JPH0690183B2 - Defect type / shape discrimination method by electronic scanning ultrasonic flaw detection - Google Patents

Defect type / shape discrimination method by electronic scanning ultrasonic flaw detection

Info

Publication number
JPH0690183B2
JPH0690183B2 JP1061652A JP6165289A JPH0690183B2 JP H0690183 B2 JPH0690183 B2 JP H0690183B2 JP 1061652 A JP1061652 A JP 1061652A JP 6165289 A JP6165289 A JP 6165289A JP H0690183 B2 JPH0690183 B2 JP H0690183B2
Authority
JP
Japan
Prior art keywords
defect
flaw detection
electronic scanning
ultrasonic flaw
discrimination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1061652A
Other languages
Japanese (ja)
Other versions
JPH02240562A (en
Inventor
勝之 西藤
宏晴 加藤
英男 小菅
清英 玉木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1061652A priority Critical patent/JPH0690183B2/en
Publication of JPH02240562A publication Critical patent/JPH02240562A/en
Publication of JPH0690183B2 publication Critical patent/JPH0690183B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は複数個の振動子を直線状に配置してなるアレイ
探触子を用いて、被検査体に内在する欠陥の探傷を行な
う電子走査型超音波探傷法において、特に欠陥の種類・
形状を短時間でかつ高信頼度で弁別し得るようにした電
子走査型超音波探傷による欠陥種類・形状弁別法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention uses an array probe in which a plurality of transducers are arranged in a straight line to detect electrons in a defect in an object to be inspected. In the scanning ultrasonic flaw detection method,
The present invention relates to a defect type / shape discrimination method by electronic scanning ultrasonic flaw detection capable of discriminating shapes in a short time and with high reliability.

(従来の技術) 一般に、鋼管等の被検査体に内在する欠陥の探傷を行な
う方法の一つとして、超音波探傷法が用いられてきてい
る。また、この超音波探傷法による欠陥形状弁別法とし
ては、従来から2つのアプローチ法が知られている。第
1のアプローチは、欠陥の性状を含めての欠陥からの超
音波反射波の波形解析によるもので、例えば反射波の周
波数解析、位相解析によって欠陥形状を弁別しようとす
るものである。また、第2のアプローチは、主として欠
陥形状による反射波の反射挙動の変化に注目するもの
で、例えば反射波の形状、波高値、伝播時間等における
変化によって欠陥形状を弁別しようとするものである
(特開昭61−173152号、「超音波による電縫鋼管溶接部
欠陥識別法の基礎検討」(社)日本非破壊検査協会昭和
59年秋期大会講演概要P740−741)。本発明は、この第
2のアプローチに属するものである。
(Prior Art) Generally, an ultrasonic flaw detection method has been used as one of the methods for flaw detection of a defect existing in an inspection object such as a steel pipe. Further, as the defect shape discrimination method by the ultrasonic flaw detection method, two approach methods are conventionally known. The first approach is to analyze the waveform of the ultrasonic reflected wave from the defect including the property of the defect, for example, to distinguish the defect shape by the frequency analysis and phase analysis of the reflected wave. The second approach mainly focuses on the change in the reflection behavior of the reflected wave due to the defect shape, and attempts to discriminate the defect shape by, for example, the change in the shape of the reflected wave, the peak value, the propagation time, or the like. (Unexamined Japanese Patent Publication No. 61-173152, "Fundamental Study on Defect Identification Method of ERW Steel Pipe Welds by Ultrasonic Waves", Japan Nondestructive Inspection Association
59th Autumn Meeting Lecture Summary P740-741). The present invention belongs to this second approach.

ところで、従来方法にあっては探触子の手動走査による
もので、種々の探触子走査法の組合せによって反射波の
変化を類型し、欠陥形状を推定するものである。例え
ば、溶接部の欠陥の形状,あるいは種類(クラック、ブ
ローホール、スラグ等)を判定する場合、一対の探触子
により溶接部を挟んでの欠陥部横断線上での両側探傷,
各側については、探触子の欠陥に対する前後走査,振子
走査,首振り走査等による反射波変化の総合評価とな
る。また、発生する欠陥種類が比較的限定される電縫管
溶接部の場合においても、探触子の手動走査方法の組合
せを少なくすることができるが、手動走査における非能
率性、反射波変化を読取っての弁別特性値の定性的抽
出、これらの組合せ評価における主観性、いずれの手順
においても検査員の技量依存は大であり、欠陥形状弁別
の信頼性に不安要素を残すことに変わりはない。
By the way, in the conventional method, the probe is manually scanned, and the change of the reflected wave is classified by the combination of various probe scanning methods to estimate the defect shape. For example, when determining the shape or type (defects, cracks, blowholes, slags, etc.) of defects in the weld, flaw detection on both sides of the defect crossing line sandwiching the weld with a pair of probes,
For each side, a comprehensive evaluation of reflected wave changes due to front-back scanning, pendulum scanning, oscillating scanning, etc., for defects in the probe is performed. Further, even in the case of the electric resistance welded pipe welded portion in which the types of defects that occur are relatively limited, it is possible to reduce the combination of manual scanning methods of the probe, but inefficiency in manual scanning and reflected wave change Qualitative extraction of discriminative characteristic values by reading, subjectivity in combination evaluation of these, and in any procedure, the skill of the inspector greatly depends, and there remains an uncertain factor in the reliability of defect shape discrimination. .

以下、電縫管溶接部の欠陥に対する従来の手法について
詳述する。
Hereinafter, a conventional method for the defect of the electric resistance welded pipe will be described in detail.

電縫管溶接部に発生する代表的な欠陥としては、第3図
(a)および(b)に示すようにセンタークラックおよ
びフッククラックがある。またこの他に、第3図(c)
に示すように管母材に残存する非金属介在物、電縫溶接
ビードの切削不良部も超音波で検出される。この場合、
内圧を受ける管使用を考えると、センタークラックは重
大欠陥であり、非金属介在物は無害である。そして、こ
れら欠陥の発生原因は異なることからも、超音波探傷で
の検出欠陥は、その種類ないしは形状をも弁別し、溶接
過程へ迅速にフィードバックして溶接条件を是正するこ
とが必要となる。
Typical defects that occur in the ERW welded portion include center cracks and hook cracks as shown in FIGS. 3 (a) and 3 (b). In addition to this, FIG. 3 (c)
As shown in (1), the non-metallic inclusions remaining in the pipe base material and the defective cutting portion of the electric resistance weld bead are also detected by ultrasonic waves. in this case,
Considering the use of pipes under internal pressure, center cracks are a serious defect and non-metallic inclusions are harmless. Since the causes of these defects are different, it is necessary to discriminate the type or shape of the defect detected by ultrasonic flaw detection and to promptly feed it back to the welding process to correct the welding condition.

第4図は、従来の手動探触子走査方法を示す概念図で、
例えば自動超音波探傷による欠陥指示部に対して、手動
再探傷により上述の如く最終的合否判定を行なう場合で
ある。すなわち、電縫部1の欠陥2に対して、探触子3
を前後走査することによって、 (a)探触子距離に伴う反射波波高値の変化を観察 (b)反射波のピーク波高値の測定 (c)同ピーク位置でのビーム路程の測定あるいは観察 を行ない、必要に応じて探触子3を左右走査することに
よって、欠陥2の管軸方向寸法(欠陥指示長さ)を測定
する。以上の走査を、電縫部1を挟む両側(図示A側と
B側)で行なう。そして、判定はこれら走査結果の総合
評価によるもので、その考え方の一例を述べると、A
側,B側探傷でのピーク波高値がほぼ同一であればセンタ
ークラック、また両者の差異が生じてくればフッククラ
ックの傾向を呈すると推定するものである。
FIG. 4 is a conceptual diagram showing a conventional manual probe scanning method,
For example, there is a case where the final pass / fail judgment is performed as described above by manual re-flaw detection on the defect indication portion by automatic ultrasonic flaw detection. That is, for the defect 2 of the electric resistance welded portion 1, the probe 3
(A) Observe the change in the peak value of the reflected wave with the probe distance (b) Measure the peak value of the reflected wave (c) Measure or observe the beam path at the same peak position. The probe 3 is scanned left and right as needed, and the dimension of the defect 2 in the tube axis direction (indicated defect length) is measured. The above scanning is performed on both sides (the A side and the B side in the figure) sandwiching the electric resistance welded portion 1. The determination is based on the comprehensive evaluation of these scanning results.
It is presumed that if the peak wave heights at the side B and B side flaw detection are almost the same, there is a tendency for center cracking, and if there is a difference between the two, there is a tendency for hook cracking.

(発明が解決しようとする課題) しかしながら、このような探触子の手動走査による従来
の欠陥形状弁別方法では、次のような問題がある。
(Problems to be Solved by the Invention) However, the conventional defect shape discrimination method by such manual scanning of the probe has the following problems.

(a)各手動走査における反射波検出は、機械的走査で
あることから時間がかかり、またその検査精度は検査員
の技量に依存する(例えば、反射波ピーク位置検出とピ
ーク値の読取り)ため個人誤差が発生する (b)欠陥形状弁別のための特性値抽出にあって、前後
走査に伴う反射波形状の変化、あるいは反射波ピーク値
におけるビーム路程変化等、いくつかの定性的評価を残
しており、この点についても検査員の技量に依存する所
が大である (c)欠陥形状弁別のための諸特性値の総合評価は、上
記所与の走査からの情報に限定されての経験則である。
この場合、所与の情報での最適化ではあるが、より判定
の確度を上げるには、定量化された弁別特性値が多い方
が望ましい 以上の点から、従来手法の非能率性、特性値抽出および
評価における定量化不足、従って技量依存による個人誤
差の発生は、弁別結果に対する信頼度を損なうものとな
る。特に、製管プロセス中での欠陥形状弁別ともなる
と、物流バランス上許容時間に限界があり、従って迅速
に,正確に,しかもより多くの情報といったライン操業
ニーズは、従来手法の確度に対してマイナスに作用する
ことは明らかである。
(A) Since the reflected wave detection in each manual scanning is mechanical scanning, it takes time, and its inspection accuracy depends on the skill of the inspector (for example, reflected wave peak position detection and peak value reading). Individual error occurs. (B) In extracting characteristic values for defect shape discrimination, some qualitative evaluations such as change of reflected wave shape due to front-back scanning or beam path change at peak value of reflected wave are left. This also largely depends on the skill of the inspector. (C) Experience that the comprehensive evaluation of various characteristic values for defect shape discrimination is limited to the information from the given scan. It is a rule.
In this case, although it is an optimization with given information, it is desirable to have many quantified discrimination characteristic values in order to further improve the accuracy of the judgment. Lack of quantification in extraction and evaluation, and therefore generation of individual error due to skill dependency, impairs the reliability of the discrimination result. In particular, when it comes to discriminating defect shapes during the pipe manufacturing process, there is a limit in the allowable time in terms of distribution balance, so the line operation needs such as quick, accurate, and more information are less than the accuracy of conventional methods. It is clear that it acts on.

本発明は上記のような問題を解決するために成されたも
ので、その目的は被検査体に内在する欠陥の種類・形状
を短時間で能率良くかつ高信頼度で弁別することが可能
な電子走査型超音波探傷による欠陥種類・形状弁別法を
提供することを目的とする。
The present invention has been made to solve the above problems, and an object thereof is to be able to discriminate the types and shapes of defects existing in an object to be inspected efficiently in a short time and with high reliability. It is an object of the present invention to provide a defect type / shape discrimination method by electronic scanning ultrasonic flaw detection.

(課題を解決するための手段) 上記の目的を達成するために、 第1の発明では、被検査体の欠陥を挟んでほぼ同一距離
位置に一対のアレイ探触子を相対的に配置し、これらの
アレイ探触子を片側ずつ切替えて電子走査型超音波探傷
を行ない、この電子走査型超音波探傷により得られる欠
陥からの各反射波の反射挙動の差異を抽出してこれを特
徴づける複数の弁別特性値を算出し、この弁別特性値に
基づいて欠陥の種類を弁別する電子走査型超音波探傷に
より得られる欠陥からの各反射波の反射挙動の差異を抽
出してこれを特徴づける複数の弁別特性値を算出し、こ
の弁別特性値に基づいて欠陥の種類を弁別するように
し、 また第2の発明では、被検査体の欠陥を挟んでほぼ同一
距離位置に一対のアレイ探触子を相対的に配置し、これ
らのアレイ探触子を片側ずつ切替えて電子走査型超音波
探傷を行ない、この電子走査型超音波探傷により得られ
る欠陥からの各反射波の反射挙動の差異を抽出してこれ
を特徴づける複数の弁別特性値を算出し、この弁別特性
値に基づいて形状弁別のための評価値を算出し、この評
価値と実際の欠陥の形状より求めた相関関係から欠陥の
形状を弁別するようにしている。
(Means for Solving the Problems) In order to achieve the above-mentioned object, in the first invention, a pair of array probes are relatively arranged at substantially the same distance position with a defect of an inspection object interposed therebetween, These array probes are switched side by side to perform electronic scanning ultrasonic flaw detection, and the difference in the reflection behavior of each reflected wave from the defect obtained by this electronic scanning ultrasonic flaw detection is extracted to characterize the multiple characteristics. The difference characteristic of the reflection behavior of each reflected wave from the defect obtained by the electronic scanning ultrasonic flaw detection that distinguishes the type of the defect based on this discrimination characteristic value is extracted and characterized. The discrimination characteristic value is calculated, and the type of defect is discriminated based on the discrimination characteristic value. Further, in the second invention, a pair of array probes are arranged at substantially the same distance position across the defect of the inspection object. Relative to each other, and B. Electronic scanning ultrasonic flaw detection is performed by switching the probe on each side, and the difference in the reflection behavior of each reflected wave from the defect obtained by this electronic scanning ultrasonic flaw detection is extracted to distinguish it. A characteristic value is calculated, an evaluation value for shape discrimination is calculated based on the discrimination characteristic value, and the defect shape is discriminated from the correlation obtained from the evaluation value and the actual defect shape.

(作用) 第1の発明では、電子走査型超音波探傷により得られる
夫々の反射波の反射挙動の差異を特徴づける複数の弁別
特性値に基づいて、欠陥の種類を弁別することが可能と
なり、第2の発明では、電子走査型超音波探傷により得
られる夫々の反射波の反射挙動の差異を特徴づける複数
の弁別特性値に基づいて形状弁別のための評価値を算出
し、この評価値と実際の欠陥の形状との相関関係から欠
陥の形状を弁別することが可能となる。従って、電子走
査型超音波探傷法の機能を効果的,効率的に組合せて適
用し、さらに定量化された諸特性に対する判定の論理化
により、前述の手動走査に基づく欠陥形状弁別法の問題
である、非能率性,技量依存による精度上の個人誤差の
誘発,所与情報に限定されての判定確度の制約等を解消
し、人的依存性の少ない信頼度の高い弁別を行なうこと
ができる。
(Operation) In the first invention, it is possible to discriminate the defect type based on a plurality of discrimination characteristic values that characterize the difference in the reflection behavior of the respective reflected waves obtained by the electronic scanning ultrasonic flaw detection, In the second invention, an evaluation value for shape discrimination is calculated based on a plurality of discrimination characteristic values that characterize the difference in the reflection behavior of the reflected waves obtained by the electronic scanning ultrasonic flaw detection, and the evaluation value The shape of the defect can be discriminated from the correlation with the actual shape of the defect. Therefore, by applying the functions of the electronic scanning ultrasonic flaw detection method effectively and efficiently, and further by applying the logical judgment to the quantified characteristics, the problem of the defect shape discrimination method based on the above-mentioned manual scanning is solved. It is possible to eliminate inefficiency, skill-dependent personal error in accuracy, restriction of judgment accuracy limited to given information, etc., and perform highly reliable discrimination with less human dependence. .

(実施例) 以下、本発明の一実施例について図面を参照して説明す
る。
(Example) Hereinafter, one example of the present invention will be described with reference to the drawings.

第1図は、本発明の電子走査型超音波探傷による欠陥種
類・形状弁別法の一例を示す概念図である。なお本例で
は、被検査体として電縫管溶接部の欠陥探傷に適用した
場合について述べる。
FIG. 1 is a conceptual diagram showing an example of a defect type / shape discrimination method by electronic scanning ultrasonic flaw detection of the present invention. In addition, in this example, the case where the present invention is applied to the defect inspection of the electric resistance welded pipe welded portion will be described.

すなわち第1図においては、被検査体である電縫管4の
電縫部5に内在する欠陥6の種類および形状を弁別する
に際して、まず電縫部5の欠陥6を挟んで横断線上にほ
ぼ同一距離位置に、複数個の振動子を直線状に配置して
なる一対のアレイ探触子7A,7Bを相対的に配置する。次
に、この一対のアレイ探触子7A,7Bに対し、片側ずつあ
る探傷屈折角で各振動子に沿う直線的送受信の切替えに
よる公知のリニア走査を行なうことにより、超音波ビー
ム8Aを送信して電縫部5の欠陥6を超音波探傷する。次
に、この超音波ビーム8Aの送信に伴って欠陥6で反射し
た反射波を、アレイ探触子7Aにて受信する。そして、か
かる電子走査型超音波探傷法により得られる欠陥6から
の反射波の反射挙動の変化より、反射波のピーク検出位
置(ビーム路程)、ピーク波高値およびピーク波形に対
する1/10波高値幅(波形の尖鋭度評価)等の弁別特性値
を抽出する。また、アレイ探触子7Aのほぼ中央部の所定
個数の振動子からなる一振動子群のみにて超音波ビーム
を送信し、この超音波ビームの送信に伴う欠陥6からの
反射波を、アレイ探触子7Aを構成する各振動子毎にその
配置方向に沿ってリニア走査して順次切換えて受信する
ことにより、反射波の反射指向特性を弁別特性値として
抽出する。以上の走査を、もう一方のアレイ探触子7Bに
ついても行なう。
That is, in FIG. 1, when discriminating the type and shape of the defect 6 existing in the electric resistance welded portion 5 of the electric resistance welded pipe 4 which is the object to be inspected, first, the defect 6 of the electric resistance welded portion 5 is sandwiched and the defect 6 is almost the same distance on the transverse line. At a position, a pair of array probes 7A and 7B in which a plurality of transducers are linearly arranged are relatively arranged. Next, with respect to the pair of array probes 7A and 7B, the ultrasonic beam 8A is transmitted by performing known linear scanning by switching linear transmission / reception along each transducer at a flaw detection refraction angle on one side. Then, the defect 6 of the electric seam portion 5 is ultrasonically flaw-detected. Next, the array probe 7A receives the reflected wave reflected by the defect 6 along with the transmission of the ultrasonic beam 8A. Then, from the change in the reflection behavior of the reflected wave from the defect 6 obtained by the electronic scanning ultrasonic flaw detection method, the peak detection position (beam path) of the reflected wave, the peak crest value, and the 1/10 crest value width with respect to the peak waveform ( Discrimination characteristic values such as waveform sharpness evaluation) are extracted. Further, the ultrasonic beam is transmitted only by one transducer group consisting of a predetermined number of transducers in the central portion of the array probe 7A, and the reflected wave from the defect 6 accompanying the transmission of the ultrasonic beam is arrayed. By linearly scanning each transducer forming the probe 7A along the arrangement direction and sequentially switching and receiving, the reflection directivity characteristic of the reflected wave is extracted as a discrimination characteristic value. The above scanning is also performed for the other array probe 7B.

表は、欠陥形状弁別のための抽出した弁別特性値、さら
には評価に一般性を与えて欠陥形状に好都合な加工値と
して採用した例を示すものである。すなわち、実用的弁
別特性値としては、A側およびB側探傷時の各弁別特性
値の差あるいは相関係数を用いるものである。
The table shows the extracted discrimination characteristic values for defect shape discrimination, and further an example in which generality is given to the evaluation and adopted as a processing value convenient for the defect shape. That is, as the practical discrimination characteristic value, the difference or correlation coefficient between the discrimination characteristic values at the time of flaw detection on the A side and the B side is used.

第2図は、本実施例における上記弁別特性値の欠陥種類
に対応した挙動の一例を示す図である。第2図におい
て、各弁別特性値は、レーダーチャート上外側に位置す
る程、フッククラック性を示すように目盛ってある。同
図(a)はフッククラック、同図(b)はセンタークラ
ックにそれぞれ対応するもので、図から明らかな如くフ
ッククラック性の増大と共に各弁別特性値の遠心傾向が
実証できる。従って、これら諸弁別特性値を総合評価す
ることにより、欠陥6の種類の判定を容易に行なうこと
ができる。
FIG. 2 is a diagram showing an example of a behavior corresponding to the defect type of the discrimination characteristic value in the present embodiment. In FIG. 2, the discrimination characteristic values are graduated so as to show hook cracking as they are located on the outer side of the radar chart. The figure (a) corresponds to the hook crack, and the figure (b) corresponds to the center crack, respectively, and as is clear from the figure, the centrifugal tendency of each discrimination characteristic value can be verified with the increase of the hook crack property. Therefore, by comprehensively evaluating these discrimination characteristic values, the type of the defect 6 can be easily determined.

また、本実施例では、上述した欠陥種類の判定に定量性
を与え、さらにはその欠陥形状(特に、フッククラック
の傾き角度)をも推定するため、各弁別特性値を組合せ
て形状弁別のための評価値を下記の一次相関式に従って
算出する。そして、この評価値と実際の欠陥の形状より
求めた相関関係から欠陥6の形状を弁別する。
In addition, in the present embodiment, since the determination of the above-mentioned defect type is given a quantitative property and the defect shape (particularly, the hook crack inclination angle) is also estimated, the shape characteristic discrimination is performed by combining the respective discrimination characteristic values. The evaluation value of is calculated according to the following linear correlation equation. Then, the shape of the defect 6 is discriminated from the correlation obtained from the evaluation value and the actual shape of the defect.

評価値(Evaiuation Value)=ΣfiPi ここで、Piは算出した弁別特性値、fiは重み係数であ
る。
Evaluation value (Evaiuation Value) = ΣfiPi Here, Pi is the calculated discrimination characteristic value, and fi is the weighting coefficient.

この場合、どの程度の数の弁別特性値を選ぶかの選択上
の問題がある。すなわち、単に欠陥6の種類判定のみで
あれば、上述のエコー高さの比、ビーム路程の差、
反射指向性相関によってその目的は達成できるが、欠
陥6の形状をより詳細に推定するには、より多くの弁別
特性値を用いてその確度の向上を図ることが望ましい。
In this case, there is a problem in selecting how many discrimination characteristic values are selected. That is, if only the type of the defect 6 is determined, the above-mentioned echo height ratio, beam path difference,
The purpose can be achieved by the reflection directivity correlation, but in order to estimate the shape of the defect 6 in more detail, it is desirable to improve the accuracy by using more discrimination characteristic values.

上述したように本実施例では、被検査体である電縫管4
の電縫部5の欠陥6を挟んでほぼ同一距離位置に一対の
アレイ探触子7A,7Bを相対的に配置し、これらのアレイ
探触子7A,7Bを片側ずつ切替えて電子走査型超音波探傷
を行ない、この電子走査型超音波探傷により得られる欠
陥6からの各反射波の反射挙動の差異を特徴づける複数
の弁別特性値を算出し、この弁別特性値に基づいて形状
弁別のための評価値を算出し、この評価値と実際の欠陥
の形状より求めた相関関係から欠陥6の形状を弁別する
ようにしたものである。
As described above, in this embodiment, the electric resistance welded pipe 4 which is the object to be inspected.
A pair of array probes 7A, 7B are relatively arranged at substantially the same distance position with the defect 6 of the electric-sewing portion 5 sandwiched therebetween, and the array probes 7A, 7B are switched one by one to perform electronic scanning ultrasonic wave. After performing flaw detection, a plurality of discrimination characteristic values characterizing the difference in the reflection behavior of each reflected wave from the defect 6 obtained by this electronic scanning ultrasonic flaw detection are calculated, and based on the discrimination characteristic values, shape discrimination for shape discrimination is performed. The evaluation value is calculated, and the shape of the defect 6 is discriminated from the correlation obtained from the evaluation value and the actual shape of the defect.

従って、従来の手動超音波探傷での種々の走査法の組合
せに基づく欠陥形状弁別法の問題である、非能率性、定
量的評価,検査員の技量依存による弁別精度上の個人誤
差の誘発,所与情報に限定されての判定確度の不安定性
等を解消し、人的依存性を少なくして短時間で能率良く
かつ信頼度の高い、欠陥の種類・形状の弁別を行なうこ
とが可能となる。特に、製造ライン中での欠陥種類・形
状弁別が行なえる本方法は、プロセス条件の即時的なフ
ィードバックを可能とすることから、品質管理上極めて
有効な方法である。
Therefore, it is a problem of the defect shape discrimination method based on the combination of various scanning methods in the conventional manual ultrasonic flaw detection, inefficiency, quantitative evaluation, induction of individual error in discrimination accuracy due to the skill of the inspector, It is possible to eliminate instability of judgment accuracy limited to given information, reduce human dependency, and perform efficient and reliable discrimination of defect type and shape in a short time. Become. In particular, this method capable of discriminating the type and shape of defects in the manufacturing line is an extremely effective method for quality control because it allows immediate feedback of process conditions.

尚、上記実施例では、弁別特性値として表で示した5種
類のものについて述べたが、これに限られないことは言
うまでもない。
In addition, in the above-mentioned embodiment, although the five kinds of discrimination characteristic values shown in the table are described, it goes without saying that the discrimination characteristic values are not limited to these.

また、上記実施例では、評価値の算出式として一次相関
式を用いた場合について述べたが、これに限定されるも
のではなく、この評価値の定量区分化により欠陥形状と
の対応を可能とするものであれば他の式であってもよ
い。
Further, in the above embodiment, the case where a linear correlation equation is used as the calculation formula of the evaluation value is described, but the present invention is not limited to this, and it is possible to correspond to the defect shape by the quantitative segmentation of the evaluation value. Other expressions may be used as long as they do.

(発明の効果) 以上説明したように本発明によれば、被検査体に内在す
る欠陥の種類・形状を短時間で能率良くかつ高信頼度で
弁別することが可能な電子走査型超音波探傷による欠陥
種類・形状弁別法が提供できる。
(Effects of the Invention) As described above, according to the present invention, an electronic scanning ultrasonic flaw detector capable of efficiently discriminating the type and shape of a defect existing in a test object in a short time with high reliability. It is possible to provide a defect type / shape discrimination method by

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の電子走査型超音波探傷による欠陥種類
・形状弁別法の一実施例を示す概念図、第2図は同実施
例における弁別特性値の欠陥種類に対応した挙動の一例
を示す図、第3図は電縫管溶接部に発生する代表的欠陥
の一例を示す図、第4図は従来の手動探触子走査方法を
示す概念図である。 4……電縫管、5……電縫部、6……欠陥、7A,7B……
アレイ探触子、8A,8B……超音波ビーム。
FIG. 1 is a conceptual diagram showing an embodiment of a defect type / shape discrimination method by electronic scanning ultrasonic flaw detection of the present invention, and FIG. 2 is an example of a behavior corresponding to a defect type of a discrimination characteristic value in the same embodiment. FIG. 3 is a diagram showing an example of a typical defect occurring in an electric resistance welded pipe weld, and FIG. 4 is a conceptual diagram showing a conventional manual probe scanning method. 4 ... ERW pipe, 5 ... ERW part, 6 ... Defect, 7A, 7B ...
Array probe, 8A, 8B ... Ultrasonic beam.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小菅 英男 東京都府中市東芝町1番地 株式会社東芝 府中工場内 (72)発明者 玉木 清英 東京都府中市東芝町1番地 株式会社東芝 府中工場内 (56)参考文献 特開 平2−114114(JP,A) 特開 昭61−173152(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideo Kosuge 1st Toshiba Town, Fuchu-shi, Tokyo Inside Toshiba Fuchu Plant (72) Inventor Kiyohide Tamaki 1st Toshiba-cho, Fuchu City Tokyo Inside of Fuchu Plant, Toshiba (56) References JP-A-2-114114 (JP, A) JP-A-61-173152 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】複数個の振動子を直線状に配置してなるア
レイ探触子の振動子を駆動し、被検査体に対し超音波ビ
ームを送信してこれからの反射波を受信することによ
り、前記被検査体に内在する欠陥の探傷を行なう電子走
査型超音波探傷で、欠陥の種類を弁別する方法におい
て、 前記被検査体の欠陥を挟んでほぼ同一距離位置に一対の
アレイ探触子を相対的に配置し、これらのアレイ探触子
を片側ずつ切替えて電子走査型超音波探傷を行ない、こ
の電子走査型超音波探傷により得られる欠陥からの各反
射波の反射挙動の差異を抽出してこれを特徴づける複数
の弁別特性値を算出し、この弁別特性値に基づいて欠陥
の種類を弁別するようにした ことを特徴とする電子走査型超音波探傷による欠陥種類
弁別法。
1. An oscillator of an array probe having a plurality of oscillators arranged linearly is driven to transmit an ultrasonic beam to an object to be inspected and receive a reflected wave from the ultrasonic beam. In an electronic scanning ultrasonic flaw detection method for flaw detection of an internal defect of the inspection object, in a method of discriminating the type of the defect, a pair of array probes are disposed at substantially the same distance position with the defect of the inspection object interposed therebetween. Are arranged relative to each other, and these array probes are switched one by one to perform electronic scanning ultrasonic flaw detection, and the difference in reflection behavior of each reflected wave from the defect obtained by this electronic scanning ultrasonic flaw detection is extracted. Then, a plurality of discrimination characteristic values that characterize this are calculated, and the defect type is discriminated based on the discrimination characteristic values. The defect type discrimination method by electronic scanning ultrasonic flaw detection is characterized.
【請求項2】複数個の振動子を直線状に配置してなるア
レイ探触子の振動子を駆動し、被検査体に対し超音波ビ
ームを送信してこれからの反射波を受信することによ
り、前記被検査体に内在する欠陥の探傷を行なう電子走
査型超音波探傷で、欠陥の形状を弁別する方法におい
て、 前記被検査体の欠陥を挟んでほぼ同一距離位置に一対の
アレイ探触子を相対的に配置し、これらのアレイ探触子
を片側ずつ切替えて電子走査型超音波探傷を行ない、こ
の電子走査型超音波探傷により得られる欠陥からの各反
射波の反射挙動の差異を抽出してこれを特徴づける複数
の弁別特性値を算出し、この弁別特性値に基づいて形状
弁別のための評価値を算出し、この評価値と実際の欠陥
の形状より求めた相関関係から欠陥の形状を弁別するよ
うにした ことを特徴とする電子走査型超音波探傷による欠陥形状
弁別法。
2. An array probe having a plurality of transducers arranged linearly is driven to transmit an ultrasonic beam to an object to be inspected and receive a reflected wave from the ultrasonic beam. In the method for discriminating the shape of a defect by electronic scanning ultrasonic flaw detection for detecting a defect existing in the inspected object, a pair of array probes are disposed at substantially the same distance position across the defect of the inspected object. Are arranged relative to each other, and these array probes are switched one by one to perform electronic scanning ultrasonic flaw detection, and the difference in reflection behavior of each reflected wave from the defect obtained by this electronic scanning ultrasonic flaw detection is extracted. Then, a plurality of discrimination characteristic values characterizing this are calculated, and an evaluation value for shape discrimination is calculated based on this discrimination characteristic value, and the defect value is determined from the correlation obtained from the evaluation value and the actual defect shape. That we decided to distinguish the shapes Defect shape discrimination method using the electronic scanning ultrasonic flaw detection to symptoms.
JP1061652A 1989-03-14 1989-03-14 Defect type / shape discrimination method by electronic scanning ultrasonic flaw detection Expired - Lifetime JPH0690183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1061652A JPH0690183B2 (en) 1989-03-14 1989-03-14 Defect type / shape discrimination method by electronic scanning ultrasonic flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1061652A JPH0690183B2 (en) 1989-03-14 1989-03-14 Defect type / shape discrimination method by electronic scanning ultrasonic flaw detection

Publications (2)

Publication Number Publication Date
JPH02240562A JPH02240562A (en) 1990-09-25
JPH0690183B2 true JPH0690183B2 (en) 1994-11-14

Family

ID=13177372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1061652A Expired - Lifetime JPH0690183B2 (en) 1989-03-14 1989-03-14 Defect type / shape discrimination method by electronic scanning ultrasonic flaw detection

Country Status (1)

Country Link
JP (1) JPH0690183B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7045095B1 (en) * 2020-08-14 2022-03-31 裕壮 割方 Mask frame and how to use it

Also Published As

Publication number Publication date
JPH02240562A (en) 1990-09-25

Similar Documents

Publication Publication Date Title
US8266964B2 (en) Calibration of an ultrasonic flaw detector and quality control and production methods for a tubular body
JP4910770B2 (en) Tubular ultrasonic inspection apparatus and ultrasonic inspection method
JP4910769B2 (en) Pipe quality control method and manufacturing method
EP1953544B1 (en) Pipe ultrasonic flaw detecting apparatus and ultrasonic flaw detecting method
US7168322B2 (en) Method for ultrasonic control of weld joints
CN107449829A (en) A kind of butt weld Non-Destructive Testing acceptance method
Jacques et al. Ultrasonic backscatter sizing using phased array–developments in tip diffraction flaw sizing
WO2005045418A1 (en) Method for checking a weld between two metal pipelines
Zippel et al. Crack measurement in steel plates using TOFD method
JP4120360B2 (en) Ultrasonic spot weld evaluation method and apparatus
JPH0690183B2 (en) Defect type / shape discrimination method by electronic scanning ultrasonic flaw detection
CN113607812A (en) Phased array ultrasonic detection test block structure and detection method for brazing type copper-aluminum transition wire clamp
Hoyle et al. Ultrasonic algorithms for calculating probe separation distance, combined with full matrix capture with the total focusing method
JPH11248690A (en) Ultrasonic flaw detector
JP4614219B2 (en) Inspection method and inspection apparatus for laser welded joint
Reverdy et al. Inspection of spot welds using an ultrasonic phased array
JP2004191088A (en) Ultrasonic flaw detection method and its device
JP3389599B2 (en) Ultrasonic flaw detection method for steel pipe and ultrasonic flaw detection apparatus for steel pipe
KR102642161B1 (en) Paut scan system with improved wear on ultrasonic probe wedges and the method of thereof
JPH09229910A (en) Method for ultrasonic angle beam flaw detection
Schroeder et al. Comparison of Phased Array Ultrasound to Conventional Ultrasound and Radiographic Testing for Bridge Welds
JP3725126B2 (en) Ultrasonic flaw detection method and apparatus
Piazza et al. Integration of Data From Multiple In-Line Inspection Systems to Improve Crack Detection and Characterization
Jimmy et al. Identifying discontinuities of 6״ carbon steel pipe using advanced ultrasonic techniques
Torres et al. Ultrasonic NDE technology comparison for measurement of long seam weld anomalies in low frequency electric resistance welded pipe