with an ultrasonic wave tool on its tip and a 'Z' axial table 8 capable of being NC controlled are connected together with oscillating mechanisms 7, 7'. A cylinder member 9, which is capable of conducting NC control of a microscopic processing pressure responding mechanism energizing specified pressure to the ultrasonic wave piezoelectric transducer unit 6 downward in the axial direction, is arranged on the 'Z' axial table 8. Variation quantity detecting sensor 12 for the relative position in the axial direction of the 'Z' axial table 8 and the ultrasonic wave oscillating unit 6 is provided on the 'Z' axial table 8. An NC controller 13 then controls the 'Z' axial table 8 in accordance with the information from the cylinder member 9 and the position sensor 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超音波加工機において
NC制御により微小加工圧の検出、調整、および、超音
波工具の送り動作の制御を行うことにより、極小径穴明
け加工を可能とした加工システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention enables extremely small diameter drilling by detecting and adjusting a minute machining pressure and controlling the feeding operation of an ultrasonic tool by NC control in an ultrasonic machine. Processing system.

【0002】[0002]

【従来の技術】近年ファインセラミックス、ファインガ
ラス、ファインカーボン等の難削材に対して、小径穴、
異形穴等の加工を行う場合、主として超音波加工機が用
いられている。周知の如く超音波加工とは、超音波工具
から発生した超音波振動を遊離砥粒に与へ、その運動エ
ネルギーによりワークを破砕するものであり、その加工
条件には多くのパラメーターがある。そしてできるだけ
効率良く加工を行うには、超音波加工時に超音波工具端
面とワーク加工面との間に生じる加工圧を精密に制御す
ることが最も重要である。
2. Description of the Related Art In recent years, small-diameter holes for fine-cutting materials such as fine ceramics, fine glass, and fine carbon
An ultrasonic processing machine is mainly used for processing irregular-shaped holes and the like. As is well known, ultrasonic machining is a technique in which ultrasonic vibration generated from an ultrasonic tool is applied to free abrasive grains and the work is crushed by the kinetic energy, and there are many parameters in the machining conditions. In order to perform machining as efficiently as possible, it is most important to precisely control the machining pressure generated between the ultrasonic tool end surface and the workpiece machining surface during ultrasonic machining.

【0003】従来、超音波加工機における加工圧の制御
方法としては、次のようなものがあった。(イ)てんび
ん機構を用いて、超音波振動子ユニットの重量と加工圧
設定用おもりのバランスをとり、加工圧の設定は超音波
振動子ユニットとおもりの重量差により行う。またこの
場合、強制的なZ軸の送りは行われず、加工速度は加工
圧の加減により設定される。 (ロ)加工テーブルに油圧シリンダが組み込まれてお
り、一定速度で送られる工具とワークの間に生じる加工
圧を加工テーブルが感知し、油圧シリンダを作動させて
常に一定の加工圧を保つ。 (ハ)軸方向に摺動可能な超音波振動子ユニットを、軸
方向の下側からスプリング、エアシリンダーまたは油圧
シリンダー等によって支持し、超音波振動子ユニットの
重量と支持力と釣り合わせる。さらに、超音波振動子ユ
ニットに対し軸方向の上方からスプリング、エアシリン
ダーまたは油圧シリンダー等によって所定の圧力を付勢
し、これを加工圧とする。
Conventionally, there have been the following methods for controlling the processing pressure in an ultrasonic processing machine. (B) The balance mechanism is used to balance the weight of the ultrasonic transducer unit and the processing pressure setting weight, and the processing pressure is set by the weight difference between the ultrasonic transducer unit and the weight. Further, in this case, the Z-axis is not forcibly fed, and the processing speed is set by adjusting the processing pressure. (B) A hydraulic cylinder is incorporated in the processing table, and the processing table detects the processing pressure generated between the tool and the workpiece sent at a constant speed, and operates the hydraulic cylinder to constantly maintain a constant processing pressure. (C) The ultrasonic transducer unit that is slidable in the axial direction is supported from the lower side in the axial direction by a spring, an air cylinder, a hydraulic cylinder, or the like to balance the weight and the supporting force of the ultrasonic transducer unit. Further, a predetermined pressure is applied to the ultrasonic transducer unit from above in the axial direction by a spring, an air cylinder, a hydraulic cylinder, or the like, and this is used as a processing pressure.

【0004】[0004]

【発明が解決しようとする課題】しかし、前記(イ)〜
(ハ)のいずれの方法においても、次に述べるような問
題点があった。即ち、前記(イ)においては、振動子ユ
ニットと加工圧設定用おもりをてんびん機構に載せたと
きの重量差を加工圧とし、この加工圧によって工具をワ
ークに切り込ませるため、送り速度や送り量の精密な制
御が困難であった。また、このため加工途中で送り速度
を変更したり、工具の座屈荷重を検出をしたりするに
は、作業者の熟練に頼らざるを得なかった。また前記
(ロ)および(ハ)においては、いずれの場合も摺動部
材を用いて振動子ユニットを支持しているが、この摺動
部材にはそれ自身の摩擦抵抗がある。したがって、座屈
荷重の小さい小径工具を用いた加工を行う場合、加工圧
よりも摺動面の摩擦力の方が大きくなってしまい加工圧
制御ができないため、小径穴明け加工を行うことは非常
に困難であった。
However, the above (a)-
In any of the methods of (c), there were the following problems. That is, in (a) above, the difference in weight when the vibrator unit and the weight for setting the processing pressure are placed on the balance mechanism is used as the processing pressure, and the processing pressure causes the tool to cut into the workpiece. It was difficult to control the feed amount precisely. For this reason, in order to change the feed rate or detect the buckling load of the tool during machining, it is necessary to rely on the skill of the operator. In each of (b) and (c) above, the vibrator unit is supported by using the sliding member, but this sliding member has its own frictional resistance. Therefore, when machining with a small diameter tool with a small buckling load, the frictional force of the sliding surface becomes larger than the machining pressure and the machining pressure cannot be controlled. It was very difficult.

【0005】即ち、以上(イ)〜(ハ)のいずれの従来
技術によっても微小加工圧の検出や、加工圧の大きさに
応じた送り速度の精密な調整を自動制御することは容易
ではなく、最適な加工を行うための条件設定には、多分
に経験的要素が含まれていた。そのため超音波微細穴明
け加工においては、加工費の大部分を人件費が占めてし
まい、加工コストの低減には自と限界があった。また、
超音波加工においては工具摩耗量の検知が重要である
が、この工具摩耗量は、ワークと工具の材質だけではな
く、砥粒の供給状態や工具送り速度などの加工条件の変
化によっても微妙に変化するため、常に一定の割合で工
具が摩耗するとは限らない。そして、その影響は工具径
が細くなるほど受け易くなる。従って、座ぐり加工など
のように加工深さを制御しなければならない場合や、自
動運転により連続して複数の穴明け加工をする場合など
は、予め加工量に応じた工具摩耗量を予想しておいて加
工を行うが、工具摩耗量が予想値からはずれると、加工
深さが深過ぎたり浅過ぎたりして加工不良となってい
た。また、貫通穴の加工を行う場合、ワークの厚さより
も工具の切り込み量を大きくし、ワークを張り付けた台
材を共削りする方法がとられるが、通常、未貫通穴の発
生を防ぐために、共削りする深さは工具摩耗量を見越し
て大きめに設定している。従って、共削りする深さを設
定する際、工具摩耗量を正確に把握することが容易にで
きなかったため、安全率を大きくとらざるを得ず、その
分だけ加工効率は低下していた。本発明は以上の課題を
解決するためになされたもので、従来の超音波加工機で
は困難とされてきた微少加工圧の高精度な設定、検出を
NC制御により行い、さらにその情報によりZ軸テーブ
ルの運転を制御することにより、極小径穴明け加工の自
動化を実現可能とした超音波加工機の極小径穴明け加工
システムの提供を目的とする。
That is, it is not easy to detect the minute machining pressure and automatically control the precise adjustment of the feed rate according to the magnitude of the machining pressure by any of the above-mentioned prior arts (a) to (c). However, the empirical factor was probably included in the condition setting for optimal processing. Therefore, in the ultrasonic micro-drilling process, the labor cost occupies most of the processing cost, and there is a limit to the reduction of the processing cost. Also,
It is important to detect the amount of tool wear in ultrasonic machining, but this amount of tool wear is not only subtle due to changes in machining conditions such as the supply state of abrasive grains and the tool feed rate, as well as the material of the workpiece and tool. The tool does not always wear at a constant rate because it changes. And, the smaller the diameter of the tool, the more easily it is affected. Therefore, when it is necessary to control the machining depth, such as for spot facing machining, or when multiple holes are continuously drilled by automatic operation, predict the tool wear amount according to the machining amount in advance. Although the machining is performed in advance, when the tool wear amount deviates from the expected value, the machining depth becomes too deep or too shallow, resulting in machining failure. Further, when processing through-holes, the cutting amount of the tool is made larger than the thickness of the work, and a method of co-cutting the base material to which the work is pasted is taken, but usually, in order to prevent the occurrence of non-through holes, The depth of co-machining is set to be large in consideration of the amount of tool wear. Therefore, when setting the depth for co-machining, it was not possible to easily grasp the tool wear amount accurately, so the safety factor had to be increased, and the machining efficiency was reduced accordingly. The present invention has been made in order to solve the above problems, and performs high-precision setting and detection of a minute processing pressure, which has been difficult with a conventional ultrasonic processing machine, by NC control. It is an object of the present invention to provide an ultra-small diameter drilling system for an ultrasonic processing machine that can realize automation of ultra-small diameter drilling by controlling the operation of a table.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本考案は、以下の技術的手段により構成されている。
(イ)先端に超音波工具を備えた超音波振動子ユニット
とNC制御可能なZ軸テーブルとを揺動機構を介して連
結する。この揺動機構は、超音波振動子ユニットの自重
をバランスさせ、かつ、超音波振動子ユニットを軸方向
に変位可能とするものである。 (ロ)前記Z軸テーブル上に、前記超音波振動子ユニッ
トに対して、軸方向下向きに所定の圧力を付勢する微少
加工圧対応機構としてNC制御可能なシリンダ部材を配
置する。 (ハ)前記Zテーブルと、前記超音波振動子ユニットと
の軸方向への相対位置の変化量を検出するための位置セ
ンサーをZ軸テーブル上、または超音波振動子ユニット
上に配置する。 (ニ)前記微少加工圧対応機構、および位置センサーは
NCコントローラーに接続し、Z軸テーブルの動作とと
もにNCコントローラーにて集中制御する。
In order to achieve the above-mentioned object, the present invention comprises the following technical means.
(A) An ultrasonic transducer unit having an ultrasonic tool at its tip and an NC controllable Z-axis table are connected via a swing mechanism. This swing mechanism balances the own weight of the ultrasonic transducer unit and allows the ultrasonic transducer unit to be displaced in the axial direction. (B) On the Z-axis table, an NC-controllable cylinder member is arranged as a mechanism for dealing with a minute machining pressure that urges a predetermined pressure axially downward with respect to the ultrasonic transducer unit. (C) A position sensor for detecting the amount of change in the relative position of the Z table and the ultrasonic transducer unit in the axial direction is arranged on the Z axis table or the ultrasonic transducer unit. (D) The mechanism corresponding to the minute processing pressure and the position sensor are connected to the NC controller, and the NC controller performs centralized control together with the operation of the Z-axis table.

【0007】[0007]

【作用】上記手段によれば、Z軸テーブルと超音波振動
子ユニットとは揺動機構を介して連結されているので、
超音波振動子ユニットの重量と揺動機構の支持力をつり
合わせれば、超音波工具の先端がワーク表面におよぼす
力は見かけ上0になっている。そして、加工圧対応機構
より超音波振動子ユニットに対して軸方向下向きに付勢
された圧力は、加工圧に対応する力として作用する。即
ち、前記揺動機構により、振動子ユニットの自重はキャ
ンセルされているため、超音波工具とワークとの間に生
じる加工圧は加工圧対応機構により付勢された圧力とち
ょうど釣り合うことになる。また、Z軸テーブル上また
は超音波振動子ユニット上に配置された位置センサー
は、Z軸テーブルと超音波振動子ユニットの相対位置の
わずかな変化量を検出できるものである。
According to the above means, since the Z-axis table and the ultrasonic transducer unit are connected via the swing mechanism,
If the weight of the ultrasonic transducer unit and the supporting force of the swing mechanism are balanced, the force exerted by the tip of the ultrasonic tool on the work surface is apparently zero. The pressure applied axially downward to the ultrasonic transducer unit by the processing pressure corresponding mechanism acts as a force corresponding to the processing pressure. That is, since the oscillating mechanism cancels the self-weight of the vibrator unit, the processing pressure generated between the ultrasonic tool and the workpiece is just balanced with the pressure urged by the processing pressure corresponding mechanism. Further, the position sensor arranged on the Z-axis table or on the ultrasonic transducer unit can detect a slight change in the relative position between the Z-axis table and the ultrasonic transducer unit.

【0008】以上の機構により所定の加工圧を設定して
超音波加工を行った場合、微少過負荷発生時には次のよ
うな動作をする。即ち、加工圧対応機構により任意の加
工圧Pを設定し、任意の送り速度V1でZ軸を送った場
合、加工圧Pによって決定される実際の加工速度V2に
対してV1>V2なる状態となったときには、工具はそ
れ以上切り込まれず、超音波振動子ユニットはワークに
対して変位を停止しようとする。しかし、この場合もZ
軸テーブルはそのまま送りを続行するため、超音波振動
子ユニットとZ軸テーブルの相対位置が変化しようと
し、Z軸テーブルと超音波振動子ユニットの間に置かれ
た加工圧対応機構に圧縮力がはたらく。そして、設定さ
れた圧力以上の圧縮力がはたらいた時、過負荷状態とな
り、超音波振動子ユニットとZ軸テーブルの相対位置が
変化し始め、それと同時に位置センサーが相対位置の変
化量を検出してアラーム信号を出力するので、その信号
を用いてZ軸の動作を制御すれば、すみやかに過負荷状
態から脱することができる。
When ultrasonic processing is performed by setting a predetermined processing pressure by the above mechanism, the following operation is performed when a slight overload occurs. That is, when an arbitrary processing pressure P is set by the processing pressure corresponding mechanism and the Z axis is fed at an arbitrary feed speed V1, a state where V1> V2 with respect to the actual processing speed V2 determined by the processing pressure P is obtained. When this happens, the tool is not cut further and the ultrasonic transducer unit tries to stop the displacement with respect to the work. However, in this case as well, Z
Since the axis table continues to feed as it is, the relative position of the ultrasonic transducer unit and the Z axis table tries to change, and the compressive force is applied to the processing pressure corresponding mechanism placed between the Z axis table and the ultrasonic transducer unit. Working. Then, when a compressive force above the set pressure is applied, an overload condition occurs and the relative position between the ultrasonic transducer unit and the Z-axis table begins to change, and at the same time, the position sensor detects the amount of change in the relative position. Since an alarm signal is output as a result, if the Z-axis operation is controlled using the signal, it is possible to quickly get out of the overload state.

【0009】また、前記機構により工具にかかる微小な
圧力を検知し、Z軸の動作を制御することにより極小径
工具の工具摩耗量を検出することができる。すなわち、
穴明け加工開始前に超音波装置を停止したままZ軸を低
速で下降させ、工具先端がワーク表面に当って、位置セ
ンサーからアラーム信号が発信された点でZ軸を停止さ
せ、その時の座標H1を読む。次に、超音波装置を駆動
して所定の穴明け加工を行った後、超音波装置を停止し
てZ軸を一旦原点復帰させ、再びZ軸を低速で下降さ
せ、工具先端がワーク表面に当った点でZ軸を停止さ
せ、その時の座標H2を読む。そして、その座標H2と
加工前に読み取った座標H1とを比較し、その差H1−
H2を工具摩耗量H3として検出し、次の穴を加工する
にあたっては、加工深さDに工具摩耗量H3を補正量と
して加えて工具送り量を設定する。この操作を一穴加工
する度、または一定数穴加工する度に行えば、常にその
時々の加工条件によって決まる工具摩耗量を検出できる
ので、より正確な加工深さの管理が行える。
Further, by detecting the minute pressure applied to the tool by the above mechanism and controlling the operation of the Z axis, the amount of tool wear of the extremely small diameter tool can be detected. That is,
Before starting drilling, the Z-axis is lowered at a low speed with the ultrasonic device stopped, and the Z-axis is stopped at the point where the tip of the tool hits the work surface and an alarm signal is sent from the position sensor. Read H1. Next, after driving the ultrasonic device to perform predetermined drilling, the ultrasonic device is stopped, the Z axis is once returned to the origin, and the Z axis is lowered again at a low speed, so that the tool tip is on the work surface. The Z axis is stopped at the hit point and the coordinate H2 at that time is read. Then, the coordinate H2 is compared with the coordinate H1 read before processing, and the difference H1-
H2 is detected as the tool wear amount H3, and when machining the next hole, the tool feed amount is set by adding the tool wear amount H3 as a correction amount to the machining depth D. If this operation is performed every time one hole is drilled or every time a fixed number of holes are drilled, the tool wear amount that is always determined by the machining conditions at that time can be detected, so that more accurate machining depth can be managed.

【0010】[0010]

【実施例】以下、本発明の実施例を図面に基づき説明す
る。図1は、本発明の超音波極小径穴明け加工システム
の説明図である。超音波振動子1、コーン2、ホーン
3、工具4が同軸一直線上に連結され、さらにコーンの
フランジ部を台座金具5に固定したものを超音波振動子
ユニット6とし、これを上下2枚の板バネ7、7′を用
いてZ軸テーブル8に取り付け、超音波振動子ユニット
6がZ軸テーブル8に対して揺動可能となるようにし
た。また、電動シリンダ9の先端部にカプラ10を取り
付け、さらにその先にスプリング11を連結して加工圧
対応機構を構成し、電動シリンダ9を超音波振動子ユニ
ット6側に、スプリング11の先端をZ軸テーブル8に
固定した。すなわち、電動シリンダ9のストロークを調
節することにより、スプリング11の全長、即ち、スプ
リング11にかかる力を調整することができ、この力が
加工圧に対抗する力として作用するわけである。さら
に、超音波振動子ユニット6上には、Z軸テーブル8と
の相対位置の変化量を検出するための位置センサー12
を配置した。尚、電動シリンダ9と位置センサー12は
Z軸テーブル8のNCコントローラー13に接続し、Z
軸テーブル8と連動できるものとした。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory diagram of an ultrasonic ultra-small diameter drilling system of the present invention. The ultrasonic oscillator 1, the cone 2, the horn 3, and the tool 4 are coaxially connected to each other, and further, the one in which the flange portion of the cone is fixed to the pedestal metal fitting 5 is an ultrasonic oscillator unit 6, which is composed of upper and lower two sheets. It was attached to the Z-axis table 8 by using leaf springs 7 and 7 ′ so that the ultrasonic transducer unit 6 can swing with respect to the Z-axis table 8. In addition, a coupler 10 is attached to the tip of the electric cylinder 9, and a spring 11 is further connected to the tip of the coupler to form a mechanism corresponding to machining pressure. The electric cylinder 9 is placed on the ultrasonic transducer unit 6 side, and the tip of the spring 11 is attached. It was fixed to the Z-axis table 8. That is, by adjusting the stroke of the electric cylinder 9, the total length of the spring 11, that is, the force applied to the spring 11 can be adjusted, and this force acts as a force that opposes the working pressure. Further, a position sensor 12 for detecting the amount of change in the relative position with respect to the Z-axis table 8 is provided on the ultrasonic transducer unit 6.
Was placed. The electric cylinder 9 and the position sensor 12 are connected to the NC controller 13 of the Z-axis table 8,
It can be linked with the axis table 8.

【0011】そして、本実施例においては、以下に述べ
る通りにZ軸テーブル8の動作を制御できるようプログ
ラムした。 (イ)加工中のZ軸送り速度制御 任意のZ軸送り速度v1にて加工を開始し、一定時間t
経過した時点で途中アラーム信号を発信すること無く加
工が進行していれば、NCコントローラー13が加工進
行状態良好と判定し、Z軸送り速度を予めプログラムさ
れた加速率に従ってv1からv2へ加速する。そして、
加工を続行し、加工途中でアラーム信号を発信すること
無く加工が進行するならば、一定時間経過毎に前記Z軸
送り速度の加速操作が実行される。逆にもし、任意のZ
軸送り速度v1′にて加工している途中でアラーム信号
が発信された場合は、任意に設定された発信回数までは
発信毎にZ軸テーブル8を高さhだけ上昇させ、その位
置から再びZ軸テーブル8を下降させて加工を続行す
る。その後、加工状態が好転せず、アラーム信号の発信
回数が設定発信回数を越えた時に送り速度不適と判定
し、予めプログラムされた減速率に従ってv1′からv
2′へ減速する。そして、Z軸送り速度が適正値になる
まで前記減速動作を繰り返す。 (ロ)工具摩耗量検出による工具送り量の補正 加工開始前に超音波装置を停止したままZ軸テーブル8
を低速で下降させ、工具先端がワーク表面に当り、位置
センサーからアラーム信号が発信された点でZ軸を停止
させ、その時の座標H1を読む。次に、超音波装置を駆
動し一穴加工を行った後、超音波装置を停止してZ軸を
一旦原点復帰させ、再びZ軸を低速で下降させ、工具先
端がワーク表面に当った点でZ軸を停止させ、その時の
座標H2を読み、加工前に読み取った座標H1と比較
し、その差H1−H2を工具摩耗量H3として検出す
る。そして、次の穴を加工するにあたり、加工深さDに
補正量として工具摩耗量H3を加えた距離、即ちD+H
3を工具送り量として設定する。ただし、第一個目の加
工に限り、工具摩耗量は推定値を用いなければならな
い。
In this embodiment, the program is made so that the operation of the Z-axis table 8 can be controlled as described below. (B) Z-axis feed rate control during machining Machining is started at an arbitrary Z-axis feed rate v1 for a fixed time t
If the machining is progressing without sending an alarm signal during the process when the time has elapsed, the NC controller 13 determines that the machining progress is good, and accelerates the Z-axis feed speed from v1 to v2 according to the pre-programmed acceleration rate. . And
If the machining is continued and the machining progresses without sending an alarm signal during the machining, the acceleration operation of the Z-axis feed speed is executed at every constant time. Conversely, any Z
If an alarm signal is transmitted during machining at the axis feed speed v1 ', the Z-axis table 8 is raised by the height h for each transmission up to the arbitrarily set number of transmissions, and the Z-axis table 8 is again moved from that position. The Z-axis table 8 is lowered to continue the machining. After that, when the machining state does not improve and the number of times the alarm signal is transmitted exceeds the set number of transmissions, it is determined that the feed rate is inappropriate, and v1 'to v
Decelerate to 2 '. Then, the deceleration operation is repeated until the Z-axis feed speed reaches an appropriate value. (B) Correction of tool feed amount by detecting tool wear amount Z-axis table 8 with ultrasonic device stopped before machining
Is lowered at a low speed to stop the Z axis at the point where the tip of the tool hits the work surface and an alarm signal is transmitted from the position sensor, and the coordinate H1 at that time is read. Next, after driving the ultrasonic device to perform one hole machining, the ultrasonic device is stopped, the Z axis is once returned to the origin, the Z axis is lowered again at a low speed, and the tool tip hits the work surface. Then, the Z-axis is stopped, the coordinate H2 at that time is read and compared with the coordinate H1 read before machining, and the difference H1-H2 is detected as the tool wear amount H3. Then, when machining the next hole, a distance obtained by adding the tool wear amount H3 as a correction amount to the machining depth D, that is, D + H
Set 3 as the tool feed amount. However, only for the first machining, the estimated amount of tool wear must be used.

【0012】以上の機構を搭載した超音波加工機を使用
して、厚さ2mmのパイレックスガラスに超音波加工を
施した。尚、通常、周波数16〜30kHz、出力50
W〜1kWの超音波加工機を使用するが、本実施例にお
いては、微細穴加工のため周波数60kHz、出力10
0Wの超音波を使用し、超音波工具は直径0.1mm、
工具長10mmのステンレス製ピンをホーン先端に一本
半田付けし、加工穴数100穴の貫通穴明け加工を行っ
た。また、加工圧は加工圧対応機構により80gfに設
定し、位置センサー12は超音波振動子ユニット6とZ
軸テーブル8との相対位置の変化量が10μmに達した
ときアラーム信号を発するよう設定した。さらに、加工
開始時のZ軸送り速度はv1=2mm/分、、加工状態
良好時の加速率10%、アラーム信号発信時の減速率1
0%、Z軸送り速度の加速判定をするための設定時間t
を15秒、Z軸送り速度の減速判定をするためのアラー
ム信号発信回数を5回、Z軸テーブル8のステップ量h
=50μmとした。
Using an ultrasonic processing machine equipped with the above mechanism, ultrasonic processing was applied to Pyrex glass having a thickness of 2 mm. Normally, the frequency is 16 to 30 kHz and the output is 50.
An ultrasonic processing machine of W to 1 kW is used, but in the present embodiment, a frequency of 60 kHz and an output of 10 for fine hole processing.
Using 0W ultrasonic wave, ultrasonic tool has a diameter of 0.1mm,
A stainless steel pin having a tool length of 10 mm was soldered to the tip of the horn, and a through hole having 100 holes was drilled. Further, the processing pressure is set to 80 gf by the processing pressure corresponding mechanism, and the position sensor 12 is set to the ultrasonic transducer unit 6 and Z
The alarm signal is set to be emitted when the amount of change in the relative position to the axis table 8 reaches 10 μm. Further, the Z-axis feed rate at the start of machining is v1 = 2 mm / min, the acceleration rate is 10% when the machining state is good, and the deceleration rate is 1 when the alarm signal is transmitted.
0%, set time t for determining acceleration of Z-axis feed speed
For 15 seconds, the number of alarm signal transmissions for determining the deceleration of the Z-axis feed speed is 5 times, the step amount h of the Z-axis table 8
= 50 μm.

【0013】加工開始後、超音波の発振状態、砥粒の循
環状態、工具送り速度のバランスがとれている間は問題
なく加工は進行し、30秒経過後にはZ軸送り速度は
2.42mm/分まで加速された。しかし、何等かの原
因により一旦そのバランスが崩れると、たちまち工具4
はそれ以上ワークに切り込まれなくなった。すると、板
バネ7,7′の揺動機構により、超音波振動子ユニット
6は軸方向に変位を停止し、Z軸テーブル8のみが軸方
向下向きに移動しようとするため、工具4とワークの間
に生じる加工圧は次第に上昇し始め、その加工圧が加工
圧対応機構で設定された80gfよりも大きくなると、
ついに超音波振動子ユニット6とZ軸テーブル8との間
に相対的にギャップが生じ始めた。そして、そのギャッ
プが位置センサー12の設定値である10μmに達した
ときアラーム信号を発し、これによりZ軸テーブル8は
ステップ量h=50μmのステップ動作を実行し、加工
を続行した。その後、加工途中で度々アラーム状態が発
生したが、NCコントローラー13の設定によりアラー
ム信号発信回数6回目でZ軸送り速度は2.42mm/
分から2.2mm/分まで減速された。以降、上記と同
様のZ軸送り速度の加・減速を繰返しながら加工を続行
したところ、過負荷による工具の座屈を生じること無
く、2分30秒で一穴を加工することができた。また、
一穴加工するごとに工具摩耗量を検出し、次加工の工具
送り量を設定したことにより、未貫通穴が発生すること
無く100穴全てに良好な穴明け加工を行うことができ
た。
After the start of processing, the processing proceeds without any problems while the ultrasonic wave oscillation state, the abrasive grain circulation state, and the tool feed rate are balanced, and after 30 seconds, the Z-axis feed rate is 2.42 mm. Accelerated to / min. However, once the balance is lost for some reason, the tool 4
No longer cut into the work. Then, the oscillating mechanism of the leaf springs 7 and 7'stops the displacement of the ultrasonic transducer unit 6 in the axial direction, and only the Z-axis table 8 tries to move downward in the axial direction. The machining pressure generated during the time gradually starts to rise, and when the machining pressure becomes larger than 80 gf set by the mechanism corresponding to the machining pressure,
Finally, a relative gap started to be generated between the ultrasonic transducer unit 6 and the Z-axis table 8. Then, when the gap reaches the set value of the position sensor 12 of 10 μm, an alarm signal is issued, whereby the Z-axis table 8 executes the step operation of the step amount h = 50 μm and continues the machining. After that, an alarm condition frequently occurred during machining, but the Z-axis feed speed was 2.42 mm /
The speed was decelerated from min. To 2.2 mm / min. After that, when the machining was continued while repeatedly accelerating and decelerating the Z-axis feed speed similar to the above, one hole could be machined in 2 minutes and 30 seconds without buckling of the tool due to overload. Also,
By detecting the tool wear amount each time one hole was machined and setting the tool feed amount for the next machining, good drilling could be performed on all 100 holes without the generation of unpenetrated holes.

【0014】[0014]

【発明の効果】以上説明したように、本発明の超音波極
小径穴明け加工システムによれば、超音波振動子ユニッ
トの自重を揺動機構の支持力により相殺し、NC制御に
よって100gf以下の精密な加工圧の設定を容易に行
え、かつ、常に最適の送り速度にて工具を送ることがで
きるので、極小径の工具でも過負荷による破損を生じる
こと無く加工を行うことができた。また、一穴加工する
ごとに工具摩耗量を検出し、次加工の工具送り量を設定
することができるので、加工深さのバラツキを無くすこ
とができた。さらに、本発明の加工システムは、超音波
加工のみならず放電加工や極細ドリルによる穴明け加工
にも応用することができる。
As described above, according to the ultrasonic ultra-small diameter drilling system of the present invention, the self-weight of the ultrasonic transducer unit is offset by the supporting force of the swing mechanism, and NC control of 100 gf or less is performed. Precise machining pressure can be set easily and the tool can be fed at the optimum feed rate at all times. Therefore, even a tool with a very small diameter can be machined without damage due to overload. Further, since the tool wear amount can be detected every time one hole is machined and the tool feed amount for the next machining can be set, it is possible to eliminate the variation in the machining depth. Further, the processing system of the present invention can be applied not only to ultrasonic processing but also to electric discharge processing and drilling with a fine drill.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の超音波極小径穴明け加工システムの説
明図である。
FIG. 1 is an explanatory view of an ultrasonic ultra-small diameter hole drilling system of the present invention.

【符号の説明】[Explanation of symbols]

1…超音波振動子、 2…コーン、 3…ホーン、 4
…工具、5…台座金具、 6…超音波振動子ユニット、
7、7′…板バネ、8…Z軸テーブル、 9…電動シ
リンダ、 10…カプラ、11…スプリング、 12…
位置センサー、 13…NCコントローラー
1 ... Ultrasonic transducer, 2 ... Cone, 3 ... Horn, 4
… Tools, 5… Pedestal brackets, 6… Ultrasonic transducer unit,
7, 7 '... Leaf spring, 8 ... Z-axis table, 9 ... Electric cylinder, 10 ... Coupler, 11 ... Spring, 12 ...
Position sensor, 13 ... NC controller

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮下 欣也 神奈川県川崎市川崎区本町2−10−15 ト ップ川崎第5−202 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kinya Miyashita 2-10-15 Honcho, Kawasaki-ku, Kawasaki-shi, Kanagawa Top 5-202 Kawasaki

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】超音波加工機において (イ)先端に超音波工具を備えた超音波振動子ユニット
とNC制御可能なZ軸テーブルとを揺動機構を介して連
結する。 (ロ)前記超音波振動子ユニットに対し、軸方向下向き
に所定の圧力を付勢するためのNC制御可能な微小加工
圧対応機構を前記Z軸テーブル上に配置する。 (ハ)前記Z軸テーブルと前記超音波振動子ユニットの
軸方向への相対位置の変化量を検出する位置センサーを
前記Z軸テーブル上、または、前記超音波振動子ユニッ
ト上に配置する。 以上の如く構成された超音波加工機を使用することを特
徴とする超音波極小径穴明け加工システム。
1. In an ultrasonic processing machine, (a) an ultrasonic transducer unit having an ultrasonic tool at its tip and an NC-controllable Z-axis table are connected via a swing mechanism. (B) An NC controllable micro-machining pressure corresponding mechanism for urging a predetermined pressure in the axial downward direction with respect to the ultrasonic transducer unit is arranged on the Z-axis table. (C) A position sensor that detects the amount of change in the relative position of the Z-axis table and the ultrasonic transducer unit in the axial direction is arranged on the Z-axis table or on the ultrasonic transducer unit. An ultrasonic ultra-small diameter drilling system characterized by using the ultrasonic processing machine configured as described above.
JP22774592A 1992-07-13 1992-07-13 Ultrasonic wave microscopic diameter drilling system Pending JPH0691599A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP22774592A JPH0691599A (en) 1992-07-13 1992-07-13 Ultrasonic wave microscopic diameter drilling system
PCT/JP1993/000960 WO1994001256A1 (en) 1992-07-13 1993-07-12 Ultrasonic drilling machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22774592A JPH0691599A (en) 1992-07-13 1992-07-13 Ultrasonic wave microscopic diameter drilling system

Publications (1)

Publication Number Publication Date
JPH0691599A true JPH0691599A (en) 1994-04-05

Family

ID=16865711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22774592A Pending JPH0691599A (en) 1992-07-13 1992-07-13 Ultrasonic wave microscopic diameter drilling system

Country Status (2)

Country Link
JP (1) JPH0691599A (en)
WO (1) WO1994001256A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013527808A (en) * 2010-04-29 2013-07-04 エジソン・ウェルディング・インスティチュート,インコーポレーテッド Ultrasonic machining assembly for use with portable devices
CN108789049A (en) * 2018-06-26 2018-11-13 江苏亚飞炭素有限公司 A kind of novel graphite block processing unit (plant)
CN109822764A (en) * 2019-01-18 2019-05-31 宁波弘讯软件开发有限公司 A kind of intelligentized hole constructing device
CN110435027A (en) * 2019-08-13 2019-11-12 宇晶机器(长沙)有限公司 A kind of multi-wire saw working bench feeding method based on variable speed

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2504385T3 (en) 2009-11-24 2017-11-30 Sulzer Chemtech Ag Process for producing pet pellets, and pet pellets
CN106794588A (en) * 2013-09-20 2017-05-31 格伯技术公司 Cutter sensor equipment for cutting sheet material
TWI566062B (en) * 2015-04-02 2017-01-11 Numerical control processing machine and ultrasonic knife to the combination of control devices
CN109396751A (en) * 2017-08-17 2019-03-01 中北大学 The common process in hole and ultrasonic vibration precision processing method on cylindrical structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63185553A (en) * 1987-01-28 1988-08-01 Amada Co Ltd Spindle device
JPH0712568B2 (en) * 1988-12-19 1995-02-15 動力炉・核燃料開発事業団 Ultrasonic processing equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013527808A (en) * 2010-04-29 2013-07-04 エジソン・ウェルディング・インスティチュート,インコーポレーテッド Ultrasonic machining assembly for use with portable devices
JP2015083333A (en) * 2010-04-29 2015-04-30 エジソン・ウェルディング・インスティチュート,インコーポレーテッド Ultrasonic machine processing assembly to be used with portable type device
CN108789049A (en) * 2018-06-26 2018-11-13 江苏亚飞炭素有限公司 A kind of novel graphite block processing unit (plant)
CN109822764A (en) * 2019-01-18 2019-05-31 宁波弘讯软件开发有限公司 A kind of intelligentized hole constructing device
CN110435027A (en) * 2019-08-13 2019-11-12 宇晶机器(长沙)有限公司 A kind of multi-wire saw working bench feeding method based on variable speed

Also Published As

Publication number Publication date
WO1994001256A1 (en) 1994-01-20

Similar Documents

Publication Publication Date Title
US4417489A (en) Method and apparatus for machining a workpiece by varying the tool geometry
US5308198A (en) Method and apparatus for drill length compensation
US8257002B2 (en) Method for machining workpieces on a cutting machine tool
JPH0463668A (en) Amplitude control device for ultrasonic machining device
US3754487A (en) Method and apparatus for controlling a machine tool
JP2805370B2 (en) Method of slice-cutting a rod-shaped workpiece into a thin plate using an inner peripheral saw
US5303510A (en) Automatic feed system for ultrasonic machining
JP2008524006A (en) Machine and control system
JPH0691599A (en) Ultrasonic wave microscopic diameter drilling system
JP2018081487A (en) Machine tool and control method thereof
JPH03245948A (en) Machining condition detecting device in machine tool
GB2089267A (en) Sensing tool electrode wear in electroerosion machining
JP2006102842A (en) Vertical rotary grinder
Yan et al. Improvement of part straightness accuracy in rough cutting of wire EDM through a mechatronic system design
JP3818782B2 (en) Balance device for moving objects in machine tools
US20230234177A1 (en) Machine tool and method for machining workpieces
JP2000158395A (en) Drilling method for plate-shaped body
JPH01218780A (en) Method for controlling start of work in laser beam machine
US3874809A (en) Apparatus for machining surface of revolution having discontinuities
JPH0722874B2 (en) Automatic control method for vibration cutting equipment
JPH07136818A (en) Ultrasonic drilling, working device therefor and working tool therefor
JP3300604B2 (en) Tool damage detection method and device
JP2021084139A (en) Control device of electric motor and control method of electric motor
US20200206864A1 (en) Method and device for fine machining cylindrical workpiece surfaces
CN113976936B (en) Online plate punching equipment and control method thereof