JPH069132B2 - Electrostatic deflection type image pickup tube - Google Patents

Electrostatic deflection type image pickup tube

Info

Publication number
JPH069132B2
JPH069132B2 JP27826485A JP27826485A JPH069132B2 JP H069132 B2 JPH069132 B2 JP H069132B2 JP 27826485 A JP27826485 A JP 27826485A JP 27826485 A JP27826485 A JP 27826485A JP H069132 B2 JPH069132 B2 JP H069132B2
Authority
JP
Japan
Prior art keywords
image pickup
electrode
electron gun
pickup tube
target electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27826485A
Other languages
Japanese (ja)
Other versions
JPS62139234A (en
Inventor
太一 志野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP27826485A priority Critical patent/JPH069132B2/en
Publication of JPS62139234A publication Critical patent/JPS62139234A/en
Publication of JPH069132B2 publication Critical patent/JPH069132B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、デフレクトロン型偏向電極を備えた静電偏向
型撮像管に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic deflection type image pickup tube having a deflectron type deflection electrode.

従来の技術 一般に、デフレクトロン型偏向電極を備えた電磁集束・
静電偏向型撮像管は第3図に示すように構成され、電子
銃1およびメッシュ電極2を収容したガラスバルブ3の
内周面にデフレクトロン型の水平・垂直偏向電極4を付
設してなる。そして、ガラスバルブ3に気密に封着され
た透明フェースプレート5の内面上に、透明導電膜およ
び光導電膜からなるターゲット電極6を付設してなる。
電子銃1から放射された電子ビーム7は、集束コイル8
による集束磁界で集束作用を受けるとともに、水平・垂
直偏向電極4による偏向電界で偏向作用を受けたのち、
メッシュ電極2を通過してターゲット電極6の矩形状有
効走査領域を走査するのであり、図外の光学レンズを通
じてターゲット電極6上に与えられた光学像に対応する
画像信号が、透明フェースプレート5を気密に貫通して
前記透明導電膜に接続された信号出力端子9からとり出
される。
Conventional technology Generally, an electromagnetic focusing / deflectron type deflection electrode equipped
The electrostatic deflection type image pickup tube is constructed as shown in FIG. 3, and the deflector type horizontal / vertical deflection electrode 4 is attached to the inner peripheral surface of the glass bulb 3 accommodating the electron gun 1 and the mesh electrode 2. . Then, a target electrode 6 made of a transparent conductive film and a photoconductive film is provided on the inner surface of the transparent face plate 5 hermetically sealed to the glass bulb 3.
The electron beam 7 emitted from the electron gun 1 is focused by a focusing coil 8
After being subjected to the focusing action by the focusing magnetic field by and the deflection action by the deflection electric field by the horizontal / vertical deflection electrodes 4,
The rectangular effective scanning area of the target electrode 6 is scanned by passing through the mesh electrode 2, and the image signal corresponding to the optical image provided on the target electrode 6 through the optical lens (not shown) causes the transparent face plate 5 to pass through. It is taken out from the signal output terminal 9 which is hermetically penetrated and connected to the transparent conductive film.

ところで、このように構成された撮像管では、電子ビー
ム7がターゲット電極6を走査することによって生じる
余剰電子が戻りビーム10となり、集束・偏向作用をふた
たび受ける。そして、戻りビーム10が電子銃1に射突す
ることによって生じた低エネルギの反射ビームのうち、
ターゲット電極6へ向かう反射ビーム11もまた集束・偏
向作用を受けることになり、反射ビーム11がターゲット
電極6に流入すると、それによる信号が元の電子ビーム
7による出力信号に疑似信号として加わり、入射光学像
に忠実に対応した画像信号を得ることが困難になる。な
お、電子銃表面における戻りビームの反射率は数十分の
一にすぎないが、ターゲット電極面上光学像の暗い部分
で生じた戻りビームの量はその他の部分で生じる戻りビ
ームの数十倍にも達するので、反射ビームによる疑似信
号の発生は無視できないものとなる。また、このような
現像は電磁集束型の撮像型に限らず、静電集束・静電偏
向型撮像管においても同様に起こる。
By the way, in the thus-configured image pickup tube, surplus electrons generated by the electron beam 7 scanning the target electrode 6 become the return beam 10 and are again subjected to the focusing / deflecting action. Then, of the low-energy reflected beams generated by the return beam 10 striking the electron gun 1,
The reflected beam 11 directed to the target electrode 6 is also subjected to the focusing / deflecting action, and when the reflected beam 11 flows into the target electrode 6, a signal due to the reflected beam 11 is added to the output signal of the original electron beam 7 as a pseudo signal and is incident. It becomes difficult to obtain an image signal that faithfully corresponds to the optical image. The reflectance of the return beam on the surface of the electron gun is only several tenths, but the amount of the return beam generated in the dark part of the optical image on the target electrode surface is several tens of times that of the return beam generated in other parts. Therefore, the generation of the pseudo signal due to the reflected beam cannot be ignored. Further, such development is not limited to the electromagnetic focusing type image pickup type, but similarly occurs in the electrostatic focusing / electrostatic deflection type image pickup tube.

発明が解決しようとする問題点 したがって本発明の目的とするところは、前述のような
疑似信号の発生を抑制できる撮像管を提供することにあ
る。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention Therefore, an object of the present invention is to provide an image pickup tube capable of suppressing the generation of the pseudo signal as described above.

問題点を解決するための手段 本発明によると、電子銃からデフレクトロン型偏向電極
による偏向電界を経てターゲット電極の有効走査領域に
いたる電子ビーム通路を包囲し、かつ、電子銃電極から
前記ターゲット電極の有効走査領域外にいたる反射ビー
ム通路を妨げる導電性筒状体を、前記電子銃の先端部に
突設する。
According to the present invention, the electron beam path from the electron gun to the effective scanning area of the target electrode through the deflection electric field generated by the deflectron-type deflection electrode is surrounded, and from the electron gun electrode to the target electrode. A conductive cylindrical body that obstructs the path of the reflected beam that extends outside the effective scanning area is provided at the tip of the electron gun.

作用 このように構成すると、電子銃の先端部からターゲット
電極へ向かう反射ビームの多くが、有効走査領域内へ向
かうようになる。一方、ターゲット電極の有効走査領域
内の電位は、電子ビーム走査によって比較的低く保た
れ、しかも、有効走査領域内へ向かう反射ビームのほと
んどがターゲット電極面に対して傾斜したものとなるの
で、低エネルギの反射ビームがここにランディングして
生じるノイズは実用上無視できる程度のものとなる。
Operation With this structure, most of the reflected beam from the tip of the electron gun toward the target electrode goes into the effective scanning area. On the other hand, the potential in the effective scanning area of the target electrode is kept relatively low by the electron beam scanning, and most of the reflected beam that goes into the effective scanning area is inclined with respect to the target electrode surface, so that it is low. The noise generated when the reflected beam of energy lands here is negligible in practice.

実施例 第1図に示す本発明実施の撮像管が第3図に示した従来
の撮像管と異なるところは、電子銃1の先端部に円筒状
の導電性筒状体12が同軸的に設けられている点である。
この筒状体12は、電子銃1からデフレクトロン型水平・
垂直偏向電極4による偏向電界を経てターゲット電極6
の有効走査領域Aにいたる電子ビーム通路に入り込むこ
となく同通路を包囲し、かつ、電子銃電極からターゲッ
ト電極6の有効走査領域外にいたる反射ビーム通路を妨
げるに足る直径および長さを有している。図中に破線で
示した反射ビーム通路11'は元来、ターゲット電極6の
有効走査領域Aの最外周に接する走査領域外にいたるも
のであり、この反射ビーム通路11'が筒状体12の先端部
によって妨げられる。このため、電子銃1の先端部に戻
りビーム10が射突することにより生じた反射ビーム11は
筒状体12の内周面に射突することになり、ここで二次反
射ビーム11a,11bが新たに生じる。二次反射ビームは一
次反射ビーム11に比べて格段に少なく、しかも低エネル
ギであるので、そのうちの一部分が有効走査領域A外の
ターゲット電極面にランディングしても、支承となるよ
うなノイズレベルには達しない。また、有効走査領域A
内へ向かう二次反射ビーム11aは前述のようになんら支
承とならない。
EXAMPLE The difference between the image pickup tube of the present invention shown in FIG. 1 and the conventional image pickup tube shown in FIG. 3 is that a cylindrical conductive tube 12 is coaxially provided at the tip of the electron gun 1. That is the point.
This tubular body 12 is a horizontal deflector type electron from the electron gun 1.
The target electrode 6 passes through the deflection electric field by the vertical deflection electrode 4.
Has a diameter and length sufficient to surround the electron beam path reaching the effective scanning area A of the target electrode 6 without encroaching on the path and to prevent the reflected beam path extending from the electron gun electrode to the outside of the effective scanning area of the target electrode 6. ing. The reflected beam passage 11 ′ shown by the broken line in the figure originally extends outside the scanning region in contact with the outermost periphery of the effective scanning region A of the target electrode 6, and this reflected beam passage 11 ′ is defined by the cylindrical body 12. Blocked by the tip. Therefore, the reflected beam 11 generated by the return beam 10 impinging on the tip of the electron gun 1 impinges on the inner peripheral surface of the cylindrical body 12, and here the secondary reflected beams 11a and 11b. Is newly generated. The secondary reflected beam is much smaller than the primary reflected beam 11 and has low energy. Therefore, even if a part of the secondary reflected beam 11 lands on the target electrode surface outside the effective scanning area A, the noise level becomes a support. Does not reach. Also, the effective scanning area A
The secondary reflected beam 11a which goes inward is not supported as described above.

電子ビーム7が図示の状態よりも大きく偏向した場合も
前述と同様の作用が働き、電子ビーム7の偏向量が少な
いときの反射ビーム11は筒状体12の内周面に入射せずに
有効走査領域A内へ向かうので支障がない。
Even when the electron beam 7 is deflected more than the state shown in the figure, the same action as described above works, and the reflected beam 11 when the amount of deflection of the electron beam 7 is small does not enter the inner peripheral surface of the cylindrical body 12 and is effective. Since it goes into the scanning area A, there is no problem.

本発明の他の実施例を第2図に示す。この場合、径大な
円筒状導電性筒状体13と径小な円筒状導電性筒状体14と
が電子銃1の先端部に二重配列で突設されている。これ
は二重以上の多重配列であってもよいが、いずれにして
も疑似信号の発生をより完全に抑制することができる。
Another embodiment of the present invention is shown in FIG. In this case, a large-diameter cylindrical conductive tubular body 13 and a small-diameter cylindrical conductive tubular body 14 are provided in a protruding manner at the tip of the electron gun 1 in a double arrangement. This may be a multiple array of double or more, but in any case, the generation of the pseudo signal can be more completely suppressed.

発明の効果 本発明は前述のように構成されるので、戻りビームによ
り生じた反射ビームに基づく疑似信号の発生を充分に抑
制することができ、入射光学像に忠実に対応した高S/
Nの画像信号をとりだすことができる。
EFFECTS OF THE INVENTION Since the present invention is configured as described above, it is possible to sufficiently suppress the generation of a pseudo signal based on the reflected beam generated by the return beam, and to obtain a high S / S ratio that faithfully corresponds to the incident optical image.
N image signals can be taken out.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図はそれぞれ本発明を実施した撮像管
の要部の側断面、第3図は従来の撮像管の側断面図であ
る。 1‥‥電子銃、4‥‥デフレクトロン型偏向電極、6‥
‥ターゲット電極、12,13,14‥‥導電性筒状体。
FIG. 1 and FIG. 2 are side sectional views of an essential part of an image pickup tube embodying the present invention, and FIG. 3 is a side sectional view of a conventional image pickup tube. 1 ... Electron gun, 4 ... Deflectron type deflection electrode, 6 ...
Target electrode, 12, 13, 14 Conductive tubular body.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電子銃からデフレクトロン型偏向電極によ
る偏向電界を経てターゲット電極の有効走査領域にいた
る電子ビーム通路を包囲し、かつ、電子銃電極から前記
ターゲット電極の有効走査領域外にいたる反射ビーム通
路を妨げる導電性筒状体を、前記電子銃の先端部に突設
してなることを特徴とする静電偏向型撮像管。
1. Reflection extending from an electron gun through an electric field deflected by a deflectron-type deflection electrode to surround an electron beam path reaching an effective scanning area of a target electrode and from the electron gun electrode outside an effective scanning area of the target electrode. An electrostatic deflection type image pickup tube, characterized in that a conductive cylindrical body that obstructs a beam path is provided so as to project from a tip portion of the electron gun.
JP27826485A 1985-12-11 1985-12-11 Electrostatic deflection type image pickup tube Expired - Lifetime JPH069132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27826485A JPH069132B2 (en) 1985-12-11 1985-12-11 Electrostatic deflection type image pickup tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27826485A JPH069132B2 (en) 1985-12-11 1985-12-11 Electrostatic deflection type image pickup tube

Publications (2)

Publication Number Publication Date
JPS62139234A JPS62139234A (en) 1987-06-22
JPH069132B2 true JPH069132B2 (en) 1994-02-02

Family

ID=17594917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27826485A Expired - Lifetime JPH069132B2 (en) 1985-12-11 1985-12-11 Electrostatic deflection type image pickup tube

Country Status (1)

Country Link
JP (1) JPH069132B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2630586A1 (en) * 1988-04-22 1989-10-27 Thomson Csf CAMERA TUBE WITH PARASITE IMAGE REMOVAL SCREEN

Also Published As

Publication number Publication date
JPS62139234A (en) 1987-06-22

Similar Documents

Publication Publication Date Title
US4268777A (en) Cathode-ray tube
EP0114714B1 (en) Device comprising a cathode ray tube having low noise electron gun
US4388556A (en) Low noise electron gun
JPH03173054A (en) Particle radiation device
JP3432091B2 (en) Scanning electron microscope
JPH069132B2 (en) Electrostatic deflection type image pickup tube
US4752715A (en) Television camera tube
US5218443A (en) Television camera tube with spurious image black-out screen
JP2683197B2 (en) Imaging tube
JPH0117809Y2 (en)
US4266248A (en) Device having a camera tube
JPS607042A (en) Camera tube
JPS63892B2 (en)
JPS614138A (en) Television camera tube
US2880338A (en) Television pick-up tube
JPS60140638A (en) Electromagnetic focusing-electrostatic deflection type image pick-up tube
JPS60198039A (en) Pick-up tube
JPS60198038A (en) Pick-up tube
JPS61101940A (en) X-ray image tube
JPS6086734A (en) Image pickup tube
JPS6235443A (en) Image pickup tube
JPS5889767A (en) Camera tube
JPH0773828A (en) X-ray photographing tube
JPS61109245A (en) Image pickup tube
JPS63310544A (en) Latter stage accelerating deflection magnification lens apparatus