JPH0690289B2 - Method of manufacturing multi-channel ionization chamber type radiation detector - Google Patents

Method of manufacturing multi-channel ionization chamber type radiation detector

Info

Publication number
JPH0690289B2
JPH0690289B2 JP1284320A JP28432089A JPH0690289B2 JP H0690289 B2 JPH0690289 B2 JP H0690289B2 JP 1284320 A JP1284320 A JP 1284320A JP 28432089 A JP28432089 A JP 28432089A JP H0690289 B2 JPH0690289 B2 JP H0690289B2
Authority
JP
Japan
Prior art keywords
radiation detector
groove
insulating
plates
ionization chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1284320A
Other languages
Japanese (ja)
Other versions
JPH03144395A (en
Inventor
聡史 武村
泰巳 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP1284320A priority Critical patent/JPH0690289B2/en
Publication of JPH03144395A publication Critical patent/JPH03144395A/en
Publication of JPH0690289B2 publication Critical patent/JPH0690289B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は,第3世代X線CT装置やコンピュータ・ラジ
オグラフィなどに用いられる多チャンネル電離箱形放射
線検出器の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a multi-channel ionization chamber type radiation detector used in a third generation X-ray CT apparatus, computer radiography and the like.

〔従来技術〕[Prior art]

多チャンネル電離箱形放射線検出器(以下単に放射線検
出器と称する)は,放射線吸収係数の大きいXeガスが封
入された金属またはガラス容器内に対置する絶縁板間に
多数の高電圧電極板と多数の信号電極板とが交互に保持
されている。
A multi-channel ionization chamber type radiation detector (hereinafter simply referred to as a radiation detector) is composed of a large number of high voltage electrode plates between insulating plates opposite to each other in a metal or glass container filled with Xe gas having a large radiation absorption coefficient. A large number of signal electrode plates are held alternately.

特にCT装置用の放射線検出器では前記容器ならびに絶縁
板は円弧状に形成され,電極板は対置する絶縁板間にX
線管焦点に向ってラインアップされて配列されている。
In particular, in the radiation detector for the CT device, the container and the insulating plate are formed in an arc shape, and the electrode plate is X-shaped between the opposing insulating plates.
Lined up toward the focal point of the tube.

第5図,第6図はこの種放射線検出器の構成を示す模式
図で,(1)は電極を支持する絶縁板で,一般的には人
体を撮影するのに十分な有効視野を確保するために約80
0mmの円弧長を有している。
FIGS. 5 and 6 are schematic views showing the structure of this type of radiation detector, and (1) is an insulating plate that supports electrodes, and generally secures an effective field of view sufficient for photographing a human body. For about 80
It has an arc length of 0 mm.

絶縁板(1)のそれぞれの対向面には,約1m先の一点
(X線焦点)で交差する一定の角度,例えば0.05°の等
角度ピッチの電極支持溝(1)′が放射状に多数削切さ
れ,この溝(1)′に多数(例えば1000枚)の電極板
(2)が挿入されて固定されている。
On each facing surface of the insulating plate (1), a large number of electrode supporting grooves (1) 'with a constant angle intersecting at a point (X-ray focus) about 1 m ahead, for example, 0.05 ° equiangular pitch are radially cut. It is cut and a large number (for example, 1000) of electrode plates (2) are inserted and fixed in the groove (1) '.

上記構成の放射線検出器において,各電極は互いに1014
Ω程度以上に絶縁して保持される必要があること,隣接
電極間のピッチが約0.5mm〜1.5mmと狭いことまた,電極
は,外部からの力によって振動変形しないように強固に
固定される必要があることなどから,電極を支持する絶
縁板としては,絶縁性・剛性/精密加工性等を備えたセ
ラミックスやガラスやエンジニアリングプラスチックス
などの材料が用いられる。
In the radiation detector having the above structure, each electrode is 10 14
It is necessary to insulate and hold more than about Ω, the pitch between adjacent electrodes is narrow at about 0.5 mm to 1.5 mm, and the electrodes are firmly fixed so that they are not vibrated and deformed by external force. Since it is necessary, materials such as ceramics, glass, engineering plastics, etc. that have insulating properties / rigidity / precision workability are used for the insulating plates that support the electrodes.

一方,X線CT装置の検出器としては人体の断層撮影に十分
な視野を確保するため長さにして,約800mm程度の長さ
に上記電極板を連続して配列する必要があり,それを保
持する絶縁板も同様な長い円弧形状のものとなる。とこ
ろが上記のセラミック等の材料は,絶縁板として使用す
るに十分な特性を有する前記長さのものを製造すること
が技術的あるいはコスト的に困難である。
On the other hand, as a detector of an X-ray CT device, it is necessary to continuously arrange the electrode plates in a length of about 800 mm in order to secure a field of view sufficient for tomography of the human body. The holding insulating plate also has a similar long arc shape. However, it is technically or costly difficult to manufacture the above-mentioned materials such as ceramics, which have the above-mentioned length and have sufficient characteristics for use as an insulating plate.

したがって溝を削切した一対の円弧長lの小絶縁板間に
電極板を装着した検出器ユニット(3)を作成し,この
検出器ユニット(3)を第1図に示すように相互に継ぎ
合わせて所定の円弧長Lを有する円弧状の長い放射線検
出器を得ていた。
Therefore, a detector unit (3) having an electrode plate mounted between a pair of small insulating plates having a circular arc length l in which a groove is cut is prepared, and the detector unit (3) is connected to each other as shown in FIG. In addition, a long arc-shaped radiation detector having a predetermined arc length L was obtained.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

この種の放射線検出器では,電極は絶縁板の溝にそう入
して保持されるため、溝の加工位置の誤差は電極の配列
の誤差に直接つながる。
In this type of radiation detector, since the electrodes are inserted and held in the grooves of the insulating plate, the error in the processing position of the grooves directly leads to the error in the arrangement of the electrodes.

絶縁板の電極支持溝は一般にダイヤモンドソやワイヤソ
ーなどの加工機で加工されるが,溝を加工する位置は加
工機の機械的なガタやたわみ,設置環境のふんい気温度
の変化や加工熱,反応熱等による加工機,被加工物の熱
的ぼう張によって設計値からわずかにずれる。
The electrode support groove of the insulating plate is generally processed by a processing machine such as a diamond saw or a wire saw, but the position where the groove is processed is mechanical backlash and bending of the processing machine, changes in the atmospheric temperature of the installation environment and processing heat. , The design value may slightly deviate due to the thermal expansion of the processing machine and the work piece due to reaction heat.

したがって,一対の小絶縁板間に電極を支持して検出器
ユニットを形成し,このユニットを数〜十数個を連結し
て所定大きさの放射線検出器とする従来の方法では,各
検出ユニットを形成する小絶縁板毎に微妙に加工精度が
異なり,最終的にこれらを連結した場合,特にその連結
部分において,上記の小絶縁板毎に生じた溝の位置の許
容誤差を越える大きな誤差が生じる。
Therefore, in the conventional method in which a detector unit is formed by supporting electrodes between a pair of small insulating plates and several to ten or more units are connected to form a radiation detector of a predetermined size, each detector unit is The machining accuracy is slightly different for each small insulating plate that forms a groove, and when these are finally connected, a large error exceeding the permissible error in the position of the groove generated for each small insulating plate, especially at the connecting portion, is generated. Occurs.

X線CT用の検出器としては小絶縁板の連結部分において
も検出セル(信号電極を挾んで対向する高電圧電極間の
空隙)を連続して設ける必要があるのでその部分の検出
セルは特に他の部分とは大きく特性の異なるものとな
り,リングアーティファクトが発生しやすい。
As a detector for X-ray CT, it is necessary to continuously provide a detection cell (a space between high voltage electrodes facing each other across the signal electrode) even at a connecting portion of a small insulating plate, so that the detection cell in that portion is particularly The characteristics are significantly different from other parts, and ring artifacts are likely to occur.

個々に溝を加工した小絶縁板の溝の位置と方向は設計値
に対してそれぞれ,特有のずれをもっている。連結部分
において,溝のピッチを合わせようとすれば,溝の方向
が1点に交叉しなくなり,あるいは1点に交叉するよう
にすれば,ピッチが合わなくなる。
The position and direction of the grooves of the small insulating plate with the grooves individually processed have their own deviations from the design values. If it is attempted to match the pitches of the grooves in the connecting portion, the directions of the grooves will not intersect at one point, or if they will intersect at one point, the pitch will not match.

これらの小絶縁板を数個溝の位置と方向さらに外形を合
わせて,連結する作業は時間のかかる困難な作業であ
る。
It is a time-consuming and difficult task to connect several small insulating plates by aligning the positions and directions of the grooves and the outer shapes.

また,各検出器ユニットの小絶縁板に設計値通りに正確
に溝が加工され,電極板が等ピッチに配列されたとして
も、各検出器ユニットの連結に際し、各ユニットを最良
の配列・位置に配置できるとは限らず誤った位置に配
列,連結してさらに大きな誤差を生じる恐れがある。
Also, even if the grooves are machined exactly on the small insulating plate of each detector unit according to the design value and the electrode plates are arranged at equal pitches, when connecting each detector unit, the best arrangement and position of each unit It is not always possible to place them in the same position, and there is a risk that even larger errors will occur if they are arranged and linked at the wrong position.

この発明は従来法の問題点を解決すべくなされたもの
で,電極を等ピッチに配列でき,特に小絶縁板の継ぎ目
においても等ピッチに電極を配列でき,空間分解能のバ
ラツキのない多チャンネル電離箱形放射線検出器を簡単
に製造することのできる製造方法を提供することを目的
とする。
The present invention has been made to solve the problems of the conventional method. It is possible to arrange electrodes at equal pitches, and especially even at joints of small insulating plates, electrodes can be arranged at equal pitches, and multi-channel ionization with no variation in spatial resolution. It is an object of the present invention to provide a manufacturing method capable of easily manufacturing a box-shaped radiation detector.

〔課題を解決するための手段〕[Means for Solving the Problems]

この発明による多チャンネル電離箱形放射線検出器の製
造方法は,複数枚の小絶縁板を連結一体化して所定サイ
ズの絶縁基板を形成して後,この絶縁板の一面に電極支
持溝を加工し,次に溝加工された絶縁板の溝に電極板を
順次着し込み支持させることを特徴とする。
In the method for manufacturing a multi-channel ionization chamber type radiation detector according to the present invention, a plurality of small insulating plates are connected and integrated to form an insulating substrate of a predetermined size, and then an electrode supporting groove is formed on one surface of the insulating plate. The next feature is that the electrode plates are sequentially attached to and supported by the grooves of the grooved insulating plate.

〔作用〕[Action]

小絶縁板は連結一体化した後に電極支持溝を加工する。 After the small insulating plates are connected and integrated, the electrode supporting groove is processed.

溝加工における誤差の要因のうち,その多くは1つの溝
を加工する短時間に変化するものではなく多数の溝を加
工している間,長時間の周期でゆっくり変化するもので
ある。また小絶縁板は溝を加工する前にすでに連結され
ており,その連結部分に設けられる溝も同時に加工され
る。したがって,従来の方法で加工した場合に生じた連
結部分における局部的,かつ不連続な溝の位置と方向の
誤差は発生しない。
Many of the factors of error in groove processing do not change in a short time when processing one groove, but slowly change in a long time period while processing a large number of grooves. Further, the small insulating plates are already connected before the groove is processed, and the groove provided in the connection portion is also processed at the same time. Therefore, there is no local and discontinuous groove position and direction error in the connecting portion that occurs when the conventional method is used.

また,溝の位置と方向を合わせて連結する作業が必要な
いため、その工程での誤差が発生しない。したがって,
電極板を等ピッチで配列でき,空間分解能の均一な多チ
ャンネル電離箱形放射線検出器が得られる。
Further, since it is not necessary to connect the grooves by aligning the positions and the directions, no error occurs in the process. Therefore,
The electrode plates can be arranged at equal pitch, and a multichannel ionization chamber type radiation detector with uniform spatial resolution can be obtained.

〔実施例〕〔Example〕

以下図面によってこの発明の実施例を説明する。第1図
ないし第3図はこの発明の放射線検出器の絶縁基板の製
造工程を示す斜視図である。
An embodiment of the present invention will be described below with reference to the drawings. 1 to 3 are perspective views showing steps of manufacturing an insulating substrate of a radiation detector according to the present invention.

第1図は従来の検出器ユニットを構成する小絶縁板(1
1)′で一般的には大径(例えば1m半径)で円弧状に加
工され,円弧長l,幅W,厚みtの例えばセラミック板であ
る。
Fig. 1 shows a small insulating plate (1
In 1) ′, it is generally a ceramic plate having a large diameter (for example, a radius of 1 m) processed into an arc shape and having an arc length l, width W, and thickness t.

この小絶縁板(11)′は,第1工程として所定の円弧長
(サイズ)によるよう複数枚(図面では3枚)それぞれ
の端面を連結して固定一体化し,絶縁基板(11)を作成
する。第2図はこの第1工程で作成された絶縁基板(1
1)を示す。
As a first step, the small insulating plate (11) 'is fixedly integrated by connecting the end faces of a plurality of (three in the drawing) so as to have a predetermined arc length (size) to form an insulating substrate (11). . Figure 2 shows the insulating substrate (1
1) is shown.

各小絶縁板(11)′の固定方法は,それぞれの小絶縁板
のつぎ合わされるべき端面を接着剤等で連結するかもし
くはステンレス等の金属板を台座にしてそれに接着,ろ
う付あるいはネジ止めしてもよい。第1工程で作成され
た絶縁基板(11)の一面に電極板支持用の溝(12)を複
数本削切加工する。(第2工程)溝の加工はダイシング
ソーによって小絶縁物を削切加工してもよいし,また,
ホトマスクによるエッチング法や小絶縁板上に他の絶縁
物を付加して溝を形成してもよい。
The fixing method of each small insulating plate (11) 'is to connect the end faces to be joined of each small insulating plate with an adhesive agent or to use a metal plate such as stainless steel as a pedestal to adhere, braze or screw it. You may. A plurality of grooves (12) for supporting the electrode plate are cut and cut on one surface of the insulating substrate (11) formed in the first step. (Second step) The groove may be machined by cutting a small insulator with a dicing saw.
The groove may be formed by etching with a photomask or by adding another insulator on the small insulating plate.

第3図は第2工程で作成された絶縁基板(11)を示す。
つぎの工程として,第2工程で作成した絶縁基板2枚を
溝面が対向するように電極板の一辺の長さに応じた距離
を隔てて平行に対向させて,一対の対向する溝に電極板
を順次差し込みそれを保持させる。(第3工程) なお,実施例では小絶縁板(11)′の端面を溝と同じ放
射状に切断したが,特開昭57-203982号公報に記載され
ているように溝に斜めに交叉するように端面を切断した
形状の小絶縁板を用いてもよい。
FIG. 3 shows the insulating substrate (11) produced in the second step.
In the next step, the two insulating substrates prepared in the second step are made to face each other in parallel with a distance corresponding to the length of one side of the electrode plate so that the groove surfaces face each other. Insert the plates in sequence and hold them in place. (Third step) In the embodiment, the end face of the small insulating plate (11) 'is cut in the same radial shape as the groove, but as shown in JP-A-57-203982, it obliquely intersects with the groove. Alternatively, a small insulating plate having a cut end face may be used.

第4図はこのように形成した小絶縁板(11)′を連結一
体化し,溝を削切加工した絶縁基板(11)を示す。ま
た,実施例では,円弧状の小絶縁板を用意し,それを複
数枚連結して,所定円弧長の円弧状絶縁基板としたが,
小絶縁板を複数枚連結して一体化して後,円弧状に加
工,あるいは溝を削切加工して後,円弧状等の所定形
状,大きさに加工するようにしてもよい。さらに,実施
例においては絶縁基板を円弧状に形成したが、矩形状に
形成し、その一面に互に平行な溝,あるいは一点に収束
する放射状の溝を削切加工するようにしてもよい。
FIG. 4 shows an insulating substrate (11) in which the small insulating plates (11) 'thus formed are connected and integrated, and the grooves are cut and processed. Further, in the embodiment, an arc-shaped small insulating plate is prepared and a plurality of arc-shaped insulating plates are connected to form an arc-shaped insulating substrate having a predetermined arc length.
A plurality of small insulating plates may be connected and integrated, and then processed into an arc shape, or a groove may be cut and processed, and then processed into a predetermined shape and size such as an arc shape. Further, although the insulating substrate is formed in an arc shape in the embodiment, it may be formed in a rectangular shape and the grooves parallel to each other on one surface thereof or the radial grooves converged at one point may be cut.

さらにまた,複数枚の小絶縁板を台座に,特にネジ止め
でもって連結一体化する場合は,その後の第2工程での
溝加工の後,固定された小絶縁板の固定を解除し,個々
の小絶縁板に分解して,個々の溝付小絶縁板を2ケ対向
させて電極板を保持させて検出器ユニットを製作し,こ
の検出器ユニットを複数連結して台座に固定して検出器
を製作してもよい。
Furthermore, when a plurality of small insulating plates are connected and integrated with a pedestal, especially by screwing, after fixing the fixed small insulating plates after the groove processing in the second step, Disassemble into small insulating plates, and make two small insulating plates with grooves facing each other to hold the electrode plate to make a detector unit. Connect a plurality of detector units and fix them to the pedestal for detection. You may make a container.

〔効果〕〔effect〕

この発明によれば溝の位置精度が向上し,隣接する電極
板間ピッチ及びその方向精度の良い感度の均一な高精度
の多チャンネル電離箱形放射検出器が簡単且つ安価に製
造できる。
According to the present invention, the position accuracy of the groove is improved, and a highly accurate multi-channel ionization chamber type radiation detector having a uniform pitch pitch between adjacent electrode plates and its direction accuracy and uniform sensitivity can be manufactured easily and inexpensively.

また,この発明により製造された多チャンネル電離箱形
放射線検出器をX線CT装置に用いれば,リングアーティ
ファクトのない良質の再構成画像が得られる。
If the multi-channel ionization chamber type radiation detector manufactured according to the present invention is used in an X-ray CT apparatus, a good quality reconstructed image without ring artifacts can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図ないし第3図は,この発明の一実施例にかかる製
造方法の一部を説明するための絶縁基板加工図(斜視
図),第4図は他の実施例の絶縁基板の加工図(斜視
図),第5図は従来の放射線検出器の概略構成を示す斜
視図,第6図は第5図の一部拡大図である。 11:絶縁基板、11′:小絶縁板、12:溝
1 to 3 are processed views of an insulating substrate (perspective view) for explaining a part of a manufacturing method according to an embodiment of the present invention, and FIG. 4 is a processed view of an insulating substrate of another embodiment. (Perspective view), FIG. 5 is a perspective view showing a schematic configuration of a conventional radiation detector, and FIG. 6 is a partially enlarged view of FIG. 11: Insulation board, 11 ': Small insulation board, 12: Groove

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】平行に対置された一対の絶縁板に複数の電
極板を装着してなる放射線検出器において, 複数枚の小絶縁板を連結一体化し絶縁基板を作成する工
程と,絶縁基板の一面に前記電極板を支持する溝を形成
する工程と,前記溝に電極板の端部を順次差し込み,電
極板を絶縁基板に装着する工程とよりなる多チャンネル
電離箱形放射線検出器の製造方法。
1. A radiation detector comprising a plurality of electrode plates mounted on a pair of insulating plates arranged in parallel, wherein a step of connecting and integrating a plurality of small insulating plates to form an insulating substrate; Method for manufacturing a multi-channel ionization chamber type radiation detector comprising: forming a groove for supporting the electrode plate on one surface; and inserting an end portion of the electrode plate into the groove sequentially and mounting the electrode plate on an insulating substrate .
JP1284320A 1989-10-31 1989-10-31 Method of manufacturing multi-channel ionization chamber type radiation detector Expired - Fee Related JPH0690289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1284320A JPH0690289B2 (en) 1989-10-31 1989-10-31 Method of manufacturing multi-channel ionization chamber type radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1284320A JPH0690289B2 (en) 1989-10-31 1989-10-31 Method of manufacturing multi-channel ionization chamber type radiation detector

Publications (2)

Publication Number Publication Date
JPH03144395A JPH03144395A (en) 1991-06-19
JPH0690289B2 true JPH0690289B2 (en) 1994-11-14

Family

ID=17677026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1284320A Expired - Fee Related JPH0690289B2 (en) 1989-10-31 1989-10-31 Method of manufacturing multi-channel ionization chamber type radiation detector

Country Status (1)

Country Link
JP (1) JPH0690289B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257598A (en) * 2004-03-15 2005-09-22 Kawasaki Heavy Ind Ltd X-ray ion chamber detector

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4830450B2 (en) * 2005-11-02 2011-12-07 株式会社島津製作所 Mass spectrometer
JP2015065263A (en) * 2013-09-25 2015-04-09 株式会社ダイヘン Transformer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257598A (en) * 2004-03-15 2005-09-22 Kawasaki Heavy Ind Ltd X-ray ion chamber detector
JP4498779B2 (en) * 2004-03-15 2010-07-07 川崎重工業株式会社 X-ray ion chamber detector and X-ray detector

Also Published As

Publication number Publication date
JPH03144395A (en) 1991-06-19

Similar Documents

Publication Publication Date Title
US5965893A (en) X-ray CT solid-state detector
US8873705B2 (en) X-ray CT apparatus
JP4215318B2 (en) Manufacturing method of scintillator for computer tomography apparatus
CN1168419C (en) Method of fabricating scintillators for computed tomograph system
JP6100631B2 (en) Radiation detection apparatus, radiation tomography apparatus, and method of assembling radiation detection apparatus
JPH0317614B2 (en)
JPH0740609B2 (en) Method for manufacturing semiconductor device
JPH0690289B2 (en) Method of manufacturing multi-channel ionization chamber type radiation detector
JP2007512075A (en) Radiation detector module
JP2002207082A (en) Two-dimensional radiation detector and its production method
CN100592079C (en) X-ray CT system collimator and method of manufacturing an X-ray ct system collimator
JP6051361B2 (en) Variable shape X-ray mirror system
US4476390A (en) Radiation detector having radiation source position detecting means
JP2918901B2 (en) Perforated collimator and manufacturing method thereof
JP3056847B2 (en) Quadrupole electrode and method of manufacturing the same
CN106413561A (en) Radiation detection apparatus and radiation tomography apparatus
JP2001296366A (en) Two-dimensional array type radiation detector
US4768765A (en) Jig for arranging electrode plates of an ionization chamber type x-ray detector
JPH09218269A (en) Solid detector for x-ray ct apparatus
JP2001255380A (en) Radiation detector, its manufacturing method, data correcting method for x-ray ct device
JP2001356174A (en) Two-dimensional radiation detector and its manufacturing method
JP3071817B2 (en) Semiconductor radiation detector
JPH0521251Y2 (en)
JP2005062100A (en) Kelvin probe
JPH0755616A (en) Manufacture of capacitance type pressure detector

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees