JPH0690292B2 - Choking detection circuit of radiation measuring device using semiconductor detector - Google Patents

Choking detection circuit of radiation measuring device using semiconductor detector

Info

Publication number
JPH0690292B2
JPH0690292B2 JP62070696A JP7069687A JPH0690292B2 JP H0690292 B2 JPH0690292 B2 JP H0690292B2 JP 62070696 A JP62070696 A JP 62070696A JP 7069687 A JP7069687 A JP 7069687A JP H0690292 B2 JPH0690292 B2 JP H0690292B2
Authority
JP
Japan
Prior art keywords
semiconductor detector
radiation
pulse
silicon semiconductor
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62070696A
Other languages
Japanese (ja)
Other versions
JPS63236988A (en
Inventor
明久 海原
裕治 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62070696A priority Critical patent/JPH0690292B2/en
Publication of JPS63236988A publication Critical patent/JPS63236988A/en
Publication of JPH0690292B2 publication Critical patent/JPH0690292B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体検出器を用いた放射線検出装置に係
り、特に原子力発電所内などの各部放射線を測定する放
射線モニタや、個人被曝を監視する線量計の如き放射線
検出装置に発生する窒息現象を検出できる回路に関する
ものである。
Description: TECHNICAL FIELD The present invention relates to a radiation detection apparatus using a semiconductor detector, and particularly to a radiation monitor for measuring radiation in each part of a nuclear power plant or the like, and personal exposure monitoring. The present invention relates to a circuit that can detect a choking phenomenon that occurs in a radiation detection device such as a dosimeter.

〔従来の技術〕[Conventional technology]

従来、原子力発電所などの各部放射線を測定する放射線
モニタや、個人被曝を監視する線量計の如き放射線検出
装置は、放射線を検出する検出センサにGM計数管を用い
ており、このGM計数管からの出力信号を基に放射線を測
定している。かかる放射線検出装置に用いられるGM計数
管は高放射下におかれると窒息現象を発生するというこ
とが知られている。一般にGM計数管においては、入射荷
電粒子による一つの放電が停止した後に、次の電荷粒子
が入射してもこれに基づく次の放電が起らない不感時間
(デツド・タイム)が認められ、このGM計数管固有のデ
ツド・タイムの存在によつて、GM計数管を高放射線下で
使用するとデツド・タイムの割合が大きくなり、ついに
は連続放電状態となつて放電電流は飽和し、そして出力
パルスの振幅が小さくなり、さらには出力パルスが出な
くなる。この現象をGM計数管の窒息現象という。
Conventionally, radiation detectors such as radiation monitors that measure radiation in each part of a nuclear power plant, and dosimeters that monitor individual exposures use GM counter tubes as detection sensors to detect radiation. Radiation is measured based on the output signal of. It is known that the GM counter used in such a radiation detection device causes a choking phenomenon when exposed to high radiation. Generally, in a GM counter, there is a dead time (dead time) in which the next discharge based on the next charged particle does not occur even after the next discharge of charged particles after one discharge is stopped. Due to the existence of the dead time inherent to the GM counter, when the GM counter is used under high radiation, the proportion of the dead time becomes large, and finally the discharge current saturates in the continuous discharge state, and the output pulse Becomes smaller, and no output pulse is output. This phenomenon is called the choking phenomenon of the GM counter.

このような窒息現象を有効に検出しないと、測定上重要
な誤りを起すこととなる。そこで、従来の放射線測定装
置は、前記窒息現象を有効に検出する回路として、高圧
電源からGM計数管へ流す電流をGM計数管の低圧部(接地
側)で直接検出するようにした回路を設けて窒息検出す
るか、または特開昭55-26484号に記載されているように
光結合トランジスタにより、GM計数管に流れる電流を検
出するようにした回路を設けて窒息検出していた。
If such a choking phenomenon is not effectively detected, an important error in measurement will occur. Therefore, the conventional radiation measuring device is provided with a circuit for directly detecting the current flowing from the high-voltage power supply to the GM counter at the low-voltage part (ground side) of the GM counter as a circuit for effectively detecting the suffocation phenomenon. The suffocation is detected by the suffocation detection, or as described in JP-A-55-26484, the suffocation is detected by providing a circuit for detecting the current flowing through the GM counter by an optical coupling transistor.

ところで、近年、半導体技術の発展に伴つてGM計数管の
代りにシリコン半導体検出器が用いられるようになつて
きた。かかる検出器を用いた計測系においても発生原理
は異なるものの、窒息現象が発生することが知られてい
る。しかしながら、半導体検出器を用いた計測系の窒息
検出について記載された文献は見当たらず、半導体検出
器を用いた計測系の窒息検出の技術の確立が望まれてい
た。
By the way, in recent years, with the development of semiconductor technology, a silicon semiconductor detector has been used in place of the GM counter tube. It is known that the suffocation phenomenon occurs in the measurement system using such a detector, though the principle of occurrence is different. However, there is no literature describing the suffocation detection of the measurement system using the semiconductor detector, and establishment of a technique for suffocation detection of the measurement system using the semiconductor detector has been desired.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

すなわち、上記従来技術は、半導体検出器を用いた計測
系の窒息検出ではなく、GM計数管についてのものである
ことから、そのまま従来技術を用いることはできない。
このように従来技術を用いることのできない理由は、ま
ず、GM計数管の場合、高圧電源(約500〜1000V)を用い
ることにある。つまり、窒息現象を検出するために直接
電流を検出しているが、このようにするには、高圧電源
の低圧部(接地部)で検出しなければならず、高圧電源
の回路構成に制約が伴い、かつ複雑であるという問題が
あり、かつ半導体検出器を用いる場合に適用不能であ
る。
That is, since the above-mentioned conventional technique is not for the suffocation detection of the measurement system using the semiconductor detector but for the GM counter tube, the conventional technique cannot be used as it is.
The reason why the conventional technique cannot be used is that a high-voltage power source (about 500 to 1000 V) is used in the case of the GM counter. In other words, the current is directly detected to detect the suffocation phenomenon, but in order to do so, it must be detected at the low-voltage part (grounding part) of the high-voltage power supply, which limits the circuit configuration of the high-voltage power supply. It is accompanied and complicated, and is not applicable when using a semiconductor detector.

また、窒息現象を検出するために光結合トランジスタで
電流検出を行なうようにした従来技術では、高感度の光
結合トランジスタが必要であつて、かつそのトランジス
タに安定した特性が要求されることになり、GM計数管に
比べ微弱電流の検出にはおのずと限界があり、これも半
導体検出器を用いる場合に難点がある。
Further, in the conventional technology in which the photocoupling transistor is used to detect the current in order to detect the suffocation phenomenon, a highly sensitive photocoupling transistor is required and stable characteristics are required for the transistor. As compared with the GM counter, there is a limit to the detection of the weak current, which is also a problem when using the semiconductor detector.

本発明は、上記問題を解消するためになされたもので、
半導体検出器に供給するバイアス電源が非常に低い電圧
であることに着目し、バイアス電源の高圧側負荷抵抗の
微弱な電圧降下を直接検出することにより、計測系の窒
息現象を検出し、もつて窒息現象に基づく指示計のみか
け上の低下による誤つた測定を防止する半導体検出器を
用いる放射線計測装置の窒息検出回路を提供することを
目的とする。
The present invention has been made to solve the above problems,
Focusing on the fact that the bias power supply supplied to the semiconductor detector has a very low voltage, the suffocation phenomenon of the measurement system can be detected by directly detecting the weak voltage drop of the load resistance on the high-voltage side of the bias power supply. An object of the present invention is to provide a choking detection circuit of a radiation measuring apparatus using a semiconductor detector that prevents erroneous measurement due to apparent deterioration of an indicator based on the choking phenomenon.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成した本発明は、バイアス電源から電流を
供給され放射線を検出してパルスを出力するシリコン半
導体検出器と、前記シリコン半導体検出器から出力され
たパルス信号を増幅するパルス増幅器と、該パルス増幅
器からのパルス信号を処理し、放射線の強度に比例した
指示を指示させる線量率計装置とからなる放射線計測装
置において、上記バイアス電源の高圧側に接続される負
荷抵抗を電圧降下を検出する手段と、該手段から出力さ
れる信号の直流成分を、予め設定してある窒息検出値と
比較するコンパレータとを設けてなることを特徴とする
ものである。
The present invention, which has achieved the above object, provides a silicon semiconductor detector that is supplied with a current from a bias power source, detects radiation, and outputs a pulse, and a pulse amplifier that amplifies a pulse signal output from the silicon semiconductor detector, In a radiation measuring device comprising a pulse rate signal from a pulse amplifier and a dose rate measuring device for giving an instruction proportional to the intensity of radiation, a load resistor connected to the high voltage side of the bias power supply detects a voltage drop. And a comparator for comparing the DC component of the signal output from the means with a preset choking detection value.

〔作用〕[Action]

半導体検出器は、高放射線下では多数の電荷パルス信号
を発生し、その発生パルス数は放射線の強さに比例す
る。バイアス電源は負荷抵抗を介して半導体検出器に供
給される。半導体検出器へ流れる電流は、当該負荷抵抗
にも流れる。したがつて、該負荷抵抗に接続された手段
(増幅回路)は、バイアス電源から半導体検出器へ供給
する電流を検出することができる。また当該手段は、バ
イアス電源側に接続されているため、検出器信号に与え
るノイズは少ない。前記手段で検出した信号のうちの直
流分を予め設定した設定値とコンパレータで比較し、設
定値以上の直流電流が半導体検出器に流れたときは、半
導体検出器の窒息が、あるいは絶縁低下であるので、放
射線測定が正確に行なわれていないことを判断すること
ができる。
The semiconductor detector generates a large number of charge pulse signals under high radiation, and the number of generated pulses is proportional to the intensity of the radiation. The bias power supply is supplied to the semiconductor detector via the load resistance. The current flowing to the semiconductor detector also flows to the load resistance. Therefore, the means (amplifier circuit) connected to the load resistor can detect the current supplied from the bias power supply to the semiconductor detector. Further, since the means is connected to the bias power source side, the noise given to the detector signal is small. The direct current component of the signal detected by the means is compared with a preset value set by a comparator, and when a direct current equal to or higher than the set value flows to the semiconductor detector, choking of the semiconductor detector or insulation deterioration is caused. Therefore, it can be determined that the radiation measurement is not performed accurately.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面に基づいて説明する。 An embodiment of the present invention will be described below with reference to the drawings.

図は本発明の実施例を示す回路図である。The drawing is a circuit diagram showing an embodiment of the present invention.

1はバイアス電源であり、このバイアス電源1からシリ
コン半導体検出器2に電流が供給されるように回路構成
されている。シリコン半導体検出器2からのパルスを増
幅するパルス増幅器3がシリコン半導体検出器2のアノ
ード・カソード間に接続されている。パルス増幅器3か
らのパルスを計数して放射線の強度を比例した指示をす
る線量率計装置4がパルス増幅器3の出力に接続されて
いる。
Reference numeral 1 denotes a bias power source, and the circuit configuration is such that the bias power source 1 supplies a current to the silicon semiconductor detector 2. A pulse amplifier 3 for amplifying the pulse from the silicon semiconductor detector 2 is connected between the anode and the cathode of the silicon semiconductor detector 2. A dose rate meter device 4 for counting the pulses from the pulse amplifier 3 and giving a proportional indication of the intensity of the radiation is connected to the output of the pulse amplifier 3.

放射線計測装置は、上記バイアス電源1と、シリコン半
導体検出器2と、パルス増幅器3と、線量率計装置4と
から構成されている。
The radiation measuring device is composed of the bias power supply 1, the silicon semiconductor detector 2, the pulse amplifier 3, and the dose rate measuring device 4.

また、パルス増幅器3は、増幅器A30と、正入力端子が
抵抗R31を介して接地され、負入力端子がコンデンサC31
を介してシリコン半導体検出器2のカソードに接続さ
れ、負入力端子と出力端子との間にコンデンサC32、抵
抗R32の並列回路を接続して構成されている。
Further, the pulse amplifier 3 has an amplifier A 30 , a positive input terminal thereof is grounded through a resistor R 31 , and a negative input terminal thereof is a capacitor C 31.
It is connected to the cathode of the silicon semiconductor detector 2 via the, and is configured by connecting a parallel circuit of a capacitor C 32 and a resistor R 32 between the negative input terminal and the output terminal.

次に、バイアス電源1とシリコン半導体検出器2との間
に、抵抗R1、負荷抵抗5、抵抗R2からなる直列回路を接
続し、負荷抵抗5と抵抗R2からなる直列回路を接続し、
負荷抵抗5と抵抗R2との接続点とアースとの間にコンデ
ンサ6を接続しておく。負荷抵抗5の両端には、この電
圧降下を検出し増幅する増幅回路7が設けられている。
この増幅回路7の出力端には、その出力信号のうちの直
流成分のみを取り出すローパスフイルタ8が接続されて
いる。このローパスフイルタ8からの直流成分と、予め
窒息検出設定器9に設定してある設定値とを比較するコ
ンパレータ10を設けてある。コンパレータ10の出力は、
出力回路11で増幅されて必要に応じて用いられる。
Next, between the bias power source 1 and the silicon semiconductor detector 2, a series circuit composed of a resistance R 1 , a load resistance 5 and a resistance R 2 is connected, and a series circuit composed of a load resistance 5 and a resistance R 2 is connected. ,
A capacitor 6 is connected between the connection point between the load resistor 5 and the resistor R 2 and the ground. An amplifier circuit 7 that detects and amplifies this voltage drop is provided at both ends of the load resistor 5.
A low-pass filter 8 for extracting only the DC component of the output signal is connected to the output terminal of the amplifier circuit 7. A comparator 10 for comparing the direct current component from the low-pass filter 8 with a set value preset in the choking detection setting device 9 is provided. The output of the comparator 10 is
It is amplified by the output circuit 11 and used as needed.

増幅回路7は、増幅器A71,A72と抵抗R71,R72,R73
からなる前段増幅回路、この前段増幅回路からの信号を
増幅する増幅器A73,抵抗A74,R75,R76,R77とからな
る後段差動増幅回路からなる。
The amplifier circuit 7 includes a pre-stage amplifier circuit including amplifiers A 71 and A 72 and resistors R 71 , R 72 and R 73 , an amplifier A 73 for amplifying a signal from the pre-stage amplifier circuit, resistors A 74 , R 75 and R. It consists of a post-stage differential amplifier circuit consisting of 76 and R 77 .

ローパスフイルタ8は、アクテイブフイルタで構成さ
れ、増幅器A81と、抵抗R81,R82と、コンデンサC81,C
82とからなる。
The low-pass filter 8 is composed of an active filter, and has an amplifier A 81 , resistors R 81 and R 82 , and capacitors C 81 and C.
It consists of 82 and.

出力回路11は、トランジスタTR111と、抵抗R111,R112
とからなる。
The output circuit 11 includes a transistor TR 111 and resistors R 111 and R 112.
Consists of.

次に、本実施例の動作を説明する。Next, the operation of this embodiment will be described.

放射線モニタの検出器として用いられるシリコン半導体
検出器2は、放射線により電荷パルス信号を発生するも
ので、放射線が高くなると、発生パルス数が増大する。
電荷パルスの発生に伴いバイアス電源1から電荷を供給
する。シリコン半導体検出器2から発生する電荷パルス
は、パルス増幅器3で電荷パルス信号を電圧信号に増幅
し、線量率指示計装置4にて必要な処理をして、その測
定値を指示する。
The silicon semiconductor detector 2 used as a detector of the radiation monitor generates a charge pulse signal by radiation, and the number of generated pulses increases as the radiation becomes higher.
The charge is supplied from the bias power supply 1 in accordance with the generation of the charge pulse. The charge pulse generated from the silicon semiconductor detector 2 is amplified by the pulse amplifier 3 into a voltage signal, and the dose rate indicator device 4 performs necessary processing to indicate the measured value.

高放射線下においては、発生パルス数が多くなり、パル
ス増幅器3以降の回路の不感時間により、パルス数え落
としの率加が大きくなり、ついには、パルス計数率が下
がり、線量率指示計装置4での指示が下る。これはみか
け上、線量計が低下したことにより、測定上、重大な誤
りを起こすことになる。これが、シリコン半導体検出装
置を用いた計測系の窒息現象である。
Under high radiation, the number of pulses generated increases, and the dead rate of the circuits after the pulse amplifier 3 increases the rate of pulse counting down, and finally the pulse count rate decreases, and the dose rate indicator device 4 Will give you instructions. This apparently causes a serious error in measurement due to the lowered dosimeter. This is the choking phenomenon of the measurement system using the silicon semiconductor detection device.

上記のような窒息現象を検出するため、バイアス電源1
をシリコン半導体検出器2に供給するラインに接続され
るバイアス電源側の負荷抵抗5の両端の電圧降下を、増
幅回路7で検出することにより、バイアス電源1からシ
リコン半導体検出器2で発生した電荷を補充するために
流れる電流を検出することができる。増幅回路7で検出
した信号を、ローパスフイルタ3を通すことにより、直
流成分をとり出し、コンパレータ10で、予め該設定器9
に設定された窒息検出電流の設定値と比較し、設定値以
上の電流になつた場合、窒息状態と判断して窒息検出信
号を出力回路11を介して外部出力し、測定者が誤つた計
測をしないようにする。
In order to detect the above choking phenomenon, the bias power supply 1
The voltage drop across the load resistor 5 on the bias power supply side connected to the line that supplies the voltage to the silicon semiconductor detector 2 is detected by the amplifier circuit 7, and the charge generated in the silicon semiconductor detector 2 from the bias power supply 1 is detected. Can be detected. The signal detected by the amplifier circuit 7 is passed through the low-pass filter 3 to extract the direct current component, and the comparator 10 uses the setter 9 in advance.
When compared with the set value of the choking detection current set in, when the current exceeds the set value, it is judged as a choking state and the choking detection signal is externally output via the output circuit 11, and the measurement by the operator is incorrect. Try not to.

特に、電流検出の負荷抵抗3は、コンデンサ6と、バイ
アス電源1の間にある負荷抵抗で検出すめことが信号対
雑音比(S/N)の上で有利である。シリコン半導体検出
器1の場合、従来のGM計数管のように高電圧(約500〜1
000V)を印加する必要がなく、計+Vの印加電圧でよ
く、直接バイアス電源側で極微弱な電流を直接検出でき
るものである。
In particular, it is advantageous in terms of signal-to-noise ratio (S / N) that the load resistor 3 for current detection is detected by the load resistor between the capacitor 6 and the bias power source 1. In the case of the silicon semiconductor detector 1, a high voltage (about 500-1
It is not necessary to apply (000V), and a + V total applied voltage is sufficient, and an extremely weak current can be directly detected on the bias power supply side.

本実施例によれば、シリコン半導体検出器1を用いる放
射線計測装置において、高放射線下で生じる。計測系の
窒息現象に起因する計測値のみから上の低下による誤つ
た測定が生じない窒息検出を行なうことができる。
According to the present embodiment, the radiation measuring apparatus using the silicon semiconductor detector 1 is generated under high radiation. It is possible to detect suffocation without erroneous measurement due to the above-mentioned decrease only from the measurement value caused by the suffocation phenomenon of the measurement system.

〔発明の効果〕〔The invention's effect〕

以上述べたように本発明によれば、放射線測定において
計測系の窒息現象を検出することができるので、誤つた
測定をすることがなく、かつ予定外被曝を防止すること
ができ、しかも被曝事故防止の効果があるとともに、原
子力プラントに用いた場合を運転においても誤つた測定
値を与えることがなく、運転信頼性の向上に効果があ
る。
As described above, according to the present invention, it is possible to detect the choking phenomenon of the measurement system in the radiation measurement, so that it is possible to prevent erroneous measurement, prevent unscheduled radiation exposure, and further, to prevent radiation accidents. In addition to the effect of prevention, it does not give an erroneous measured value during operation when used in a nuclear power plant, and is effective in improving operation reliability.

【図面の簡単な説明】[Brief description of drawings]

図は本発明の実施例を示す回路図である。 1……バイアス電源、2……シリコン半導体検出器、5
……負荷抵抗、7……増幅回路、8……ローパスフイル
タ、9……窒息検出設定器、10……コンパレータ。
The drawing is a circuit diagram showing an embodiment of the present invention. 1 ... Bias power supply, 2 ... Silicon semiconductor detector, 5
...... Load resistance, 7 ... Amplification circuit, 8 ... Low-pass filter, 9 ... Suffocation detection setting device, 10 ... Comparator.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】バイアス電源から電流を供給され放射線を
検出してパルスを出力するシリコン半導体検出器と、前
記シリコン半導体検出器から出力されたパルス信号を増
幅するパルス増幅器と、該パルス増幅器からのパルス信
号を処理し、放射線の強度に比例した指示を指示させる
線量率計装置とからなる放射線計測装置において、上記
バイアス電源の高圧側に接続される負荷抵抗の電圧降下
を検出する手段と、該手段から出力される信号の直流成
分を、予め設定してある窒息検出値と比較するコンパレ
ータとを設けてなることを特徴とするシリコン半導体検
出器を用いる放射線計測装置の窒息検出回路。
1. A silicon semiconductor detector which is supplied with a current from a bias power source, detects radiation and outputs a pulse, a pulse amplifier which amplifies a pulse signal output from the silicon semiconductor detector, and a pulse amplifier from the pulse amplifier. In a radiation measuring device comprising a dose rate measuring device for processing a pulse signal and giving an instruction proportional to the intensity of radiation, a means for detecting a voltage drop of a load resistance connected to the high voltage side of the bias power source, A suffocation detection circuit of a radiation measuring apparatus using a silicon semiconductor detector, comprising: a comparator for comparing a DC component of a signal output from the means with a preset suffocation detection value.
JP62070696A 1987-03-25 1987-03-25 Choking detection circuit of radiation measuring device using semiconductor detector Expired - Lifetime JPH0690292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62070696A JPH0690292B2 (en) 1987-03-25 1987-03-25 Choking detection circuit of radiation measuring device using semiconductor detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62070696A JPH0690292B2 (en) 1987-03-25 1987-03-25 Choking detection circuit of radiation measuring device using semiconductor detector

Publications (2)

Publication Number Publication Date
JPS63236988A JPS63236988A (en) 1988-10-03
JPH0690292B2 true JPH0690292B2 (en) 1994-11-14

Family

ID=13439049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62070696A Expired - Lifetime JPH0690292B2 (en) 1987-03-25 1987-03-25 Choking detection circuit of radiation measuring device using semiconductor detector

Country Status (1)

Country Link
JP (1) JPH0690292B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8971216B2 (en) 1998-09-11 2015-03-03 Alcatel Lucent Method for routing transactions between internal and external partners in a communication center
US9002920B2 (en) 1998-09-11 2015-04-07 Genesys Telecommunications Laboratories, Inc. Method and apparatus for extended management of state and interaction of a remote knowledge worker from a contact center
US9008075B2 (en) 2005-12-22 2015-04-14 Genesys Telecommunications Laboratories, Inc. System and methods for improving interaction routing performance
USRE45583E1 (en) 1999-12-01 2015-06-23 Genesys Telecommunications Laboratories, Inc. Method and apparatus for providing enhanced communication capability for mobile devices on a virtual private network
USRE46060E1 (en) 1997-02-10 2016-07-05 Genesys Telecommunications Laboratories, Inc. In-band signaling for routing
USRE46153E1 (en) 1998-09-11 2016-09-20 Genesys Telecommunications Laboratories, Inc. Method and apparatus enabling voice-based management of state and interaction of a remote knowledge worker in a contact center environment
US9516171B2 (en) 1997-02-10 2016-12-06 Genesys Telecommunications Laboratories, Inc. Personal desktop router
US9553755B2 (en) 1998-02-17 2017-01-24 Genesys Telecommunications Laboratories, Inc. Method for implementing and executing communication center routing strategies represented in extensible markup language
USRE46528E1 (en) 1997-11-14 2017-08-29 Genesys Telecommunications Laboratories, Inc. Implementation of call-center outbound dialing capability at a telephony network level

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004138472A (en) * 2002-10-17 2004-05-13 Mitsubishi Heavy Ind Ltd Radiation detecting element, radiation detector, radiation ct device, and radiation inspection device
DE602007005501D1 (en) * 2006-09-28 2010-05-06 Philips Intellectual Property SOLID LIGHT SOURCE WITH COLOR REFLECTION AND COMBINED COMMUNICATION AGENTS
JP6147068B2 (en) * 2013-04-19 2017-06-14 三菱電機株式会社 Dose rate measuring device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE46060E1 (en) 1997-02-10 2016-07-05 Genesys Telecommunications Laboratories, Inc. In-band signaling for routing
US9516171B2 (en) 1997-02-10 2016-12-06 Genesys Telecommunications Laboratories, Inc. Personal desktop router
USRE46243E1 (en) 1997-02-10 2016-12-20 Genesys Telecommunications Laboratories, Inc. In-band signaling for routing
USRE46528E1 (en) 1997-11-14 2017-08-29 Genesys Telecommunications Laboratories, Inc. Implementation of call-center outbound dialing capability at a telephony network level
US9553755B2 (en) 1998-02-17 2017-01-24 Genesys Telecommunications Laboratories, Inc. Method for implementing and executing communication center routing strategies represented in extensible markup language
US8971216B2 (en) 1998-09-11 2015-03-03 Alcatel Lucent Method for routing transactions between internal and external partners in a communication center
US9002920B2 (en) 1998-09-11 2015-04-07 Genesys Telecommunications Laboratories, Inc. Method and apparatus for extended management of state and interaction of a remote knowledge worker from a contact center
US9350808B2 (en) 1998-09-11 2016-05-24 Alcatel Lucent Method for routing transactions between internal and external partners in a communication center
USRE46153E1 (en) 1998-09-11 2016-09-20 Genesys Telecommunications Laboratories, Inc. Method and apparatus enabling voice-based management of state and interaction of a remote knowledge worker in a contact center environment
USRE45583E1 (en) 1999-12-01 2015-06-23 Genesys Telecommunications Laboratories, Inc. Method and apparatus for providing enhanced communication capability for mobile devices on a virtual private network
US9008075B2 (en) 2005-12-22 2015-04-14 Genesys Telecommunications Laboratories, Inc. System and methods for improving interaction routing performance

Also Published As

Publication number Publication date
JPS63236988A (en) 1988-10-03

Similar Documents

Publication Publication Date Title
JPH0690292B2 (en) Choking detection circuit of radiation measuring device using semiconductor detector
US5059801A (en) Radiation detector
CN107450092A (en) For measuring the device of photon information
US4415237A (en) Radiation dosimeter
WO2024077678A1 (en) Measurement and compensation apparatus for irradiation damage effect of silicon photomultiplier
JP2001183465A (en) Neutron measuring method and apparatus thereof
US20040200968A1 (en) Apparatus and method for detecting alpha-ray
JP2001194460A (en) Radiation monitor
US4655994A (en) Method for determining the operability of a source range detector
US20210116586A1 (en) Optical detector and optical detection device
JP2859732B2 (en) Underwater radioactive substance monitoring device
SU1076849A1 (en) Wide-range pulse-current radiometric channel
JP3585356B2 (en) Radiation detector
Zsdánszky Precise measurement of small currents
JPS645269B2 (en)
JP2693203B2 (en) Semiconductor radiation measuring device
RU2522708C1 (en) Method for recording neutron flux of nuclear facility in wide measurement range and device for its implementation
JP3085770B2 (en) Radiation monitoring device
JPH058393B2 (en)
JPH0426073B2 (en)
Vyacheslavovich et al. UDK 531: 535 DETECTOR MODELING FOR RADIATION CONTROL SYSTEMS
JPH056674B2 (en)
JPH02195292A (en) Semiconductor radiation detector
JPS599594A (en) Radiation monitoring device
JPS6358189A (en) Amplifier circuit for radiation detection