JPH0691073B2 - Atom introduction device - Google Patents

Atom introduction device

Info

Publication number
JPH0691073B2
JPH0691073B2 JP60040177A JP4017785A JPH0691073B2 JP H0691073 B2 JPH0691073 B2 JP H0691073B2 JP 60040177 A JP60040177 A JP 60040177A JP 4017785 A JP4017785 A JP 4017785A JP H0691073 B2 JPH0691073 B2 JP H0691073B2
Authority
JP
Japan
Prior art keywords
substrate
silicon substrate
excimer laser
gas
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60040177A
Other languages
Japanese (ja)
Other versions
JPS61199640A (en
Inventor
俊之 鮫島
節夫 碓井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP60040177A priority Critical patent/JPH0691073B2/en
Priority to KR1019860001276A priority patent/KR940000905B1/en
Priority to DE8686901517A priority patent/DE3680623D1/en
Priority to PCT/JP1986/000103 priority patent/WO1986005320A1/en
Priority to EP86901517A priority patent/EP0216933B1/en
Publication of JPS61199640A publication Critical patent/JPS61199640A/en
Publication of JPH0691073B2 publication Critical patent/JPH0691073B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、原子の導入装置に関し、特に半導体の表層部
に酸素を導入して酸化膜を形成する装置に関するもので
ある。
The present invention relates to a device for introducing atoms, and more particularly to a device for introducing oxygen into a surface layer of a semiconductor to form an oxide film.

〔従来の技術〕[Conventional technology]

近年の半導体装置の製造工程においては、酸化膜形成が
不可欠な技術になっている。
In recent semiconductor device manufacturing processes, oxide film formation has become an indispensable technique.

従来、半導体装置の製造工程の中でもシリコン基板など
の半導体基板上に酸化膜を形成する方法としては、たと
えば、乾燥酸化、水蒸気酸化などの熱酸化による方法
や、気相成長法などが知られており、これら種々の方法
に応じた装置によって酸化膜が形成されている。
Conventionally, as a method for forming an oxide film on a semiconductor substrate such as a silicon substrate in the manufacturing process of a semiconductor device, for example, a method using thermal oxidation such as dry oxidation or steam oxidation, or a vapor phase growth method is known. Therefore, an oxide film is formed by an apparatus according to these various methods.

しかしながら、技術の進歩に伴う歩留り向上の要求や、
平面的のみならず立体的な微細化の要求があり、これら
の要求に答える技術として低温で迅速かつ高精度に酸化
膜を形成する方法が求められ、これに応ずる一例とし
て、第3図に示すようなパルスレーザーであるXeClエキ
シマレーザー41を使用し、反応室44に半導体基板42を配
置し、この反応室44に酸素ガスボンベ43から酸素を送っ
てこの反応室44を酸素雰囲気とし、上記XeClエキシマレ
ーザー41を照射して上記半導体基板42の表層に吸収させ
表層部のみを瞬時加熱して、表層部分に酸化膜を迅速に
形成するとともに、この内部側の歪などの発生を防止す
るような酸化膜の形成の装置が知られている。
However, demand for improved yields due to technological advances,
There is a demand not only for planarization but also for three-dimensional miniaturization. As a technique to meet these demands, a method of forming an oxide film at low temperature quickly and with high precision is required, and as an example in response to this, it is shown in FIG. Such a pulsed laser XeCl excimer laser 41 is used, the semiconductor substrate 42 is placed in the reaction chamber 44, oxygen is sent from the oxygen gas cylinder 43 to the reaction chamber 44 to make the reaction chamber 44 an oxygen atmosphere, and the XeCl excimer laser is used. The surface of semiconductor substrate 42 is irradiated with laser 41 to be absorbed, and only the surface layer portion is instantaneously heated to quickly form an oxide film on the surface layer portion, and to prevent the occurrence of internal strain, etc. Devices for forming membranes are known.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

前述のように、XeClエキシマレーザー41などの短波長パ
ルスレーザーを使用する装置には、高速に酸化膜を形成
できる他、低温で半導体基板42内部にダメージを与える
ことなく酸化を行うことができるという長所がある。し
かし、雰囲気を酸素O2にすることでは表面の酸化反応速
度が遅く、十分に短波長レーザーの性能を引き出せない
のみならず、酸化反応が瞬時かつ低温で行われるため、
SiOとSiO2とが併存するような不均一な酸化膜が形成さ
れるおそれもある。
As described above, in the device using the short-wavelength pulse laser such as the XeCl excimer laser 41, the oxide film can be formed at high speed, and the oxidation can be performed at a low temperature without damaging the inside of the semiconductor substrate 42. There are advantages. However, when the atmosphere is oxygen O 2 , the oxidation reaction rate of the surface is slow, and not only the performance of the short-wavelength laser cannot be sufficiently drawn out, but also because the oxidation reaction is instantaneously performed at a low temperature,
There is also a possibility that a non-uniform oxide film in which SiO and SiO 2 coexist is formed.

そこで本発明は、このような問題点に鑑み、基体の表層
部分に高速でかつ均一に所望の原子の導入領域たとえば
酸化膜を形成する装置を提供することを目的とする。
In view of the above problems, it is an object of the present invention to provide a device for forming a desired atom introduction region, for example, an oxide film, at a high speed and uniformly on the surface layer of a substrate.

〔問題点を解決するための手段〕[Means for solving problems]

オゾンを含む強反応性ガス中で酸素原子を基体に導入す
る装置において、上記強反応性ガスを光分解させるため
の波長320nm以下のエネルギービームを上記基体表面と
略平行に照射する手段と、上記酸素原子と上記基体との
反応を促進させるための波長1130nm以下のエネルギービ
ームを上記基体表面に照射する手段とを有する原子の導
入装置により上述の問題点を解決する。
In an apparatus for introducing oxygen atoms into a substrate in a strongly reactive gas containing ozone, means for irradiating an energy beam having a wavelength of 320 nm or less for photolyzing the strongly reactive gas substantially parallel to the substrate surface, The above-mentioned problems are solved by an atom introduction device having means for irradiating the surface of the substrate with an energy beam having a wavelength of 1130 nm or less for promoting the reaction between oxygen atoms and the substrate.

〔作用〕[Action]

本発明の導入装置は、光分解可能なガス(オゾンを含む
強反応性ガス)の雰囲気の反応室内に基体を配置し、上
記基体表面と略平行に波長320nm以下のエネルギービー
ムを照射する手段により、上記基体表面近傍の上記強反
応性ガスを、基体表面上で均一かつ効率良く光分解し、
この光分解した強反応性ガスの構成原子である酸素原子
が、波長1130nmのエネルギービームによって反応促進さ
れた基体の構成原子と容易に結合することによって容易
かつ高速に上記強反応性ガスの構成原子(酸素原子)を
基体内に導入する。
The introduction device of the present invention is a device in which a substrate is placed in a reaction chamber in an atmosphere of a photodecomposable gas (strong reactive gas containing ozone), and an energy beam having a wavelength of 320 nm or less is irradiated substantially parallel to the surface of the substrate. , The strongly reactive gas in the vicinity of the surface of the substrate is uniformly and efficiently photolyzed on the surface of the substrate,
Oxygen atoms, which are the constituent atoms of this photolyzed strongly reactive gas, easily and rapidly form the constituent atoms of the strongly reactive gas by easily combining with the constituent atoms of the substrate that have been promoted by the energy beam having a wavelength of 1130 nm. (Oxygen atom) is introduced into the substrate.

〔実施例〕〔Example〕

本発明の好適な実施例を図面を参照しながら説明する。 A preferred embodiment of the present invention will be described with reference to the drawings.

本発明の第1の実施例では、基体と略平行に照射される
エネルギービームに短波長のパルスレーザーであるXeCl
エキシマレーザー(波長308nm)を使用し、基体に直接
照射されこの基体の加熱に供し反応を促進するエネルギ
ービームに短波長のパルスレーザーであるXeFエキシマ
レーザー(波長350nm)を使用する。また、強反応性ガ
スとしてオゾンと酸素の混合ガス(分圧0.5気圧のO2
スおよび分圧0.5気圧の1%のO3ガスを含むガスの混合
ガス。以下、該混合ガスをO3/O2ガスと称す。)を使用
し、この混合ガスの雰囲気中で基体であるシリコン基板
に酸素原子を導入して酸化膜を形成する導入装置を説明
する。
In the first embodiment of the present invention, XeCl, which is a pulsed laser with a short wavelength, is used for the energy beam irradiated substantially parallel to the substrate.
An excimer laser (wavelength: 308 nm) is used, and an XeF excimer laser (wavelength: 350 nm), which is a short-wavelength pulse laser, is used as an energy beam for directly irradiating the substrate and heating the substrate to accelerate the reaction. Also, strong ozone and oxygen mixed gas as a reactive gas (partial pressure of 0.5 atm of O 2 gas and the partial pressure 0.5 atm 1% of a mixed gas of a gas containing O 3 gas. Hereinafter, the mixed gas O 3 / O 2 gas) will be used to introduce an oxygen atom into a silicon substrate that is a base in an atmosphere of this mixed gas to form an oxide film.

先ず、この導入装置の動作原理を説明すると、基体と略
平行に照射されるエネルギービームであるXeClエキシマ
レーザー装置7のレーザービームaが、強反応性ガスで
あるO3/O2ガスに照射する。すなわち、該レーザービー
ムaのO3/O2ガスに対する照射によって、レーザービー
ムaのエネルギーが光吸収され、 という光分解によって、励起状態の酸素原子Oが生成
される。この生成された励起状態の酸素原子は酸化力が
強いため迅速な酸化反応を実現でき、従って、基板に
は、高速にかつ十分に酸化されて均一な酸化膜が形成さ
れる。
First, the operation principle of this introducing device will be explained. The laser beam a of the XeCl excimer laser device 7 which is an energy beam irradiated substantially parallel to the substrate irradiates the O 3 / O 2 gas which is a strongly reactive gas. . That is, the energy of the laser beam a is absorbed by the irradiation of the O 3 / O 2 gas with the laser beam a, Oxygen atom O * in an excited state is generated by the photolysis. Since the generated oxygen atoms in the excited state have a strong oxidizing power, a rapid oxidation reaction can be realized, and therefore, the substrate is sufficiently oxidized at a high speed to form a uniform oxide film.

一方、XeFエキシマレーザー装置6のレーザービームb
は、基体であるシリコン基板2に直接照射され、該シリ
コン基板の表層部のみを加熱して、上記光分解による迅
速な酸化膜形成を助長する。すなわち、上記XeClエキシ
マレーザー装置7のレーザービームaと上記XeFエキシ
マレーザー装置6のレーザービームbの2つのエネルギ
ービームの相乗作用によって酸化膜を高速に形成するも
のである。ここでシリコン基板2の表層部分で起こる反
応は、 a) O3+Si→SiO+O2 及び、 b) SiO+O3→SiO2+O2 という二段階の反応によって進行していると考えられ、
シリコン基板2の構成原子であるシリコン原子との反応
が、上記光分解の作用と相まって一層高速の酸化膜を形
成できる。
On the other hand, the laser beam b of the XeF excimer laser device 6
Is directly irradiated onto the silicon substrate 2 which is the base body, and heats only the surface layer portion of the silicon substrate to promote the rapid oxide film formation by the photolysis. That is, an oxide film is formed at high speed by the synergistic action of the two energy beams of the laser beam a of the XeCl excimer laser device 7 and the laser beam b of the XeF excimer laser device 6. Here, the reaction occurring in the surface layer portion of the silicon substrate 2 is considered to proceed by a two-step reaction of a) O 3 + Si → SiO + O 2 and b) SiO + O 3 → SiO 2 + O 2 ,
The reaction with the silicon atoms that are the constituent atoms of the silicon substrate 2 can form an oxide film at a higher speed in combination with the action of the photolysis.

第1図に示すように、上記原理に基づく導入装置の構造
は、シリコン基板2を固定しこのシリコン基板2の表層
部の酸化膜形成が行われる反応室3と、この反応室3の
上部に取り付けられ石英窓4を介して上記シリコン基板
2に照射されるXeFエキシマレーザー装置6と、上記反
応室3の側方部に取り付けられ石英窓8を介して上記O3
/O2ガス雰囲気に上記シリコン基板2と略平行に照射さ
れるXeClエキシマレーザー装置7とを有し、さらに、上
記反応室3に給気口9を介して強反応性ガスである上記
O3/O2ガスが送られる構造になっている。
As shown in FIG. 1, the structure of the introduction device based on the above-described principle is such that a silicon substrate 2 is fixed and a reaction chamber 3 in which an oxide film is formed on a surface layer portion of the silicon substrate 2 is formed, and a reaction chamber 3 is provided above the reaction chamber 3. The XeF excimer laser device 6 which is attached and irradiates the silicon substrate 2 through the quartz window 4, and the O 3 through the quartz window 8 which is attached to the side of the reaction chamber 3
The XeCl excimer laser device 7 for irradiating the / O 2 gas atmosphere substantially in parallel with the silicon substrate 2 is provided, and the reaction chamber 3 is a strongly reactive gas through the air supply port 9.
It has a structure to send O 3 / O 2 gas.

そして、上記シリコン基板2の表層部に対する酸化膜の
形成にあたっては、上記XeClエキシマレーザー装置7の
レーザービームaは、上記O3/O2ガスの光分解を惹起さ
せ、励起状態の酸素原子を生成し、上記シリコン基板2
への酸素原子の導入が容易になるような状態を形成す
る。一方、上記XeFエキシマレーザー装置6のレーザー
ビームbは、その照射によってシリコン基板2の表層部
のみを予備加熱し、これによって、上記シリコン基板2
の構成原子であるシリコン原子と上記光分解によって容
易に導入される酸素原子を結合する。すなわち、上述し
たこの2つのレーザービームa、bの相乗作用によっ
て、容易かつ迅速に導入領域である酸化膜を形成するこ
とができる。
When forming an oxide film on the surface layer of the silicon substrate 2, the laser beam a of the XeCl excimer laser device 7 causes photolysis of the O 3 / O 2 gas to generate excited oxygen atoms. Then, the silicon substrate 2
A state is formed in which it is easy to introduce oxygen atoms into. On the other hand, the laser beam b of the XeF excimer laser device 6 preheats only the surface layer portion of the silicon substrate 2 by its irradiation, whereby the silicon substrate 2 is heated.
A silicon atom, which is a constituent atom of the above, is bonded to an oxygen atom which is easily introduced by the photolysis. That is, the synergistic action of the two laser beams a and b described above makes it possible to easily and quickly form the oxide film that is the introduction region.

この第1の実施例に示す原子の導入装置1は、2つのレ
ーザービームa、bの上記相乗作用による高速な酸化膜
形成のみならず、他の効果も挙げることができる。すな
わち、光分解を起こさせる上記XeClエキシマレーザー装
置7のレーザービームaは、上記シリコン基板2と略平
行に照射されるため、シリコン基板2表面の極近傍で光
分解を起こさせることができ、シリコン基板2の表面に
対して一様に励起状態の酸素原子を導入することができ
る。また、光分解を起こさせる上記XeClエキシマレーザ
ー装置7のレーザービームaは、局部的にシリコン基板
2を照射することもなく、従って、照射した部分に歪み
を与えることもない。さらに、光分解を起こさせる領域
をシリコン基板2の表面上に広くとることができ、さら
にまた、レーザービームaのスキャニング方向もシリコ
ン基板2の表面が水平に配置された場合には、水平方向
の走査のみで足り、膜厚が均一で均質な酸化膜の形成を
行うことができる。また、この原子の導入装置1は、単
一のレーザービームでなく2つの目的のことなるレーザ
ービームa、bの複合作用によるため、各レーザービー
ムの操作によって膜厚の制御が容易である。
The atom introduction device 1 shown in the first embodiment can provide not only a high-speed oxide film formation by the synergistic action of the two laser beams a and b, but also other effects. That is, since the laser beam a of the XeCl excimer laser device 7 that causes photodecomposition is irradiated substantially parallel to the silicon substrate 2, photodecomposition can occur near the surface of the silicon substrate 2 and silicon Excited oxygen atoms can be uniformly introduced into the surface of the substrate 2. Further, the laser beam a of the XeCl excimer laser device 7 which causes photolysis does not locally irradiate the silicon substrate 2 and therefore does not distort the irradiated portion. Further, a region where photolysis is caused can be widened on the surface of the silicon substrate 2, and the scanning direction of the laser beam a is also horizontal when the surface of the silicon substrate 2 is arranged horizontally. Only scanning is sufficient, and a uniform oxide film having a uniform film thickness can be formed. Further, since the atom introduction device 1 is not a single laser beam but a combined action of two laser beams a and b, which are different in purpose, it is easy to control the film thickness by operating each laser beam.

次に、第2の実施例として、基体に略平行に照射するエ
ネルギービームとして短波長のパルスレーザーであるXe
Clエキシマレーザーを使用し、基体を予備加熱するだけ
でなく基体の構成原子の間のボンディングを切断するエ
ネルギービームとして同じく短波長のパルスレーザーで
あるKrFエキシマレーザー(波長249nm)を使用した例を
説明する。
Next, as a second embodiment, Xe which is a short-wavelength pulse laser is used as an energy beam for irradiating the substrate substantially in parallel.
An example of using a ClF excimer laser and KrF excimer laser (wavelength 249 nm), which is also a short-wavelength pulse laser as an energy beam that not only preheats the substrate but also cuts bonds between constituent atoms of the substrate, is explained. To do.

基体を、上記第1の実施例と同様にシリコン基板12を選
択した場合には、第4図に示すように、Si原子の間のボ
ンディング切断は波長に依存し、およそ260nm以下の波
長で生ずることが知られている。従って、上記KrFエキ
シマレーザーを上記シリコン基板12に照射したときは、
照射されたシリコン基板12の表層部のシリコン原子のボ
ンディング切断が生ずる。この第2の実施例は、この原
理を応用したものである。
When the silicon substrate 12 is selected as the substrate as in the case of the first embodiment, as shown in FIG. 4, the bond cutting between Si atoms depends on the wavelength and occurs at a wavelength of about 260 nm or less. It is known. Therefore, when the silicon substrate 12 is irradiated with the KrF excimer laser,
Bonding breakage of silicon atoms in the surface layer of the irradiated silicon substrate 12 occurs. This second embodiment is an application of this principle.

この第2の実施例の導入装置11は、第2図に示すよう
に、シリコン基板12を固定しこのシリコン基板12の表層
部の酸化膜形成が行われる反応室13と、この反応室13の
上部に取り付けられ石英窓14を介して上記シリコン基板
12に照射されるKrFエキシマレーザー装置16と、上記反
応室13の側方部に取に付けられ石英窓18を介して上記O3
/O2ガス雰囲気に上記シリコン基板12と略平行に照射さ
れるXeClエキシマレーザー装置17とを有し、さらに、上
記反応室13に給気口19を介して強反応性ガスである上記
O3/O2ガスが送られる構造になっている。
As shown in FIG. 2, the introduction device 11 of the second embodiment has a reaction chamber 13 in which a silicon substrate 12 is fixed and an oxide film is formed on the surface layer of the silicon substrate 12, and a reaction chamber 13 of the reaction chamber 13. The silicon substrate mounted on the top through the quartz window 14
The KrF excimer laser device 16 for irradiating 12 and the O 3 through the quartz window 18 attached to the side of the reaction chamber 13
/ O 2 having a XeCl excimer laser device 17 which is irradiated in substantially parallel to the silicon substrate 12 in the gas atmosphere, further, the reaction chamber 13 is a strongly reactive gas through the air supply port 19
It has a structure to send O 3 / O 2 gas.

そして、この第2の実施例に基づく導入装置11は、上記
第1の実施例に準じ、シリコン基板12と略平行に照射さ
れる上記XeClエキシマレーザー装置17のレーザービーム
cは、O3/O2ガスの光分解を起こさせるが、一方上記KrF
エキシマレーザー装置16のレーザービームdは、上記シ
リコン基板12の表層部の予備加熱のみならず、短波長で
あるため上記シリコン基板12の構成原子であるシリコン
原子のボンディング切断を引き起こすことができる。そ
して、このボンディング切断されたシリコン原子は、上
記XeClエキシマレーザー装置17のレーザービームcによ
って光分解され、励起状態となった酸素原子Oと容易
に結合することができるため、一層迅速に酸化膜を形成
することができる。また、この場合も、上記第1の実施
例と同様に、光分解を起こさせる上記XeClエキシマレー
ザー装置17のレーザービームcは、上記シリコン基板12
と略平行に照射されるため、シリコン基板12表面の極近
傍で光分解を起こさせることができ、シリコン基板12の
表面に対して一様に励起状態の酸素原子を導入すること
ができる。また、光分解を起こさせる領域をシリコン基
板12の表面上に広くとることができ、さらにまた、レー
ザービームcのスキャニング方向もシリコン基板12の表
面が水平に配置された場合には、水平方向の走査のみで
足り、膜厚が均一で均質な酸化膜の形成を行うことがで
きる。また、この原子の導入装置11は、単一のレーザー
ビームでなく2つの目的のことなるレーザービームc、
dの複合作用によるため、各レーザービームの操作によ
って膜厚の制御が容易である。
Then, according to the introduction device 11 according to the second embodiment, the laser beam c of the XeCl excimer laser device 17, which is irradiated substantially parallel to the silicon substrate 12, is O 3 / O according to the first embodiment. It causes photodecomposition of two gases, while the above KrF
The laser beam d of the excimer laser device 16 not only preheats the surface layer portion of the silicon substrate 12, but also has a short wavelength, so that it can cause bonding breakage of silicon atoms which are constituent atoms of the silicon substrate 12. Then, the silicon atom after the bonding is cut is photolyzed by the laser beam c of the XeCl excimer laser device 17 and can be easily bonded to the excited oxygen atom O *. Can be formed. Also in this case, similarly to the first embodiment, the laser beam c of the XeCl excimer laser device 17 which causes photolysis is the silicon substrate 12
Since the irradiation is performed substantially in parallel with, the photolysis can be caused in the immediate vicinity of the surface of the silicon substrate 12, and the excited oxygen atoms can be uniformly introduced into the surface of the silicon substrate 12. In addition, a region where photolysis is caused can be widened on the surface of the silicon substrate 12, and the scanning direction of the laser beam c is also horizontal when the surface of the silicon substrate 12 is arranged horizontally. Only scanning is sufficient, and a uniform oxide film having a uniform film thickness can be formed. Also, this atom introduction device 11 is not a single laser beam but two different laser beams c,
Because of the combined action of d, it is easy to control the film thickness by operating each laser beam.

本発明の導入装置において基体に略平行に照射しこの基
体の雰囲気ガスである強反応性ガスを光分解するエネル
ギービームは、強反応性ガスに応じて選択できるもので
あり、これらの関係は波長によりすなわち加熱、光分解
およびボンディング切断という機能面から選択もしくは
組み合わせることができる。一例として、第4図に示す
ようにNO2ガス、N2OガスおよびO2ガスを使用する場合
は、NO2は244nm以下、N2Oは230nm以下、O2は175nm以下
の波長でそれぞれ光分解するため、例えば、O2では、Xe
レゾナンスランプ、F2エキシマレーザー、ArFエキシマ
レーザーなどを使用することができ、またN2Oでは、ArF
エキシマレーザー、重水素ランプ、低圧水銀灯などを使
用することができるが、本発明においてはO3を含む強反
応性ガスを使用することから、波長320nm以下のエネル
ギービームを使用する。したがって、上記KrFエキシマ
レーザ、上記低圧水銀灯、重水素ランプ、XeClエキシマ
レーザなどを使用することができ、これらのエネルギー
ビームによって光分解を行い、容易に基板の構成原子と
結合させる。またさらに、エネルギービームは、各種レ
ーザービームの高次の高調波を使用することもでき、エ
レクトンビーム、イオンビームでもよい。
The energy beam for irradiating the substrate in a substantially parallel manner in the introduction apparatus of the present invention to photolyze the strongly reactive gas as the atmospheric gas of this substrate can be selected according to the strongly reactive gas, and the relationship between them is That is, it can be selected or combined from the functional aspects of heating, photolysis and bonding cutting. As an example, when NO 2 gas, N 2 O gas and O 2 gas are used as shown in FIG. 4, NO 2 has a wavelength of 244 nm or less, N 2 O has a wavelength of 230 nm or less, and O 2 has a wavelength of 175 nm or less, respectively. Because of photolysis, for example, in O 2 , Xe
Resonance lamps, F 2 excimer lasers, ArF excimer lasers, etc. can be used, and with N 2 O, ArF
An excimer laser, a deuterium lamp, a low-pressure mercury lamp, or the like can be used, but in the present invention, since a strongly reactive gas containing O 3 is used, an energy beam having a wavelength of 320 nm or less is used. Therefore, the KrF excimer laser, the low-pressure mercury lamp, the deuterium lamp, the XeCl excimer laser, or the like can be used, and photolysis is performed by these energy beams to easily bond with the constituent atoms of the substrate. Furthermore, as the energy beam, higher harmonics of various laser beams can be used, and an electron beam or an ion beam may be used.

また、基体としては、上述したシリコン基板に限定され
ずゲルマニウム基板やGaAs、InP、GaP等の化合物半導体
の基板、Ta、Mo、Alなどの金属の基板でもよく、GaAs、
InP、GaP等の基板の場合は、基板内部の砒素や燐等の発
生を防止し迅速に酸化膜を形成することもできる。
The substrate is not limited to the above-mentioned silicon substrate, but may be a germanium substrate, a substrate of a compound semiconductor such as GaAs, InP, GaP, or a substrate of a metal such as Ta, Mo, Al, GaAs,
In the case of a substrate of InP, GaP, etc., it is possible to prevent the generation of arsenic, phosphorus, etc. inside the substrate and form an oxide film quickly.

また、上記強反応性ガスの圧力については、上記第1お
よび第2の実施例のO3ガス分圧に限定されず、たとえば
O3ガスの分圧を高くすることにより、あるいは圧力を常
圧から高圧へと制御することにより、より反応速度を向
上させることができる。
The pressure of the strongly reactive gas is not limited to the partial pressure of O 3 gas in the first and second embodiments, and may be, for example,
By increasing the partial pressure of O 3 gas or controlling the pressure from normal pressure to high pressure, the reaction rate can be further improved.

また、上記第1の実施例及び上記第2の実施例につい
て、基体を予備加熱するエネルギービームとしては、上
述の例に限定されずに、第4図に示すような1130nm以下
のエネルギービームが使用可能である。たとえばArレー
ザー、XeClエキシマレーザー、ArFエキシマレーザー、
さらには、ルビーレーザー、YAGレーザー等の高次の高
調波などを使用することができる。またさらに、低圧水
銀ランプ、エレクトロンビーム、イオンビーム等の光源
を使用することもできる。
Further, in the above-mentioned first and second embodiments, the energy beam for preheating the substrate is not limited to the above-mentioned example, and an energy beam of 1130 nm or less as shown in FIG. 4 is used. It is possible. For example, Ar laser, XeCl excimer laser, ArF excimer laser,
Furthermore, high-order harmonics such as ruby laser and YAG laser can be used. Furthermore, a light source such as a low-pressure mercury lamp, an electron beam or an ion beam can be used.

〔発明の効果〕〔The invention's effect〕

本発明に係る導入装置を使用することによって、たとえ
ばシリコン基板などの半導体等の基体にたとえば酸素原
子などの光分解可能なガスの構成原子を容易にかつ迅速
に導入することができる。また、導入により形成された
反応層は、均一かつ均質であり、さらにその膜厚の制御
も容易である等の優れた利点を有している。
By using the introduction device according to the present invention, constituent atoms of a photodecomposable gas such as oxygen atoms can be introduced easily and quickly into a substrate such as a semiconductor such as a silicon substrate. In addition, the reaction layer formed by the introduction has the excellent advantages that it is uniform and homogeneous, and that its film thickness can be easily controlled.

【図面の簡単な説明】[Brief description of drawings]

第1図は第1の実施例を説明する導入装置の概略構造図
であり、第2図は第2の実施例に例示した導入装置の概
略構造図であり、第3図は従来の導入装置の一例として
の酸化膜形成装置を示す構造図であり、第4図はエネル
ギービームの波長による特性を説明する特性図である。 2、12……基体(シリコン基板) 6……XeFエキシマレーザー装置 7……XeClエキシマレーザー装置 16……KrFエキシマレーザー装置 17……XeClエキシマレーザー装置
FIG. 1 is a schematic structural diagram of an introducing device for explaining the first embodiment, FIG. 2 is a schematic structural diagram of the introducing device illustrated in the second embodiment, and FIG. 3 is a conventional introducing device. FIG. 4 is a structural diagram showing an oxide film forming apparatus as an example, and FIG. 4 is a characteristic diagram for explaining the characteristic depending on the wavelength of the energy beam. 2, 12 …… Base (silicon substrate) 6 …… XeF excimer laser device 7 …… XeCl excimer laser device 16 …… KrF excimer laser device 17 …… XeCl excimer laser device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】オゾンを含む強反応性ガス中で酸素原子を
基体に導入する装置において、上記強反応性ガスが光分
解させるための波長320nm以下のエネルギービームを上
記基体表面と略平行に照射する手段と、上記酸素原子と
上記基体との反応を促進させるための波長1130nm以下の
エネルギービームを上記基体表面に照射する手段とを有
する原子の導入装置。
1. An apparatus for introducing oxygen atoms into a substrate in a strongly reactive gas containing ozone, wherein an energy beam having a wavelength of 320 nm or less for photodecomposing the strongly reactive gas is irradiated substantially parallel to the surface of the substrate. And a means for irradiating the surface of the substrate with an energy beam having a wavelength of 1130 nm or less for promoting the reaction between the oxygen atoms and the substrate.
JP60040177A 1985-02-28 1985-02-28 Atom introduction device Expired - Fee Related JPH0691073B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60040177A JPH0691073B2 (en) 1985-02-28 1985-02-28 Atom introduction device
KR1019860001276A KR940000905B1 (en) 1985-02-28 1986-02-24 Forming method of oxide film
DE8686901517A DE3680623D1 (en) 1985-02-28 1986-02-28 METHOD FOR PRODUCING INSULATING OXIDE LAYERS ON A SEMICONDUCTOR BODY.
PCT/JP1986/000103 WO1986005320A1 (en) 1985-02-28 1986-02-28 Method and system for fabricating insulating layer on semiconductor substrate surface
EP86901517A EP0216933B1 (en) 1985-02-28 1986-02-28 Method for fabricating an insulating oxide layer on semiconductor substrate surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60040177A JPH0691073B2 (en) 1985-02-28 1985-02-28 Atom introduction device

Publications (2)

Publication Number Publication Date
JPS61199640A JPS61199640A (en) 1986-09-04
JPH0691073B2 true JPH0691073B2 (en) 1994-11-14

Family

ID=12573490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60040177A Expired - Fee Related JPH0691073B2 (en) 1985-02-28 1985-02-28 Atom introduction device

Country Status (2)

Country Link
JP (1) JPH0691073B2 (en)
KR (1) KR940000905B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104196A (en) * 1991-10-04 1994-04-15 Semiconductor Energy Lab Co Ltd Manufacturing method for semiconductor device
KR960008503B1 (en) 1991-10-04 1996-06-26 Semiconductor Energy Lab Kk Manufacturing method of semiconductor device
JP5246846B2 (en) * 2008-02-08 2013-07-24 独立行政法人産業技術総合研究所 Manufacturing method of high-density silicon oxide film, silicon substrate having high-density silicon oxide film manufactured by the manufacturing method, and semiconductor device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595621A (en) * 1982-07-01 1984-01-12 Nec Corp Forming method for thin-film
JPS5932122A (en) * 1982-08-16 1984-02-21 Hitachi Ltd Surface character modifying apparatus
JPS5940525A (en) * 1982-08-30 1984-03-06 Mitsubishi Electric Corp Growth of film
JPS5961919A (en) * 1982-10-01 1984-04-09 Hitachi Ltd Manufacture of thin film
JPS59182530A (en) * 1983-04-01 1984-10-17 Hitachi Ltd Formation of semiconductor

Also Published As

Publication number Publication date
KR940000905B1 (en) 1994-02-04
JPS61199640A (en) 1986-09-04
KR860006833A (en) 1986-09-15

Similar Documents

Publication Publication Date Title
JPH02294027A (en) Method and device for annealing
JPH0691073B2 (en) Atom introduction device
JPH04167985A (en) Method for cutting off wafer
JPH077760B2 (en) Semiconductor oxidation method
JPS6187338A (en) Method of dry cleaning silicon surface irradiated with multiple beams
WO1986005320A1 (en) Method and system for fabricating insulating layer on semiconductor substrate surface
JPS6132429A (en) Device for manufacturing semiconductor device
JPS5940525A (en) Growth of film
JPS61199638A (en) Method for formation of insulating film
JPH0437129A (en) Etching and device thereof
JPH0974067A (en) Doping method and doping device
JP3125004B2 (en) Substrate surface processing method
JP4468643B2 (en) Cutting method
JPS6130028A (en) Vapor growth method
JP2719174B2 (en) Manufacturing method of metal film
JP3300781B2 (en) Method of forming oxide film
JPH1160376A (en) Processing of diamond and device
JPS62158331A (en) Laser assisted etching method
JPS6197912A (en) Cvd equipment
JP2605268B2 (en) Method for manufacturing semiconductor device
JPH0153577B2 (en)
JPS60216556A (en) Manufacture of semiconductor of semiconductor device
JPS60162776A (en) Plasma treating device
JPH04141589A (en) Photo treatment and photo treating device
JPS62145819A (en) Laser etching method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees