JPH0691258A - Method for removing hydrogen peroxide - Google Patents

Method for removing hydrogen peroxide

Info

Publication number
JPH0691258A
JPH0691258A JP26783292A JP26783292A JPH0691258A JP H0691258 A JPH0691258 A JP H0691258A JP 26783292 A JP26783292 A JP 26783292A JP 26783292 A JP26783292 A JP 26783292A JP H0691258 A JPH0691258 A JP H0691258A
Authority
JP
Japan
Prior art keywords
activated carbon
hydrogen peroxide
waste water
tank
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26783292A
Other languages
Japanese (ja)
Other versions
JP2655299B2 (en
Inventor
Akira Kawakami
彰 川上
Seiichi Tsuda
精一 津田
Takashi Abe
孝 阿部
Makoto Yano
誠 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd, Toshiba Ceramics Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP4267832A priority Critical patent/JP2655299B2/en
Publication of JPH0691258A publication Critical patent/JPH0691258A/en
Application granted granted Critical
Publication of JP2655299B2 publication Critical patent/JP2655299B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PURPOSE:To remove surely hydrogen peroxide and to attempt to improve simplicity and versatility on application by a method wherein a waste water contg. hydrogen peroxide is brought into contact with a particulate activated carbon suspended at a specified ratio, and then, it is separated therefrom and the separated particulate activated carbon is returned to a contacting process. CONSTITUTION:A treating tank 1 has a double tank structure divided into an inside contacting part 11 and an outside sedimentation part 12 and a waste water feeding inlet 3 is provided on the bottom and the waste water contg. hydrogen peroxide is fed into an upward stream. In addition, a metal net 5 with a fine mesh is provided on the lower part and a particulate activated carbon suspended with a ratio of 1-35% of the effective vol. of the tank is filled thereon and another waste water feeding hole 4 is opened on the neighborhood of the upper part of the net 5 from which a waste water contg. hydrogen peroxide is fed along the side face of the contacting part 11 in the tangent direction to make the activated carbon-suspended water flow in the contacting part 11 and to stir it. In addition the activated carbon settled and accumulated on the bottom of the sedimentation part 12 is returned to the contacting part 11 from the opening 6 of the sedimentation part with the waste water from the waste water feeding hole 4 and the treated water which has been separated into a solid and a liq. is made flow out of a discharge pipe 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、比較的低濃度の過酸化
水素を含有する工場廃水、例えば半導体製造廃水、金属
表面処理廃水、メッキ廃水などから過酸化水素を効果的
に除去する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for effectively removing hydrogen peroxide from industrial wastewater containing a relatively low concentration of hydrogen peroxide, such as semiconductor manufacturing wastewater, metal surface treatment wastewater and plating wastewater. It is a thing.

【0002】[0002]

【従来の技術】過酸化水素は洗浄剤、酸化剤、脱色剤、
殺菌剤などとして工業的に広く利用されており、廃水中
に比較的低濃度(数十から数千mg/リットル)で排出
された場合には安定であり、これを効率的に除去するこ
とは容易ではない。
Hydrogen peroxide is a cleaning agent, an oxidizing agent, a decolorizing agent,
It is widely used industrially as a bactericide, etc., and is stable when it is discharged to wastewater at a relatively low concentration (tens to thousands of mg / liter), and it cannot be removed efficiently. It's not easy.

【0003】廃水中の過酸化水素除去法としては、廃水
中の過酸化水素を重亜硫酸ソーダ(NaHSO3 )によ
り還元する処理がよく知られている。この方法では反応
生成物として硫酸が生成されpHが酸性側にシフトする
ためpHのモニターとアルカリ注入による制御が必要と
なる。また、この方法では過酸化水素分解が終了したか
どうかは、通常酸化還元電位(ORP)をモニターして
重亜硫酸ソーダの薬注制御を行うこととなる。ORPは
酸化性物質と還元性物質の濃度比として定義されている
が、廃水のような多成分系では必ずしも過酸化水素の分
解終了を表わす指標となり得ず、薬注制御は不充分なも
のとなり易い。このように重亜硫酸ソーダによる還元法
は、制御系が複雑で確実な操作を行うことが難しい上、
薬品を多く使わなければならないためランニングコスト
も高くなる。
As a method for removing hydrogen peroxide in waste water, a treatment of reducing hydrogen peroxide in waste water with sodium bisulfite (NaHSO 3 ) is well known. In this method, sulfuric acid is produced as a reaction product and the pH shifts to the acidic side, so that pH monitoring and alkali injection control are required. Further, in this method, whether or not the decomposition of hydrogen peroxide is completed is usually monitored by monitoring the redox potential (ORP) and controlling the chemical injection of sodium bisulfite. ORP is defined as the concentration ratio of oxidizing substances and reducing substances, but in a multi-component system such as wastewater, it cannot always be an index indicating the completion of decomposition of hydrogen peroxide, and the chemical injection control becomes insufficient. easy. As described above, in the reduction method using sodium bisulfite, the control system is complicated and it is difficult to perform a reliable operation.
The running cost also increases because a lot of chemicals have to be used.

【0004】過酸化水素を含む水溶液をpH10以上に
調整し、該水溶液を粒状活性炭充填槽に下向流で通水す
ることにより分解除去を行う方法が特開昭62−270
90号公報で提案されている。この方法では、液のpH
を10以上に高めて過酸化水素の除去速度を高めること
を必要条件としているが、見方を変えれば過酸化水素の
除去後の液を公共域に放流する場合pHの中和が必要と
なることは自明であり、このため制御系が複雑で薬品使
用量が多くなる。一方、pHを高く設定しても過酸化水
素を活性炭充填槽表層で完全に分解してしまうことがで
きないためにガス抜きの手段が必要であって装置が複雑
になる。
A method of decomposing and removing by adjusting the pH of an aqueous solution containing hydrogen peroxide to 10 or more and passing the aqueous solution through a granular activated carbon filling tank in a downward flow is disclosed in JP-A-62-270.
No. 90 publication. In this method, the pH of the liquid
The requirement is to increase the hydrogen peroxide removal rate to 10 or more, but from a different perspective, neutralization of the pH is required when the liquid after hydrogen peroxide removal is released to public areas. Is self-evident, and therefore the control system is complicated and the amount of chemicals used is large. On the other hand, even if the pH is set to be high, hydrogen peroxide cannot be completely decomposed in the surface layer of the activated carbon filling tank, so that means for degassing is required and the apparatus becomes complicated.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記従来技術
の欠点を解決するために考案されたもので、アルカリ、
酸、還元剤などの薬品や制御装置を使用せずに廃水中の
過酸化水素を確実に分解せしめ、実施上簡便かつ汎用性
の高い方法を提供するものである。
SUMMARY OF THE INVENTION The present invention was devised to solve the above-mentioned drawbacks of the prior art.
It is possible to reliably decompose hydrogen peroxide in waste water without using chemicals such as acids and reducing agents or a control device, and to provide a method that is simple and highly versatile in practice.

【0006】[0006]

【課題を解決するための手段】上記課題は本発明の過酸
化水素の除去方法によって達成される。 すなわち、1)過酸化水素を含有する廃水を槽有効容量
の1〜35%の割合で懸濁する粒状活性炭と流動攪拌状
態に保つ接触工程で接触せしめた後、該粒状活性炭と処
理水との混合水を沈降工程で分離し、該分離された粒状
活性炭を前記接触工程に返送せしめることを特徴とする
過酸化水素の除去方法であり、 2)過酸化水素を含有する廃水を槽有効容量の1〜35
%の割合で懸濁する粒状活性炭と流動攪拌状態に保つ接
触工程で接触せしめると共に、該粒状活性炭と処理水を
前記接触工程の流出部でスクリーンにより分離せしめる
ことを特徴とする過酸化水素の除去方法であり、
The above object can be achieved by the method for removing hydrogen peroxide of the present invention. That is, 1) After contacting the waste water containing hydrogen peroxide with the granular activated carbon suspended at a ratio of 1 to 35% of the effective volume of the tank in the contact step of keeping in a fluidized stirring state, the granular activated carbon and the treated water are contacted with each other. A method for removing hydrogen peroxide, characterized in that the mixed water is separated in a sedimentation step, and the separated granular activated carbon is returned to the contact step. 2) Waste water containing hydrogen peroxide having a tank effective capacity is used. 1-35
% Of the particulate activated carbon suspended in the contact step of maintaining the fluidized stirring state, and the granular activated carbon and treated water are separated by a screen at the outflow portion of the contact step to remove hydrogen peroxide. Is the way

【0007】3)接触部と沈降部を有する処理槽の、接
触部において過酸化水素を含有する廃水を接触部有効容
量の1〜35%の割合で懸濁する粒状活性炭と流動攪拌
状態に保ちつつ接触せしめ、接触部上部から沈降部に該
粒状活性炭と処理水との混合水を溢流させ、沈降部にお
いて該粒状活性炭と処理水とに沈降分離し、該分離され
た粒状活性炭を処理水の一部と共に接触部に返送せし
め、沈降部上部から処理水の一部を系外に排出すること
を特徴とする過酸化水素の除去方法である。
3) In a treatment tank having a contact portion and a sedimentation portion, a waste water containing hydrogen peroxide is suspended in the contact portion at a ratio of 1 to 35% of the effective volume of the contact portion and kept in a state of fluidized stirring with granular activated carbon. While making contact, the mixed water of the granular activated carbon and the treated water overflows from the upper part of the contact portion to the sedimentation portion, and the granular activated carbon and the treated water are separated by sedimentation in the sedimentation portion, and the separated granular activated carbon is treated water. And a part of the treated water is discharged from the upper part of the sedimentation part to the outside of the system.

【0008】上記、過酸化水素を含有する廃水を、槽有
効容量の1〜35%の割合で懸濁する粒状活性炭と流動
攪拌状態に保つとは、混合槽中に満たされた廃水と粒状
活性炭とが占める槽有効容量のうち粒状活性炭の占める
重量が1〜35%であることを意味する。
To keep the waste water containing hydrogen peroxide in a state of fluidized stirring with the granular activated carbon suspended at a ratio of 1 to 35% of the effective volume of the tank means that the waste water filled in the mixing tank and the granular activated carbon are kept. It means that the weight of the granular activated carbon in the tank effective volume occupied by and is 1 to 35%.

【0009】本発明の一つの方法は、(1)過酸化水素
含有廃水と活性炭の固液分離を隣接する工程において沈
降法で行うことを特徴としており、本発明の今一つ別の
方法は、(2)過酸化水素含有廃水と粒状活性炭の固液
分離を同一工程内でスクリーンでろ別して分離を行うこ
とを特徴としており、本発明の第3の方法は、(3)過
酸化水素含有廃水と活性炭の固液分離を混合水の循環過
程の中で沈降法で行い、沈降した活性炭を循環使用でき
ることを特徴としている。特に第3の方法は過酸化水素
含有廃水から過酸化水素を効率よく除去するための両者
を混合接触が極めて良くおこなわれ、かつそのコントロ
ールが容易である。
[0009] One method of the present invention is characterized in that (1) solid-liquid separation of hydrogen peroxide-containing wastewater and activated carbon is performed by a sedimentation method in an adjacent step, and another method of the present invention is ( 2) The solid-liquid separation of the hydrogen peroxide-containing wastewater and the granular activated carbon is carried out by filtering with a screen in the same step, and the third method of the present invention is (3) the hydrogen peroxide-containing wastewater and the activated carbon. The solid-liquid separation of (1) is performed by a sedimentation method in the circulation process of mixed water, and the activated carbon that has sedimented can be recycled. Particularly, in the third method, both of them are mixed and contacted very well in order to efficiently remove hydrogen peroxide from the hydrogen peroxide-containing wastewater, and the control thereof is easy.

【0010】上記(1)、(2)および(3)のいずれ
の方法においても、本発明の方法は、過酸化水素分解槽
(接触槽)において廃水と活性炭の混合比率を極めて広
範囲に選定しても、廃水と活性炭の接触界面において過
酸化水素分解反応を効率的に維持でき、過酸化水素の確
実な分解除去を可能ならしめる方法である。
In any of the above methods (1), (2) and (3), the method of the present invention selects an extremely wide range of mixing ratio of waste water and activated carbon in the hydrogen peroxide decomposition tank (contact tank). However, this is a method that can efficiently maintain the hydrogen peroxide decomposition reaction at the contact interface between the waste water and activated carbon, and enables reliable decomposition and removal of hydrogen peroxide.

【0011】過酸化水素はアルカリ性下では不安定で容
易に水と酸素に分解するとされているが、低濃度であっ
て有機酸などの物質が共存する場合は長期間安定である
ことが多い。低濃度の過酸化水素を効率よく分解できる
触媒法分解に使用する分解触媒としては金属酸化物、貴
金属塵埃や活性炭などが知られているが、本発明では粒
状活性炭を用いることとした。活性炭を選定した理由
は、工業的に利用可能な価格であることと、単位重量当
たりの比表面積が大きいために過酸化水素の分解反応が
効率的に生ずることによる。活性炭は過酸化水素と反応
して、CO,CO2 に変化する部分もあるが、基本的に
触媒であり、過酸化水素の分解反応における減失は無視
できる程度である。しかし、混合攪拌時の衝突などによ
る破壊によってもたらされる系外流出で失われる損傷分
は補給が必要である。
It is said that hydrogen peroxide is unstable under alkaline conditions and easily decomposes into water and oxygen, but it is often stable for a long period of time when it has a low concentration and a substance such as an organic acid coexists. Although metal oxides, noble metal dust, activated carbon, and the like are known as decomposition catalysts used for catalytic decomposition capable of efficiently decomposing low-concentration hydrogen peroxide, granular activated carbon was used in the present invention. The reason for selecting activated carbon is that it is industrially available and that the decomposition reaction of hydrogen peroxide occurs efficiently due to the large specific surface area per unit weight. Activated carbon reacts with hydrogen peroxide to change into CO and CO 2 , but basically it is a catalyst, and the loss in the decomposition reaction of hydrogen peroxide is negligible. However, it is necessary to replenish the damage lost by the outflow from the system caused by the destruction due to the collision during the mixing and stirring.

【0012】活性炭を触媒とする触媒分解法では、過酸
化水素含有廃水は接触槽内で活性炭と接触し、活性炭表
面の活性点で過酸化水素が分解して水と酸素とに変化す
る。分解により発生した酸素は活性炭表面で微細気泡と
なって成長するが混合によって生じる剪断力が気泡の付
着力より優る大きさとなった時点で脱着するため大気中
に放散する。このため反応界面は気泡の付着によって失
われることがなく、順次過酸化水素分解反応が進行す
る。従って、活性炭触媒分解法で過酸化水素含有廃水の
処理を効率よく進行させ、かつ活性を維持するためには
発生した酸素の微細気泡を活性炭表面から脱着させるこ
とと脱着した酸素の大気中への放散をよくすることが重
要である。このため廃水と活性炭との接触系は攪拌状態
に置くことおよび大気に開放された状態にあることがよ
い。
In the catalytic decomposition method using activated carbon as a catalyst, the hydrogen peroxide-containing wastewater comes into contact with the activated carbon in the contact tank, and the hydrogen peroxide is decomposed at the active points on the surface of the activated carbon to change into water and oxygen. Oxygen generated by decomposition grows into fine bubbles on the surface of activated carbon, but is released into the atmosphere because it desorbs when the shearing force generated by mixing exceeds the adhesive force of bubbles. Therefore, the reaction interface is not lost due to the adhesion of bubbles, and the hydrogen peroxide decomposition reaction proceeds sequentially. Therefore, in order to efficiently proceed the treatment of hydrogen peroxide-containing wastewater by the activated carbon catalytic decomposition method and to maintain the activity, it is necessary to desorb the generated oxygen fine bubbles from the activated carbon surface and to remove the desorbed oxygen into the atmosphere. Good radiation is important. Therefore, it is preferable that the contact system between the waste water and the activated carbon be in a stirring state and open to the atmosphere.

【0013】また、活性炭触媒分解法で過酸化水素含有
廃水の処理を管理し易く進行させるためには、接触槽に
供給される廃水の量のコントロールがし易く、かつ粒状
活性炭の循環使用が可能であることが重要な要素であ
る。例えば、不定期に多量の過酸化水素含有廃水が排出
された場合、臨時的に貯留する槽が用意されていること
の他、接触槽から廃水はオーバフローし、同時に活性炭
もオーバフローしても工程をコントロールできるように
接触槽内で懸濁液を循環可能にする構成とすること、ま
た反対に少量の廃水も処理できる構成とすることであ
る。
Further, in order to facilitate the management of the treatment of hydrogen peroxide-containing wastewater by the activated carbon catalytic decomposition method, it is easy to control the amount of wastewater supplied to the contact tank, and it is possible to recycle the granular activated carbon. Is an important factor. For example, if a large amount of wastewater containing hydrogen peroxide is discharged irregularly, a temporary storage tank will be prepared, and the wastewater will overflow from the contact tank and the activated carbon will also overflow at the same time. The structure is such that the suspension can be circulated in the contact tank so that it can be controlled, and conversely, a structure that can treat a small amount of waste water is also adopted.

【0014】活性炭による過酸化水素含有廃水の処理効
率は処理槽中の活性炭の充填量と廃水が活性炭に接触す
る時間に依存すると思われる。本発明の過酸化水素の除
去方法における、接触槽に充填する活性炭の重量は上記
した通り槽有効容量の1〜35%の範囲で使用される
が、通常諸種の要因を考慮して、接触槽の容積の5〜2
0%に相当する重量の粒状活性炭を仕込むのが適当であ
る。また、接触槽中で過酸化水素を含有する廃水を流動
攪拌状態に保って滞留させる時間は通常10〜60分の
範囲が適当とされる。
The treatment efficiency of hydrogen peroxide-containing wastewater by activated carbon seems to depend on the amount of activated carbon filled in the treatment tank and the time during which the wastewater contacts the activated carbon. In the method for removing hydrogen peroxide of the present invention, the weight of the activated carbon filled in the contact tank is used in the range of 1 to 35% of the effective tank capacity as described above, but in consideration of various factors, the contact tank is usually used. 5 to 2 of the volume of
It is expedient to charge in a weight of 0% of granular activated carbon. In addition, the time for keeping the wastewater containing hydrogen peroxide in the contact tank while keeping it in a fluidized agitated state is usually appropriate in the range of 10 to 60 minutes.

【0015】接触槽中の過酸化水素の濃度の減少は、次
に説明するパラメータx・tの値とよい相関性を示すこ
とが判っている。ここで、xは接触槽の有効容量V中に
仕込まれている活性炭の重量wとしたとき、x=(w/
V)%で表される値であり、tは接触槽中に廃水が滞留
している時間を分で表す値である。前記した本発明の条
件を上記xとtとであらわすとxは1〜35、tは10
〜60の値で、従って本発明における過酸化水素の除去
を行う好ましい処理条件はパラメータx・tの値で20
〜2100の範囲といえる。しかしながら過酸化水素の
除去には初期濃度、pH、水温などの廃水性状や活性炭
の性能の及ぼす影響があり、実際的に好ましくは過酸化
水素が除去されるパラメータx・tの範囲は50〜30
0の間であるといえる。
It has been found that the decrease in the concentration of hydrogen peroxide in the contact tank has a good correlation with the value of the parameter x · t described below. Here, when x is the weight w of the activated carbon charged in the effective capacity V of the contact tank, x = (w /
V)%, and t is a value representing the time during which the wastewater stays in the contact tank in minutes. When the above-mentioned conditions of the present invention are represented by the above x and t, x is 1 to 35 and t is 10
Values of .about.60, therefore the preferred treatment conditions for the removal of hydrogen peroxide according to the invention are values of the parameter x.multidot.t of 20.
It can be said that the range is up to 2100. However, removal of hydrogen peroxide has effects on wastewater properties such as initial concentration, pH, and water temperature, and the performance of activated carbon, and it is practically preferable that the range of the parameter x · t for removing hydrogen peroxide is 50 to 30.
It can be said that it is between 0.

【0016】廃水と活性炭との接触系を攪拌状態に置く
ための攪拌方法としては、廃水を接触槽中に流入し、槽
中で水流によって流動攪拌状態を保つ方法、接触槽底部
に系外より圧搾空気などの気体を吹き込んで流動攪拌状
態を保つ方法や廃水と活性炭との接触系を機械的に攪拌
する方法などいろいろの方法を使用することができる。
しかし、廃水と活性炭の混合状態は均一である必要はな
く、接触槽上部の活性炭濃度が疎、下部が密であっても
差し支えない。粒状活性炭のもつ粒状分布に従い、活性
炭濃度の疎密は必ず生ずるが、これを均一にするほど強
い混合を行わなくても廃水は活性炭と乱流的に接触する
ため、極論するならば、活性炭が槽底に沈積しない程度
の攪拌が行われれば実質上問題とならない。また、過酸
化水素の分解は、槽有効容量の1〜35%に相当する重
量の活性炭を使用することが重要な要因の一つである
が、流動攪拌状態を保つことも重要な要因である。
As a stirring method for placing the contact system of waste water and activated carbon in a stirring state, the waste water is flowed into a contact tank and kept in a fluidized stirring state by a water flow in the tank, and the bottom of the contact tank is kept from outside the system. Various methods such as a method of blowing a gas such as compressed air to maintain a fluidized stirring state and a method of mechanically stirring a contact system of wastewater and activated carbon can be used.
However, the mixed state of the waste water and the activated carbon does not need to be uniform, and the activated carbon concentration in the upper part of the contact tank may be sparse and the lower part may be dense. Depending on the granular distribution of the granular activated carbon, the concentration of activated carbon will inevitably be sparse or dense, but the wastewater will come into turbulent contact with activated carbon without strong mixing to make it uniform. If stirring is carried out to such an extent that it does not settle on the bottom, there is practically no problem. Further, for the decomposition of hydrogen peroxide, one of the important factors is to use the activated carbon in a weight corresponding to 1 to 35% of the effective tank capacity, but maintaining the fluidized stirring state is also an important factor. .

【0017】接触槽中で過酸化水素を含有する廃水を懸
濁する粒状活性炭と流動攪拌状態に保つ第1の方法は攪
拌機を用いて機械的に攪拌する方法である。この場合に
は廃水量に見合う容積のタンクに粒状活性炭を入れ、バ
ッチ方式あるいは連続方式のいずれかの方式で廃水をタ
ンクに供給し、上記パラメータx・tが例えば50〜3
00の間にある条件で廃水を処理することにより過酸化
水素を除去することができる。廃水を連続的に供給し機
械的に攪拌して処理する場合の具体例を図4に示した。
図4において、廃水は供給ポンプ2によって接触槽21
中に廃水供給管20から供給し、接触槽21中で粒状活
性炭と廃水を攪拌機22によって攪拌・接触させ、一定
時間例えば上記パラメータx・tが例えば130の条件
で廃水を処理する。接触処理後、処理水と活性炭の混合
水を送水管9で沈降槽8に入れ、沈降槽8中で活性炭を
沈降させて処理水と分離する。処理水は処理水排出口7
から排出し、活性炭は返送管10で接触槽21中に返送
する。
The first method of maintaining the fluidized stirring state with the granular activated carbon for suspending the wastewater containing hydrogen peroxide in the contact tank is a method of mechanically stirring with a stirrer. In this case, granular activated carbon is put in a tank having a volume corresponding to the amount of waste water, and the waste water is supplied to the tank by either a batch system or a continuous system, and the parameter x · t is, for example, 50 to 3
Hydrogen peroxide can be removed by treating the wastewater under conditions between 00. FIG. 4 shows a specific example of the case where waste water is continuously supplied and mechanically stirred for treatment.
In FIG. 4, the waste water is supplied to the contact tank 21 by the supply pump 2.
The waste water is supplied from the waste water supply pipe 20, and the granular activated carbon and the waste water are stirred and contacted by the stirrer 22 in the contact tank 21, and the waste water is treated under the condition that the parameter x · t is 130 for a certain period of time. After the contact treatment, mixed water of treated water and activated carbon is introduced into the settling tank 8 through the water supply pipe 9, and the activated carbon is allowed to settle in the settling tank 8 to be separated from the treated water. Treated water is treated water outlet 7
And the activated carbon is returned to the contact tank 21 by the return pipe 10.

【0018】接触槽中で過酸化水素を含有する廃水を懸
濁する粒状活性炭と流動攪拌状態に保つ第2の方法は接
触槽に廃水を供給するその水流によって攪拌する方法で
ある。接触槽に廃水を供給する方法としては、槽底から
廃水を流入して、粒状活性炭と共に接触槽内の廃水によ
り水流を起こし処理する方法が挙げられる。また別の方
法としては接触槽に粒状活性炭の層を形成し、支持板の
下から上向流で廃水を供給し、粒状活性炭の層を通して
処理する方法が挙げられる。なお、この場合槽の中段か
らも廃水を流入させ、その廃水流によって活性炭と廃水
の混合系の上向流に渦巻き流を重畳させるなどして廃水
と粒状活性炭との接触を強化することもできる。粒状活
性炭層を形成する方法は下部に支持板を設けても、設け
なくても構わず公知の方法を用いて行えばよい。
A second method of maintaining the fluidized stirring state with the granular activated carbon for suspending the wastewater containing hydrogen peroxide in the contact tank is a method of stirring the wastewater by supplying the wastewater to the contact tank. As a method of supplying the wastewater to the contact tank, there is a method of inflowing the wastewater from the bottom of the tank and causing the wastewater in the contact tank together with the granular activated carbon to generate a water flow for treatment. As another method, there is a method of forming a layer of granular activated carbon in the contact tank, supplying wastewater in an upward flow from below the support plate, and treating through the layer of granular activated carbon. In this case, it is also possible to strengthen the contact between the wastewater and the granular activated carbon by inflowing the wastewater from the middle stage of the tank and superimposing a spiral flow on the upward flow of the activated carbon / wastewater mixture system by the wastewater flow. . As a method for forming the granular activated carbon layer, a known method may be used with or without a supporting plate provided below.

【0019】さらに、第3の攪拌方法としてエアレーシ
ョンによる方法がある。この場合接触槽内にエアリフト
管や散気管を設けて、粒状活性炭を過酸化水素を含有す
る廃水と接触させるため、空気などの気体の気泡を供給
してエアレーションにより流動攪拌状態を良好に保つこ
とができる。
Further, as a third stirring method, there is a method using aeration. In this case, an air lift pipe or air diffuser pipe is provided in the contact tank to bring granular activated carbon into contact with wastewater containing hydrogen peroxide, so that gas bubbles such as air are supplied to maintain a good fluid agitation state by aeration. You can

【0020】実際に過酸化水素除去装置の設計に当たっ
て、槽容量、攪拌方法、活性炭量、活性炭粒径などの要
因はその数値に特に制限はなく接触手段や敷地面積など
個別の事情を考慮した自由な選択が可能である。しか
し、無駄のない設計を行うには予め実験を行うことが望
ましい。
When actually designing the hydrogen peroxide removal apparatus, the factors such as the tank capacity, the stirring method, the amount of activated carbon, and the particle size of activated carbon are not particularly limited in their numerical values, and can be freely selected in consideration of individual circumstances such as contact means and site area. Various choices are possible. However, it is desirable to carry out an experiment in advance in order to perform a lean design.

【0021】上記したいずれの攪拌方法を用いるにして
も、廃水と活性炭を互いに十分良好な接触状態に置くよ
うにすると活性炭は接触槽からオーバフローする。この
オーバフローを防止し、粒状活性炭を廃水と分離するた
め図2に示すように接触槽21の上部の廃水流出部に活
性炭の粒状に応じた目開きのスクリーン13を設ける。
このスクリーン13は金網のようなものでも良いが、目
詰まり防止手段を有するタイプのものが望ましい。
Regardless of which stirring method is used, if the wastewater and the activated carbon are placed in a sufficiently good contact with each other, the activated carbon will overflow from the contact tank. In order to prevent this overflow and separate the granular activated carbon from the wastewater, as shown in FIG. 2, a screen 13 having an opening corresponding to the granularity of the activated carbon is provided at the wastewater outflow portion above the contact tank 21.
The screen 13 may be a wire mesh, but is preferably of a type having a clogging prevention means.

【0022】また、廃水と粒状活性炭との別の固液分離
方法としては、図3に示すように接触槽21から排出さ
れた処理水と粒状活性炭との混合水を混合水送水管9に
より粒状活性炭の沈降槽8に送水し、沈降槽8で粒状活
性炭を沈降させて固液分離しても良い。沈降部で沈降し
た粒状活性炭は活性炭返送管10により接触槽21に返
送され、再利用される。この方式の処理方法は上記固液
分離にスクリーンを使用する1槽処理法よりも装置的に
複雑化するが、過酸化水素の除去効率には影響なく、ま
たスクリーンを使用した場合のような目詰まり防止手段
を使用する必要がないメリットがある。
As another solid-liquid separation method of waste water and granular activated carbon, as shown in FIG. 3, mixed water of treated water and granular activated carbon discharged from the contact tank 21 is granulated by a mixed water feed pipe 9. Water may be sent to the settling tank 8 for activated carbon, and the granular activated carbon may be settled in the settling tank 8 for solid-liquid separation. The granular activated carbon settled in the settling section is returned to the contact tank 21 by the activated carbon return pipe 10 and reused. This type of treatment method is more complicated than the one-tank treatment method using a screen for solid-liquid separation, but does not affect the removal efficiency of hydrogen peroxide, and does not have the same effect as when a screen is used. There is an advantage that it is not necessary to use a clogging prevention means.

【0023】沈降部も含めて単一の槽とする処理槽も可
能である。すなわち、図1に示すように処理槽1を二重
構造の槽とし、内側の接触部11からオーバフローした
処理水と粒状活性炭との混合水を外槽(沈降部)12に
導きそこでしばらく滞留させて粒状活性炭を沈降させ、
上澄水は処理水として処理水排出管7から排出する方式
である。この場合、沈降した粒状活性炭は内側の接触部
11に自然に戻すことができる。また、強制的に戻して
も構わない。また、図1に示した単一槽処理槽は二重構
造の槽であるが、処理槽は完全に二重構造である必要は
なく、接触部11から処理水排出管7に至る間に沈降部
12があり、そこで活性炭が沈降して沈降した活性炭が
接触部11に戻ればよい。
It is also possible to use a treatment tank including the sedimentation section as a single tank. That is, as shown in FIG. 1, the treatment tank 1 has a double structure, and the mixed water of the treated water and the granular activated carbon overflowed from the inner contact portion 11 is guided to the outer tank (settling portion) 12 and allowed to stay there for a while. To settle the granular activated carbon,
The supernatant water is a method of discharging the treated water from the treated water discharge pipe 7. In this case, the settled granular activated carbon can be naturally returned to the inner contact portion 11. Also, it may be forcibly returned. Further, the single-tank treatment tank shown in FIG. 1 has a double structure, but the treatment tank does not need to have a completely double structure and sediments between the contact portion 11 and the treated water discharge pipe 7. It suffices that there is a portion 12 in which the activated carbon settles and the settled activated carbon returns to the contact portion 11.

【0024】[0024]

【実施例】本発明の過酸化水素の除去方法を以下に実施
例により具体的に説明するが本発明は以下の実施例によ
って制限されることはない。
EXAMPLES The method for removing hydrogen peroxide of the present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples.

【0025】(実施例1)図2は本発明の実施態様の1
例を示すものである。図2において、接触槽21は有効
容量は10リットルである。接触槽21の下部には粒状
活性炭の粒径より目開きの細かい金網5が設けられ、そ
の上に粒状活性炭が充填されている。接触槽21の底お
よび上記金網5の上部付近でそれぞれ開口している廃水
供給口3および4があり、それぞれの廃水供給口3およ
び4に廃水供給管20が連結されており、それらを経て
供給ポンプ2により過酸化水素を含有する廃水が接触槽
21に供給される。このとき廃水供給口4からの廃水の
流入は槽1の側面に沿って行われその水流によって槽2
1内の活性炭懸濁水は攪拌される。
(Embodiment 1) FIG. 2 shows an embodiment 1 of the present invention.
An example is shown. In FIG. 2, the contact tank 21 has an effective capacity of 10 liters. Below the contact tank 21, a wire net 5 having a finer opening than the particle size of the granular activated carbon is provided, and the granular activated carbon is filled thereon. There are wastewater supply ports 3 and 4 opening near the bottom of the contact tank 21 and the upper part of the wire net 5, respectively, and a wastewater supply pipe 20 is connected to each of the wastewater supply ports 3 and 4, and the wastewater supply pipe 20 is supplied through them. Waste water containing hydrogen peroxide is supplied to the contact tank 21 by the pump 2. At this time, the inflow of the waste water from the waste water supply port 4 is carried out along the side surface of the tank 1, and the water flow causes the inflow of the tank 2
The activated carbon suspension water in 1 is stirred.

【0026】接触槽21の上部にはスクリーン13を備
えた処理水排出管7を有し、接触槽21の最上部は発生
ガスを気散させるために開放されている。さらにスクリ
ーン13の上部には、目詰まりを防止する回転ブラシ1
4が据えられていて、該接触槽21の内側から外側に緩
やかに回転しながらスクリーン13の目開きを確保して
いる。接触槽21内で攪拌され、過酸化水素の分解除去
に充分な滞留を経た活性炭懸濁水はスクリーン13で固
液分離された後、処理水排出管7から処理水として流出
する。
At the upper part of the contact tank 21, there is a treated water discharge pipe 7 equipped with a screen 13, and the uppermost part of the contact tank 21 is opened to disperse the generated gas. Furthermore, on the upper part of the screen 13, a rotating brush 1 for preventing clogging is provided.
4 is installed, and the opening of the screen 13 is ensured while gently rotating from the inside to the outside of the contact tank 21. The activated carbon suspension water, which has been stirred in the contact tank 21 and has been sufficiently retained to decompose and remove hydrogen peroxide, is subjected to solid-liquid separation by the screen 13, and then flows out from the treated water discharge pipe 7 as treated water.

【0027】第1表および図5は、金属表面処理廃水を
上記図2の装置で処理した結果を示すものである。第1
表においてR.T.は該接触槽21中における滞留時間
(t)を、xは該接触槽21における活性炭使用量を表
している。本実施例1では活性炭には10〜16メッシ
ュの破砕炭を使用した。また反応水のpHは中性とし
た。
Table 1 and FIG. 5 show the results of treating the metal surface treatment wastewater with the apparatus shown in FIG. First
In the table R. T. Represents the residence time (t) in the contact tank 21, and x represents the amount of activated carbon used in the contact tank 21. In Example 1, the activated carbon used was crushed carbon of 10 to 16 mesh. The pH of the reaction water was neutral.

【0028】[0028]

【表1】 [Table 1]

【0029】活性炭使用量2.0%の場合は廃水の滞留
時間40minで、使用量5.0%の場合は廃水の滞留
時間20minで過酸化水素を完全に分解除去できた。
When the amount of activated carbon used was 2.0%, the retention time of the waste water was 40 min, and when the amount of the activated carbon used was 5.0%, the hydrogen peroxide could be completely decomposed and removed in the retention time of the waste water 20 min.

【0030】(実施例2)図1は本発明の実施態様の別
の1例を示すものである。図1において、処理槽1は内
側の接触部11と外側の沈降部12の内外槽に分けられ
た二重槽構造となっている。処理槽1の下部は絞られた
逆台錐形となっており、底部には廃水供給口3が設けら
れ、過酸化水素を含んだ廃水は廃水供給管20を経て廃
水供給口3から上向流で供給される。また、処理槽1の
下部には粒状活性炭の粒径より目開きの細かい金網5が
設けられ、その上に粒状活性炭が充填されている。金網
5の上部付近では別の廃水供給口4が開口していて廃水
供給管20を経て過酸化水素を含んだ廃水が内側の接触
部11の側面に沿って接線方向に供給されその水流によ
って内側の接触部11内の活性炭懸濁水は攪拌される。
(Embodiment 2) FIG. 1 shows another embodiment of the present invention. In FIG. 1, the processing tank 1 has a double tank structure in which an inner contact portion 11 and an outer sedimentation portion 12 are divided into inner and outer tanks. The lower part of the treatment tank 1 has a narrowed inverted trapezoidal shape, a waste water supply port 3 is provided at the bottom, and waste water containing hydrogen peroxide goes upward from the waste water supply port 3 through a waste water supply pipe 20. Supplied in flow. In addition, a wire net 5 having a finer opening than the particle size of the granular activated carbon is provided in the lower part of the processing tank 1, and the granular activated carbon is filled thereover. Another wastewater supply port 4 is opened near the upper part of the wire net 5, and wastewater containing hydrogen peroxide is supplied in a tangential direction along the side surface of the inner contact portion 11 through the wastewater supply pipe 20, and the inner side is formed by the water flow. The activated carbon suspension water in the contact portion 11 of is agitated.

【0031】また、廃水供給口4が開口している付近
で、外側の沈降部12底部の沈降部開口6があり、沈降
堆積した活性炭が上記廃水供給口4から接線方向に供給
される廃水によって内槽中に還流される。内側の接触部
11中で懸濁活性炭で処理された処理水は一旦外側の沈
降部12槽中に流入し、活性炭は沈降し、下部に堆積す
る。活性炭が沈降して固液分離した処理水は処理水流出
口7から流出する。また、下部に堆積した活性炭は上記
したように沈降部開口6から接触部11中に還流され
る。
In addition, in the vicinity of the opening of the wastewater supply port 4, there is a settling part opening 6 at the bottom of the outer settling part 12, and the activated carbon that has settled and accumulated is tangentially supplied from the wastewater supply port 4. It is refluxed into the inner tank. The treated water treated with the suspended activated carbon in the inner contact portion 11 once flows into the tank of the outer sedimentation portion 12, and the activated carbon sediments and accumulates in the lower portion. The treated water in which the activated carbon has settled and solid-liquid separated flows out from the treated water outlet 7. Further, the activated carbon deposited on the lower portion is refluxed into the contact portion 11 from the sedimentation portion opening 6 as described above.

【0032】第2表および図6には、実施例2と同様の
装置を用いて、より高濃度の過酸化水素を含む半導体製
造廃水を処理した結果を示したものである。この実施例
2では活性炭使用量を5.0%とし、反応水のpHを7
と10として比較してみたが、両者の分解速度に大きな
差はなく、いずれの場合も廃水の滞留時間30minで
過酸化水素をほぼ完全に分解除去することができた。ま
た、供給口4を閉にし、供給口3を開にし、供給口3か
らの廃水を供給しても効果は同様であった。
Table 2 and FIG. 6 show the results of treating semiconductor manufacturing wastewater containing a higher concentration of hydrogen peroxide using the same apparatus as in Example 2. In this Example 2, the amount of activated carbon used was 5.0% and the pH of the reaction water was 7%.
However, there was no big difference in the decomposition rate between the two, and in each case, hydrogen peroxide could be almost completely decomposed and removed with the retention time of the waste water of 30 minutes. Further, the effect was the same even when the supply port 4 was closed, the supply port 3 was opened, and the waste water was supplied from the supply port 3.

【0033】[0033]

【表2】 [Table 2]

【0034】(実施例3)図3は本発明の実施態様の別
の1例を示すものである。図3において、接触槽21に
粒状活性炭が充填されている。過酸化水素を含有してい
る廃水は供給ポンプ2により廃水供給管20を経て接触
槽21の下から供給され、粒状活性炭層と接触して処理
される。接触槽21の内部の粒状活性炭懸濁水を攪拌す
るため、接触槽21の中心部に設置したエアリフト管1
9を設け、空気供給管16から空気を吹き込む。接触槽
21の上部には混合水を排出する混合水送水管9を有
し、その上部は発生ガスを気散させるために開放されて
いる。
(Embodiment 3) FIG. 3 shows another embodiment of the present invention. In FIG. 3, the contact tank 21 is filled with granular activated carbon. Waste water containing hydrogen peroxide is supplied from the bottom of the contact tank 21 through the waste water supply pipe 20 by the supply pump 2, and is contacted with the granular activated carbon layer to be treated. The air lift pipe 1 installed in the center of the contact tank 21 for stirring the granular activated carbon suspended water inside the contact tank 21.
9 is provided, and air is blown from the air supply pipe 16. A mixed water feed pipe 9 for discharging the mixed water is provided at the upper part of the contact tank 21, and the upper part thereof is opened to disperse the generated gas.

【0035】接触槽21中で廃水の流れとエアレーショ
ンとによって廃水は粒状活性炭と混合攪拌され、過酸化
水素の分解除去に充分な滞留を経た後、沈降槽8を経由
して処理水排出管7から処理水として流出される。この
際接触槽21から処理水と共に流出する粒状活性炭は混
合水として混合水送水管9により活性炭の沈降槽8に送
られる。沈降槽8で粒状活性炭は沈降し、活性炭は活性
炭返送管10によって接触槽21に返送される。
The waste water is mixed and stirred with the granular activated carbon by the flow of the waste water and aeration in the contact tank 21 and, after passing through the settling tank 8 enough to decompose and remove the hydrogen peroxide, the treated water discharge pipe 7 Is discharged as treated water. At this time, the granular activated carbon flowing out from the contact tank 21 together with the treated water is sent as mixed water to the activated carbon settling tank 8 through the mixed water feed pipe 9. The granular activated carbon is settled in the settling tank 8, and the activated carbon is returned to the contact tank 21 by the activated carbon return pipe 10.

【0036】[0036]

【発明の効果】上記の通り、本発明の過酸化水素の除去
方法においては、簡潔な構造の装置を使用して廃水に含
まれる過酸化水素の分解除去と反応生成物である気体の
効果的な除去並びに活性炭と処理水との固液分離を可能
とするものである。また、薬品や制御機器を使用するこ
とが不要の上、運転操作上の重要因子である活性炭使用
量およびその粒径について広範囲に設定することが可能
なため本発明の過酸化水素の除去方法は管理が容易で、
実用性の極めて高い方法である。
As described above, in the method for removing hydrogen peroxide of the present invention, the apparatus having a simple structure is used to decompose and remove the hydrogen peroxide contained in the wastewater and effectively remove the gas as the reaction product. It is possible to remove as much as possible and to perform solid-liquid separation of activated carbon and treated water. Further, since it is not necessary to use chemicals or control equipment, and the amount of activated carbon and the particle size thereof, which are important factors in operation, can be set in a wide range, the method for removing hydrogen peroxide of the present invention is Easy to manage,
This is an extremely practical method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の水流攪拌による2重構造処理槽を使用
した過酸化水素の除去方法の1例を説明する工程フロー
図である。
FIG. 1 is a process flow diagram illustrating an example of a method for removing hydrogen peroxide using a double structure treatment tank by water flow stirring according to the present invention.

【図2】本発明の水流攪拌による過酸化水素の除去方法
の別の一例を説明する工程フロー図である。
FIG. 2 is a process flow chart for explaining another example of the method for removing hydrogen peroxide by water flow stirring according to the present invention.

【図3】本発明のエアレーション攪拌による過酸化水素
の除去方法の一例を説明する工程フロー図である。
FIG. 3 is a process flow diagram illustrating an example of a method for removing hydrogen peroxide by aeration stirring according to the present invention.

【図4】本発明の機械的攪拌による過酸化水素の除去方
法の一例を説明する工程フロー図である。
FIG. 4 is a process flow diagram illustrating an example of a method for removing hydrogen peroxide by mechanical stirring according to the present invention.

【図5】廃水の滞留時間と過酸化水素の濃度の減少の一
例を示すグラフである。
FIG. 5 is a graph showing an example of reduction of residence time of waste water and concentration of hydrogen peroxide.

【図6】廃水の滞留時間と過酸化水素の濃度の減少の別
の一例を示すグラフである。
FIG. 6 is a graph showing another example of retention time of waste water and reduction of hydrogen peroxide concentration.

【符号の説明】[Explanation of symbols]

1 処理槽 12 沈降部 2 ポンプ 13 スクリーン 3 廃水供給口 14 回転ブラシ 4 廃水供給口 15 ブロア 5 金網 16 空気供給管 6 沈降部開口 17 バッフル 7 処理水排出管 18 活性炭 8 沈降槽 19 空気吹き出し管 9 混合水送水管 20 廃水供給管 10 活性炭返送管 21 接触槽 11 接触部 22 攪拌機 1 Treatment Tank 12 Settling Section 2 Pump 13 Screen 3 Waste Water Supply Port 14 Rotating Brush 4 Waste Water Supply Port 15 Blower 5 Wire Mesh 16 Air Supply Pipe 6 Settling Port Opening 17 Baffle 7 Treated Water Discharge Pipe 18 Activated Carbon 8 Settling Tank 19 Air Blow Pipe 9 Mixed water feed pipe 20 Waste water supply pipe 10 Activated carbon return pipe 21 Contact tank 11 Contact part 22 Stirrer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阿部 孝 山形県西置賜郡小国町大字小国町378番地 東芝セラミックス株式会社小国製造所内 (72)発明者 矢野 誠 山形県西置賜郡小国町大字小国町378番地 東芝セラミックス株式会社小国製造所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Abe 378, Oguni-machi, Oguni-cho, Nishiokitama-gun, Yamagata Prefecture Inside the Oguni Factory of Toshiba Ceramics Co., Ltd. (72) Makoto Yano 378, Oguni-cho, Oguni-cho, Nishiokitama-gun, Yamagata Prefecture Inside Toshiba Corporation Oguni Factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 過酸化水素を含有する廃水を槽有効容量
の1〜35%の割合で懸濁する粒状活性炭と流動攪拌状
態に保つ接触工程で接触せしめた後、該粒状活性炭と処
理水との混合水を沈降工程で分離し、該分離された粒状
活性炭を前記接触工程に返送せしめることを特徴とする
過酸化水素の除去方法。
1. Waste water containing hydrogen peroxide is contacted with granular activated carbon suspended at a ratio of 1 to 35% of the effective volume of a tank in a contact step of keeping in a fluidized stirring state, and then the granular activated carbon and treated water are contacted with each other. The method for removing hydrogen peroxide, characterized in that the mixed water of 1. is separated in the sedimentation step, and the separated granular activated carbon is returned to the contact step.
【請求項2】 過酸化水素を含有する廃水を槽有効容量
の1〜35%の割合で懸濁する粒状活性炭と流動攪拌状
態に保つ接触工程で接触せしめると共に、該粒状活性炭
と処理水を前記接触工程の流出部でスクリーンにより分
離せしめることを特徴とする過酸化水素の除去方法。
2. Waste water containing hydrogen peroxide is contacted with granular activated carbon suspended at a ratio of 1 to 35% of the effective volume of a tank in a contact step of keeping in a fluidized stirring state, and the granular activated carbon and treated water are treated as described above. A method for removing hydrogen peroxide, characterized in that it is separated by a screen at the outflow portion of the contact step.
【請求項3】 接触部と沈降部を有する処理槽の、接触
部において過酸化水素を含有する廃水を接触部有効容量
の1〜35%の割合で懸濁する粒状活性炭と流動攪拌状
態に保ちつつ接触せしめ、接触部上部から沈降部に該粒
状活性炭と処理水との混合水を溢流させ、沈降部におい
て該粒状活性炭と処理水とに沈降分離し、該分離された
粒状活性炭を処理水の一部と共に接触部に返送せしめ、
沈降部上部から処理水の一部を系外に排出することを特
徴とする過酸化水素の除去方法。
3. A granular activated carbon in which a wastewater containing hydrogen peroxide is suspended in the contact portion of a treatment tank having a contact portion and a sedimentation portion at a ratio of 1 to 35% of the effective volume of the contact portion and kept in a fluidized stirring state. While making contact, the mixed water of the granular activated carbon and the treated water overflows from the upper part of the contact portion to the sedimentation portion, and the granular activated carbon and the treated water are separated by sedimentation in the sedimentation portion, and the separated granular activated carbon is treated water. I sent it back to the contact part with a part of
A method for removing hydrogen peroxide, characterized in that a part of the treated water is discharged from the upper part of the sedimentation part to the outside of the system.
JP4267832A 1992-09-11 1992-09-11 How to remove hydrogen peroxide Expired - Lifetime JP2655299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4267832A JP2655299B2 (en) 1992-09-11 1992-09-11 How to remove hydrogen peroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4267832A JP2655299B2 (en) 1992-09-11 1992-09-11 How to remove hydrogen peroxide

Publications (2)

Publication Number Publication Date
JPH0691258A true JPH0691258A (en) 1994-04-05
JP2655299B2 JP2655299B2 (en) 1997-09-17

Family

ID=17450243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4267832A Expired - Lifetime JP2655299B2 (en) 1992-09-11 1992-09-11 How to remove hydrogen peroxide

Country Status (1)

Country Link
JP (1) JP2655299B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5632885A (en) * 1995-08-01 1997-05-27 Sharp Kabushiki Kaisha Hydrogen peroxide removal equipment capable of treating both waste water and waste gas
US5849194A (en) * 1995-12-28 1998-12-15 Sharp Kabushiki Kaisha Apparatus and method for treating waste water both chemically and biologically utilizing reaction fillers
US6063279A (en) * 1997-09-18 2000-05-16 Sharp Kabushiki Kaisha Waste water treatment method and equipment being able to treat hydrogen peroxide, phosphorus, fluorine and organic-matters with high efficiency
WO2006082997A1 (en) * 2005-02-02 2006-08-10 Kurita Water Industries Ltd. Soluble-cod ingredient remover, method of water treatment, and apparatus for water treatment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS517757A (en) * 1974-07-10 1976-01-22 Atsushi Kosakata Haisuino kojishorisochi
JPH01203094A (en) * 1988-02-05 1989-08-15 Shin Etsu Handotai Co Ltd Process for removing hydrogen peroxide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS517757A (en) * 1974-07-10 1976-01-22 Atsushi Kosakata Haisuino kojishorisochi
JPH01203094A (en) * 1988-02-05 1989-08-15 Shin Etsu Handotai Co Ltd Process for removing hydrogen peroxide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5632885A (en) * 1995-08-01 1997-05-27 Sharp Kabushiki Kaisha Hydrogen peroxide removal equipment capable of treating both waste water and waste gas
US5849194A (en) * 1995-12-28 1998-12-15 Sharp Kabushiki Kaisha Apparatus and method for treating waste water both chemically and biologically utilizing reaction fillers
US6063279A (en) * 1997-09-18 2000-05-16 Sharp Kabushiki Kaisha Waste water treatment method and equipment being able to treat hydrogen peroxide, phosphorus, fluorine and organic-matters with high efficiency
WO2006082997A1 (en) * 2005-02-02 2006-08-10 Kurita Water Industries Ltd. Soluble-cod ingredient remover, method of water treatment, and apparatus for water treatment

Also Published As

Publication number Publication date
JP2655299B2 (en) 1997-09-17

Similar Documents

Publication Publication Date Title
US20020088758A1 (en) Method and apparatus for treatment of water and wastewater
AU2002220093A1 (en) Method and apparatus for treatment of water and wastewater
JPH1080693A (en) Treatment of waste water and waste water treating device
JP2007136366A (en) Biological wastewater treatment apparatus and biological wastewater treatment method
JP3471619B2 (en) Prevention device for clogging of filter media in biological filtration tank
JPH0691258A (en) Method for removing hydrogen peroxide
JP2000135492A (en) Decomposition treatment of hydrogen peroxide
JP2003039082A (en) Fenton's reaction tank
JP2002126480A (en) Ozonized water treatment equipment
JP2001079580A (en) Dephosphorization process for sewage treatment and aerobic treatment vessel provided with metal electrode for dephosphorization
KR20040009452A (en) Processing methode for sewage purification and equipment therefor
KR101181800B1 (en) The method and apparatus to treat municipal and industrial wastewater
JP3387190B2 (en) Biological sludge ozonation equipment
JPH03213197A (en) Device for treating putrescible waste liquor
JP3735959B2 (en) Biological treatment equipment
JP3668358B2 (en) Structure of bioreactor with carrier
JPH091160A (en) Removing method of oxidizing substance and wet type flue gas desulfurization equipment
JPH02184398A (en) Moving bed-type denitrification device
JPH10216787A (en) Waste water treatment equipment
JP2001269675A (en) Method and device for process of sewage water
CN215962268U (en) Sewage slow-release device
JP2000176477A (en) Treatment of highly contaminated sewage by using microorganism-immobilized carrier, treating device therefor, and carrier separating device
JP2003290782A (en) Catalytic reaction apparatus
KR200294909Y1 (en) Processing equipment for sewage purification
JP3049164U (en) Merged glass fiber reinforced plastic septic tank

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20080530

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20080530

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080530

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090530

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20100530

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20110530

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20110530

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20130530

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20130530