JPH0690292B2 - Choking detection circuit of a radiation measuring device using a semiconductor detector - Google Patents

Choking detection circuit of a radiation measuring device using a semiconductor detector

Info

Publication number
JPH0690292B2
JPH0690292B2 JP62070696A JP7069687A JPH0690292B2 JP H0690292 B2 JPH0690292 B2 JP H0690292B2 JP 62070696 A JP62070696 A JP 62070696A JP 7069687 A JP7069687 A JP 7069687A JP H0690292 B2 JPH0690292 B2 JP H0690292B2
Authority
JP
Japan
Prior art keywords
radiation
choking
semiconductor detector
pulse
silicon semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62070696A
Other languages
Japanese (ja)
Other versions
JPS63236988A (en
Inventor
裕治 森田
明久 海原
Original Assignee
日立エンジニアリング株式会社
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立エンジニアリング株式会社, 株式会社日立製作所 filed Critical 日立エンジニアリング株式会社
Priority to JP62070696A priority Critical patent/JPH0690292B2/en
Publication of JPS63236988A publication Critical patent/JPS63236988A/en
Publication of JPH0690292B2 publication Critical patent/JPH0690292B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体検出器を用いた放射線検出装置に係り、特に原子力発電所内などの各部放射線を測定する放射線モニタや、個人被曝を監視する線量計の如き放射線検出装置に発生する窒息現象を検出できる回路に関するものである。 BACKGROUND OF THE INVENTION [FIELD OF THE INVENTION The present invention relates to a radiation detection device using a semiconductor detector, in particular, radiation monitors to measure each part radiation such as nuclear power plant, monitoring the individual exposure it relates circuit capable of detecting a choking phenomenon occurring such radiation detecting apparatus dosimeter.

〔従来の技術〕 [Prior art]

従来、原子力発電所などの各部放射線を測定する放射線モニタや、個人被曝を監視する線量計の如き放射線検出装置は、放射線を検出する検出センサにGM計数管を用いており、このGM計数管からの出力信号を基に放射線を測定している。 Traditionally, radiation monitor and measure each part radiation such as nuclear power plants, such a radiation detector dosimeter for monitoring the individual exposure is using the GM counter tube the sensor for detecting the radiation from the GM counters It measures the radiation of the output signal based on. かかる放射線検出装置に用いられるGM計数管は高放射下におかれると窒息現象を発生するということが知られている。 GM counters used in such a radiation detector device is known that generates a choking phenomenon to be placed under high radiation. 一般にGM計数管においては、入射荷電粒子による一つの放電が停止した後に、次の電荷粒子が入射してもこれに基づく次の放電が起らない不感時間(デツド・タイム)が認められ、このGM計数管固有のデツド・タイムの存在によつて、GM計数管を高放射線下で使用するとデツド・タイムの割合が大きくなり、ついには連続放電状態となつて放電電流は飽和し、そして出力パルスの振幅が小さくなり、さらには出力パルスが出なくなる。 In general, GM counter tube, after the one discharge by incident charged particles is stopped, the following charged particles is based on which also enters the next discharge Okoshira not dead time (Detsudo time) was observed, the Yotsute the presence of GM counters specific Detsudo time, the proportion of Detsudo time when a GM counter tube is used in a high radiation increases, the discharge current is saturated eventually Te summer and continuous discharge condition, and the output pulse of the amplitude is reduced, further is no longer out of the output pulse. この現象をGM計数管の窒息現象という。 This phenomenon is called choking phenomenon of GM counter tube.

このような窒息現象を有効に検出しないと、測定上重要な誤りを起すこととなる。 If such does not effectively detect the choking phenomenon, and to cause the measurement on the critical errors. そこで、従来の放射線測定装置は、前記窒息現象を有効に検出する回路として、高圧電源からGM計数管へ流す電流をGM計数管の低圧部(接地側)で直接検出するようにした回路を設けて窒息検出するか、または特開昭55-26484号に記載されているように光結合トランジスタにより、GM計数管に流れる電流を検出するようにした回路を設けて窒息検出していた。 Therefore, the conventional radiation measuring device, as a circuit for effectively detecting the choking phenomenon, provided the circuit which is adapted to detect directly the current flowing from the high voltage power supply to the GM counter tube in the low pressure part of GM counters (ground) or suffocation detection Te, or the optical coupling transistor as described in JP-55-26484, was choking detected by providing a circuit to detect the current flowing to the GM counter.

ところで、近年、半導体技術の発展に伴つてGM計数管の代りにシリコン半導体検出器が用いられるようになつてきた。 In recent years, silicon semiconductor detectors have summer As used instead accompaniment with GM counter tube to the development of semiconductor technology. かかる検出器を用いた計測系においても発生原理は異なるものの、窒息現象が発生することが知られている。 Also generation principle although different in the measuring system using such a detector, it is known that choking phenomenon. しかしながら、半導体検出器を用いた計測系の窒息検出について記載された文献は見当たらず、半導体検出器を用いた計測系の窒息検出の技術の確立が望まれていた。 However, it not found literature that described for measuring system asphyxia detection using a semiconductor detector, establishing a measurement system choking detection technique using a semiconductor detector has been desired.

〔発明が解決しようとする問題点〕 [Problems to be Solved by the Invention]

すなわち、上記従来技術は、半導体検出器を用いた計測系の窒息検出ではなく、GM計数管についてのものであることから、そのまま従来技術を用いることはできない。 That is, the conventional technique is not a measurement system choking detected using a semiconductor detector, since it is intended for GM counters can not be used as it is prior art.
このように従来技術を用いることのできない理由は、まず、GM計数管の場合、高圧電源(約500〜1000V)を用いることにある。 The reason why the can not be used prior art, first, if the GM counter tube is to use a high-voltage power supply (approximately 500~1000V). つまり、窒息現象を検出するために直接電流を検出しているが、このようにするには、高圧電源の低圧部(接地部)で検出しなければならず、高圧電源の回路構成に制約が伴い、かつ複雑であるという問題があり、かつ半導体検出器を用いる場合に適用不能である。 In other words, although directly detected current to detect choking behavior, such must be detected by the low pressure section of the high-voltage power supply (ground portion), constrained to the circuit configuration of the high-voltage power supply Along, and there is a problem that complicated is, and is not applicable in the case of using a semiconductor detector.

また、窒息現象を検出するために光結合トランジスタで電流検出を行なうようにした従来技術では、高感度の光結合トランジスタが必要であつて、かつそのトランジスタに安定した特性が要求されることになり、GM計数管に比べ微弱電流の検出にはおのずと限界があり、これも半導体検出器を用いる場合に難点がある。 Further, in the prior art to carry out the current detected by the optical coupling transistor to detect choking phenomena, it shall apply required optical coupling transistor having a high sensitivity, and stable characteristics will be is required for the transistor , there is naturally a limit to the detection of weak current compared to GM counter tube, which also has a drawback in the case of using a semiconductor detector.

本発明は、上記問題を解消するためになされたもので、 The present invention has been made to solve the above problems,
半導体検出器に供給するバイアス電源が非常に低い電圧であることに着目し、バイアス電源の高圧側負荷抵抗の微弱な電圧降下を直接検出することにより、計測系の窒息現象を検出し、もつて窒息現象に基づく指示計のみかけ上の低下による誤つた測定を防止する半導体検出器を用いる放射線計測装置の窒息検出回路を提供することを目的とする。 Focusing on that the bias power supply to the semiconductor detectors is very low voltage, by detecting a weak voltage drop of the high pressure side load resistance of the bias power supply directly detects the choking phenomenon of the measurement system, and with providing a choking detection circuit of a radiation measuring device using a semiconductor detector for preventing AyamaTsuta measurement due to a decrease in the applied only indicator based on choking phenomenon for the purpose of.

〔問題点を解決するための手段〕 [Means for Solving the Problems]

上記目的を達成した本発明は、バイアス電源から電流を供給され放射線を検出してパルスを出力するシリコン半導体検出器と、前記シリコン半導体検出器から出力されたパルス信号を増幅するパルス増幅器と、該パルス増幅器からのパルス信号を処理し、放射線の強度に比例した指示を指示させる線量率計装置とからなる放射線計測装置において、上記バイアス電源の高圧側に接続される負荷抵抗を電圧降下を検出する手段と、該手段から出力される信号の直流成分を、予め設定してある窒息検出値と比較するコンパレータとを設けてなることを特徴とするものである。 The present invention has achieved the above object, the silicon semiconductor detector which outputs a pulse by detecting the radiation supplied with current from a bias power source, a pulse amplifier for amplifying a pulse signal outputted from the silicon semiconductor detector, the processing the pulse signal from the pulse amplifier, the radiation measurement device comprising an indication that is proportional to the intensity of the radiation from the instructed to dose rate meter device, for detecting a voltage drop the load resistor connected to the high pressure side of the bias power supply means and the DC component of the signal output from said means, is characterized in that formed by providing a comparator for comparing choking detected value that is set in advance.

〔作用〕 [Action]

半導体検出器は、高放射線下では多数の電荷パルス信号を発生し、その発生パルス数は放射線の強さに比例する。 Semiconductor detector under high radiation generates a large number of charge pulse signal, the generation number of pulses is proportional to the intensity of the radiation. バイアス電源は負荷抵抗を介して半導体検出器に供給される。 Bias power is supplied to the semiconductor detector through the load resistor. 半導体検出器へ流れる電流は、当該負荷抵抗にも流れる。 Current flowing into the semiconductor detector, also flows to the load resistor. したがつて、該負荷抵抗に接続された手段(増幅回路)は、バイアス電源から半導体検出器へ供給する電流を検出することができる。 It was but connexion, means connected to said load resistance (amplification circuit) can detect the current supplied from the bias power source to the semiconductor detector. また当該手段は、バイアス電源側に接続されているため、検出器信号に与えるノイズは少ない。 Also the means, because it is connected to a bias power supply side, the noise applied to the detector signal is small. 前記手段で検出した信号のうちの直流分を予め設定した設定値とコンパレータで比較し、設定値以上の直流電流が半導体検出器に流れたときは、半導体検出器の窒息が、あるいは絶縁低下であるので、放射線測定が正確に行なわれていないことを判断することができる。 Compared with a set value and a comparator which is set in advance the DC component of the signal detected by said means, when the DC current of the set value or more flows to the semiconductor detector, choking of the semiconductor detector, or with reduced insulation because, it is possible to radiation measurement to determine that it has not been accurately performed.

〔実施例〕 〔Example〕

以下、本発明の一実施例を図面に基づいて説明する。 It will be described below with reference to an embodiment of the present invention with reference to the drawings.

図は本発明の実施例を示す回路図である。 Figure is a circuit diagram showing an embodiment of the present invention.

1はバイアス電源であり、このバイアス電源1からシリコン半導体検出器2に電流が供給されるように回路構成されている。 1 is a bias power, is a circuit configuration so that a current supplied from the bias power source 1 to the silicon semiconductor detector 2. シリコン半導体検出器2からのパルスを増幅するパルス増幅器3がシリコン半導体検出器2のアノード・カソード間に接続されている。 Pulse amplifier 3 for amplifying the pulses from the silicon semiconductor detector 2 is connected between the anode and cathode of the silicon semiconductor detector 2. パルス増幅器3からのパルスを計数して放射線の強度を比例した指示をする線量率計装置4がパルス増幅器3の出力に接続されている。 Dose rate meter device 4 for an instruction pulse count to a proportional intensity of the radiation from the pulse amplifier 3 is connected to the output of the pulse amplifier 3.

放射線計測装置は、上記バイアス電源1と、シリコン半導体検出器2と、パルス増幅器3と、線量率計装置4とから構成されている。 Radiation measurement apparatus, with the bias power source 1, a silicon semiconductor detector 2, a pulse amplifier 3, and a dose rate meter device 4.

また、パルス増幅器3は、増幅器A 30と、正入力端子が抵抗R 31を介して接地され、負入力端子がコンデンサC 31 The pulse amplifier 3 includes an amplifier A 30, the positive input terminal is grounded via a resistor R 31, the negative input terminal capacitor C 31
を介してシリコン半導体検出器2のカソードに接続され、負入力端子と出力端子との間にコンデンサC 32 、抵抗R 32の並列回路を接続して構成されている。 Via connected to the cathode of the silicon semiconductor detector 2, a capacitor C 32, and connect the parallel circuit of the resistor R 32 is arranged between the negative input terminal and the output terminal.

次に、バイアス電源1とシリコン半導体検出器2との間に、抵抗R 1 、負荷抵抗5、抵抗R 2からなる直列回路を接続し、負荷抵抗5と抵抗R 2からなる直列回路を接続し、 Then, between the bias power source 1 and the silicon semiconductor detectors 2, resistors R 1, the load resistance 5, a series circuit connected to the resistor R 2, and connect a series circuit with the load resistor 5 and a resistor R 2 ,
負荷抵抗5と抵抗R 2との接続点とアースとの間にコンデンサ6を接続しておく。 Keep a capacitor 6 between the connection point and ground and the load resistor 5 and the resistor R 2. 負荷抵抗5の両端には、この電圧降下を検出し増幅する増幅回路7が設けられている。 Across the load resistor 5, the amplifier circuit 7 is provided that amplifies and detects the voltage drop.
この増幅回路7の出力端には、その出力信号のうちの直流成分のみを取り出すローパスフイルタ8が接続されている。 The output terminal of the amplifier circuit 7, a low-pass filter 8 is connected to take out only the DC component of the output signal. このローパスフイルタ8からの直流成分と、予め窒息検出設定器9に設定してある設定値とを比較するコンパレータ10を設けてある。 A DC component from the low-pass filter 8, are a comparator 10 for comparing the setting value that is set in advance choking detector setter 9 provided. コンパレータ10の出力は、 The output of the comparator 10,
出力回路11で増幅されて必要に応じて用いられる。 Is amplified by the output circuit 11 are used as needed.

増幅回路7は、増幅器A 71 ,A 72と抵抗R 71 ,R 72 ,R 73とからなる前段増幅回路、この前段増幅回路からの信号を増幅する増幅器A 73 ,抵抗A 74 ,R 75 ,R 76 ,R 77とからなる後段差動増幅回路からなる。 Amplifier circuit 7, preamplifier circuit consisting of an amplifier A 71, A 72 resistors R 71, R 72, R 73 Prefecture, amplifier A 73 for amplifying the signal from the preamplifier circuit, the resistor A 74, R 75, R 76, consisting of stage differential amplifier circuit after consisting R 77 Metropolitan.

ローパスフイルタ8は、アクテイブフイルタで構成され、増幅器A 81と、抵抗R 81 ,R 82と、コンデンサC 81 ,C Low pass filter 8 is constituted by Akuteibu filter, an amplifier A 81, a resistor R 81, R 82, capacitors C 81, C
82とからなる。 Consisting of 82.

出力回路11は、トランジスタTR 111と、抵抗R 111 ,R 112 The output circuit 11 includes a transistor TR 111, resistors R 111, R 112
とからなる。 Consisting of.

次に、本実施例の動作を説明する。 Next, the operation of this embodiment will be described.

放射線モニタの検出器として用いられるシリコン半導体検出器2は、放射線により電荷パルス信号を発生するもので、放射線が高くなると、発生パルス数が増大する。 Silicon semiconductor detector 2 used as a detector of the radiation monitor is for generating a charge pulse signal by radiation, the radiation is high, the number of generated pulses is increased.
電荷パルスの発生に伴いバイアス電源1から電荷を供給する。 It supplies charges from the bias power source 1 due to occurrence of the charge pulse. シリコン半導体検出器2から発生する電荷パルスは、パルス増幅器3で電荷パルス信号を電圧信号に増幅し、線量率指示計装置4にて必要な処理をして、その測定値を指示する。 Charge pulses generated from the silicon semiconductor detector 2, a charge pulse signal is amplified into a voltage signal by the pulse amplifier 3, and the necessary processing at a dose rate indicator device 4, and instructs the measurement.

高放射線下においては、発生パルス数が多くなり、パルス増幅器3以降の回路の不感時間により、パルス数え落としの率加が大きくなり、ついには、パルス計数率が下がり、線量率指示計装置4での指示が下る。 In high radiation under, the number the number of generated pulses, the dead time of the circuit of the pulse amplifier 3 after the pulse counting loss rate pressure becomes large, finally, going pulse count rate, a dose rate indicator device 4 down indication of. これはみかけ上、線量計が低下したことにより、測定上、重大な誤りを起こすことになる。 On This is apparent, by the dosimeter is lowered, on the measurement, would cause serious errors. これが、シリコン半導体検出装置を用いた計測系の窒息現象である。 This is the choking phenomenon of the measurement system using a silicon semiconductor detector.

上記のような窒息現象を検出するため、バイアス電源1 For detecting choking phenomenon as described above, the bias power 1
をシリコン半導体検出器2に供給するラインに接続されるバイアス電源側の負荷抵抗5の両端の電圧降下を、増幅回路7で検出することにより、バイアス電源1からシリコン半導体検出器2で発生した電荷を補充するために流れる電流を検出することができる。 The voltage drop across the load resistor 5 of the silicon semiconductor detector 2 bias power supply side connected to the supply line, by detecting in the amplification circuit 7, generated in the silicon semiconductor detector 2 from the bias power supply 1 charges it is possible to detect the current flowing to replenish. 増幅回路7で検出した信号を、ローパスフイルタ3を通すことにより、直流成分をとり出し、コンパレータ10で、予め該設定器9 The detected signal by the amplifier circuit 7, by passing a low-pass filter 3, taken out the DC component, the comparator 10, previously the setter 9
に設定された窒息検出電流の設定値と比較し、設定値以上の電流になつた場合、窒息状態と判断して窒息検出信号を出力回路11を介して外部出力し、測定者が誤つた計測をしないようにする。 Compared with a set value of the set choking detected current, when has decreased to a set value or more current, and an external output through the output circuit 11 a choking detection signal determines that the choking state, measurer AyamaTsuta measurement the so as to not.

特に、電流検出の負荷抵抗3は、コンデンサ6と、バイアス電源1の間にある負荷抵抗で検出すめことが信号対雑音比(S/N)の上で有利である。 In particular, load resistor 3 of the current detection, a capacitor 6, it uninhabitable detected load resistance is between the bias power supply 1 is advantageous over the signal-to-noise ratio (S / N). シリコン半導体検出器1の場合、従来のGM計数管のように高電圧(約500〜1 When the silicon semiconductor detector 1, a high voltage as in the conventional GM counters (about 500 to 1
000V)を印加する必要がなく、計+Vの印加電圧でよく、直接バイアス電源側で極微弱な電流を直接検出できるものである。 000V) it is not necessary to apply a well at an applied voltage of total + V, in which a very weak current in direct bias power source side can be detected directly.

本実施例によれば、シリコン半導体検出器1を用いる放射線計測装置において、高放射線下で生じる。 According to this embodiment, the radiation measurement device using a silicon semiconductor detector 1 occurs under high radiation. 計測系の窒息現象に起因する計測値のみから上の低下による誤つた測定が生じない窒息検出を行なうことができる。 Asphyxiation detection does not occur AyamaTsuta measurement by lowering the upper only from the measurement values ​​due to choking phenomenon of the measuring system can be performed.

〔発明の効果〕 〔Effect of the invention〕

以上述べたように本発明によれば、放射線測定において計測系の窒息現象を検出することができるので、誤つた測定をすることがなく、かつ予定外被曝を防止することができ、しかも被曝事故防止の効果があるとともに、原子力プラントに用いた場合を運転においても誤つた測定値を与えることがなく、運転信頼性の向上に効果がある。 According to the present invention as mentioned above, it is possible to detect the choking phenomenon of the measuring system in a radiation measuring, without a AyamaTsuta measurement, and it is possible to prevent unplanned radiation, moreover exposure accident with an effect of preventing, without giving the AyamaTsuta measurements even operated when used for nuclear plants, it is effective in improving the operational reliability.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

図は本発明の実施例を示す回路図である。 Figure is a circuit diagram showing an embodiment of the present invention. 1……バイアス電源、2……シリコン半導体検出器、5 1 ...... bias power supply, 2 ...... silicon semiconductor detector, 5
……負荷抵抗、7……増幅回路、8……ローパスフイルタ、9……窒息検出設定器、10……コンパレータ。 ...... load resistor, 7 ...... amplifier circuit, 8 ...... lowpass filter, 9 ...... choking detector setter, 10 ...... comparator.

Claims (1)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】バイアス電源から電流を供給され放射線を検出してパルスを出力するシリコン半導体検出器と、前記シリコン半導体検出器から出力されたパルス信号を増幅するパルス増幅器と、該パルス増幅器からのパルス信号を処理し、放射線の強度に比例した指示を指示させる線量率計装置とからなる放射線計測装置において、上記バイアス電源の高圧側に接続される負荷抵抗の電圧降下を検出する手段と、該手段から出力される信号の直流成分を、予め設定してある窒息検出値と比較するコンパレータとを設けてなることを特徴とするシリコン半導体検出器を用いる放射線計測装置の窒息検出回路。 And 1. A silicon semiconductor detector which detects the radiation is supplied with a current from a bias power source for outputting a pulse, and a pulse amplifier for amplifying a pulse signal outputted from the silicon semiconductor detector, from the pulse amplifier processing the pulse signal, the radiation measurement device comprising a dose rate meter apparatus for instructing an instruction is proportional to the intensity of the radiation, means for detecting a voltage drop in the load resistor connected to the high pressure side of the bias supply, the Choking detection circuit of a radiation measuring device using a silicon semiconductor detectors, characterized in that the DC component of the signal output from the unit, formed by providing a comparator for comparing the choking detection value is set in advance.
JP62070696A 1987-03-25 1987-03-25 Choking detection circuit of a radiation measuring device using a semiconductor detector Expired - Lifetime JPH0690292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62070696A JPH0690292B2 (en) 1987-03-25 1987-03-25 Choking detection circuit of a radiation measuring device using a semiconductor detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62070696A JPH0690292B2 (en) 1987-03-25 1987-03-25 Choking detection circuit of a radiation measuring device using a semiconductor detector

Publications (2)

Publication Number Publication Date
JPS63236988A JPS63236988A (en) 1988-10-03
JPH0690292B2 true JPH0690292B2 (en) 1994-11-14

Family

ID=13439049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62070696A Expired - Lifetime JPH0690292B2 (en) 1987-03-25 1987-03-25 Choking detection circuit of a radiation measuring device using a semiconductor detector

Country Status (1)

Country Link
JP (1) JPH0690292B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8971216B2 (en) 1998-09-11 2015-03-03 Alcatel Lucent Method for routing transactions between internal and external partners in a communication center
US9002920B2 (en) 1998-09-11 2015-04-07 Genesys Telecommunications Laboratories, Inc. Method and apparatus for extended management of state and interaction of a remote knowledge worker from a contact center
US9008075B2 (en) 2005-12-22 2015-04-14 Genesys Telecommunications Laboratories, Inc. System and methods for improving interaction routing performance
USRE45583E1 (en) 1999-12-01 2015-06-23 Genesys Telecommunications Laboratories, Inc. Method and apparatus for providing enhanced communication capability for mobile devices on a virtual private network
USRE46060E1 (en) 1997-02-10 2016-07-05 Genesys Telecommunications Laboratories, Inc. In-band signaling for routing
USRE46153E1 (en) 1998-09-11 2016-09-20 Genesys Telecommunications Laboratories, Inc. Method and apparatus enabling voice-based management of state and interaction of a remote knowledge worker in a contact center environment
US9516171B2 (en) 1997-02-10 2016-12-06 Genesys Telecommunications Laboratories, Inc. Personal desktop router
USRE46243E1 (en) 1997-02-10 2016-12-20 Genesys Telecommunications Laboratories, Inc. In-band signaling for routing
US9553755B2 (en) 1998-02-17 2017-01-24 Genesys Telecommunications Laboratories, Inc. Method for implementing and executing communication center routing strategies represented in extensible markup language
USRE46528E1 (en) 1997-11-14 2017-08-29 Genesys Telecommunications Laboratories, Inc. Implementation of call-center outbound dialing capability at a telephony network level

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004138472A (en) * 2002-10-17 2004-05-13 Clear Pulse Kk Radiation detecting element, radiation detector, radiation ct device, and radiation inspection device
US8729454B2 (en) * 2006-09-28 2014-05-20 Koninklijke Philips N.V. Solid-state light source with color feedback and combined communication means
JP6147068B2 (en) * 2013-04-19 2017-06-14 三菱電機株式会社 Dose rate measurement device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9516171B2 (en) 1997-02-10 2016-12-06 Genesys Telecommunications Laboratories, Inc. Personal desktop router
USRE46243E1 (en) 1997-02-10 2016-12-20 Genesys Telecommunications Laboratories, Inc. In-band signaling for routing
USRE46060E1 (en) 1997-02-10 2016-07-05 Genesys Telecommunications Laboratories, Inc. In-band signaling for routing
USRE46528E1 (en) 1997-11-14 2017-08-29 Genesys Telecommunications Laboratories, Inc. Implementation of call-center outbound dialing capability at a telephony network level
US9553755B2 (en) 1998-02-17 2017-01-24 Genesys Telecommunications Laboratories, Inc. Method for implementing and executing communication center routing strategies represented in extensible markup language
US8971216B2 (en) 1998-09-11 2015-03-03 Alcatel Lucent Method for routing transactions between internal and external partners in a communication center
USRE46153E1 (en) 1998-09-11 2016-09-20 Genesys Telecommunications Laboratories, Inc. Method and apparatus enabling voice-based management of state and interaction of a remote knowledge worker in a contact center environment
US9002920B2 (en) 1998-09-11 2015-04-07 Genesys Telecommunications Laboratories, Inc. Method and apparatus for extended management of state and interaction of a remote knowledge worker from a contact center
US9350808B2 (en) 1998-09-11 2016-05-24 Alcatel Lucent Method for routing transactions between internal and external partners in a communication center
USRE45583E1 (en) 1999-12-01 2015-06-23 Genesys Telecommunications Laboratories, Inc. Method and apparatus for providing enhanced communication capability for mobile devices on a virtual private network
US9008075B2 (en) 2005-12-22 2015-04-14 Genesys Telecommunications Laboratories, Inc. System and methods for improving interaction routing performance

Also Published As

Publication number Publication date
JPS63236988A (en) 1988-10-03

Similar Documents

Publication Publication Date Title
US3581087A (en) X-ray fluorescence measuring system employing balanced x-ray filters and circuit means to vary the effective relative transmission thereof
KR970000636B1 (en) Apparatus for detecting a failure in bearings
US4893015A (en) Dual mode radiographic measurement method and device
US4862004A (en) Radiation dose measuring method and apparatus with nuclide discrimination function
JP2761018B2 (en) Particulate size optical measuring device
RU2414724C2 (en) Method and apparatus for spectral computer tomography
CA2214231C (en) Method for pulse shape regulation and discrimination in a nuclear spectroscopy system
US6797960B1 (en) Self triggered imaging device for imaging radiation
JPS55138634A (en) Fault diagnosis apparatus of apparatus
US4262203A (en) Alpha particle monitor
JP2006105995A (en) Digital x-ray equipment, and photographic method of x-ray image in the digital x-ray equipment
US6559440B2 (en) Method for calibrating a radiation detection system
JP2899360B2 (en) Particle measurement method and apparatus in a fluid
US6759658B2 (en) X-ray detector having a large dynamic range
JPS57151804A (en) Detecting device for cracked grain of rice
US4945227A (en) Avalanche photodiode quenching circuit
US20020145115A1 (en) Readout circuit for a charge detector
CA2566008C (en) Stabilization of a scintillation detector
JP2005526556A (en) Computer tomography apparatus and x-ray detection methods for x-ray detection by the detection unit comprising a plurality of detectors
JP2002357692A (en) Radiation measuring device
JPH07146371A (en) Signal processing method and scintillation camera
JPS59163506A (en) Electronic beam measuring device
US4461182A (en) Load measuring apparatus
US6903344B2 (en) Baseline correction in PET utilizing continuous sampling ADCs to compensate for DC and count rate errors
EP2663879B1 (en) Detection device for detecting photons emitted by a radiation source