JPH0690153B2 - Radiation analyzer for fluid in piping - Google Patents
Radiation analyzer for fluid in pipingInfo
- Publication number
- JPH0690153B2 JPH0690153B2 JP61280554A JP28055486A JPH0690153B2 JP H0690153 B2 JPH0690153 B2 JP H0690153B2 JP 61280554 A JP61280554 A JP 61280554A JP 28055486 A JP28055486 A JP 28055486A JP H0690153 B2 JPH0690153 B2 JP H0690153B2
- Authority
- JP
- Japan
- Prior art keywords
- radiation
- fluid
- pipe
- beryllium
- analyzer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、配管内流体の放射線分析形、特に、例えば
石油井戸から産出されて配管内を流れる流体の成分を、
放射線を利用して分析する放射線分析計に関するもので
ある。Description: TECHNICAL FIELD The present invention relates to a radiation analysis type of a fluid in a pipe, and more particularly, to a component of a fluid produced in an oil well and flowing in the pipe.
The present invention relates to a radiation analyzer that analyzes using radiation.
第2図は、従来の配管内流体の放射線分析計を示す概念
図であり、図において(1)は放射線源例えばX線源ま
たはγ線源、(2)はこの放射線源(1)の下方に設け
られた配管、(3)はこの配管(2)内を流れる被測定
流体、(4)はこの被測定流体(3)を透過した放射線
を検出する放射線検出器、(5)は放射線検出器(4)
からの信号を処理し、被測定流体(3)のある物理量を
出力する信号処理・演算処理装置、(6)は配管(2)
の一部を構成し、放射線の透過しやすい材料で造られた
ドーム状の放射線透過窓であり、この放射線透過窓
(6)と配管(2)はロウ付により接合され、配管
(2)内の流体が外部にもれないようになつている。FIG. 2 is a conceptual diagram showing a conventional radiation analyzer for fluid in a pipe, in which (1) is a radiation source such as an X-ray source or a γ-ray source, and (2) is a lower portion of this radiation source (1). (3) is a fluid to be measured flowing through the piping (2), (4) is a radiation detector for detecting radiation transmitted through the fluid (3) to be measured, and (5) is radiation detection. Bowl (4)
A signal processing / arithmetic processing device for processing a signal from the device and outputting a certain physical quantity of the fluid to be measured (3), (6) is a pipe (2)
Is a dome-shaped radiation transmitting window which is made of a material that easily transmits radiation, and which is connected to the radiation transmitting window (6) and the pipe (2) by brazing. The fluid is not leaking outside.
従来の放射線分析計は上述したように構成され、放射線
の透過量を測定することにより分析を行なう装置には各
種のものがあるが、ここでは2成分被測定物の各成分の
割合を求めるものについて説明する。Conventional radiation analyzers are configured as described above, and there are various types of devices that perform analysis by measuring the amount of transmitted radiation, but here, the ratio of each component of a two-component measured object is determined. Will be described.
一般に、物質中での放射線例えばX線またはγ線の減衰
は、次式で記述される。In general, the attenuation of radiation such as X-rays or γ-rays in a substance is described by the following equation.
I=I0 exp(−μρt0) (1) ここで、I0は入射放射線強度、μは放射線に対する物質
の質量吸収係数、σは物質の比重、t0は物質の厚さ、I
は厚さt0の物質を通過した後の放射線強度である。I = I 0 exp (−μρt 0 ) (1) where I 0 is the incident radiation intensity, μ is the mass absorption coefficient of the substance with respect to radiation, σ is the specific gravity of the substance, t 0 is the thickness of the substance, I
Is the radiation intensity after passing through a material of thickness t 0 .
さて、被測定流体(3)が物質1と物質2の2成分でで
きていると仮定し、物質1の比重をρ1、物質2の比重
をρ2、物質1の放射線に対する質量吸収係数をμ1、
物質2のそれをμ2で表わし、それぞれの成分割合を
k1,k2とする。また配管(2)の壁厚をd、比重をρ
w、質量吸収係数をμwとし、被測定流体(3)の、放
射線の通路に沿つた長さをtとすると次の式が得られ
る。Now, assuming that the fluid to be measured (3) is composed of two components, substance 1 and substance 2, the specific gravity of substance 1 is ρ 1 , the specific gravity of substance 2 is ρ 2 , and the mass absorption coefficient of substance 1 for radiation is μ 1 ,
Expressing that of substance 2 as μ 2 ,
Let k 1 and k 2 . Also, the wall thickness of the pipe (2) is d, and the specific gravity is ρ
Let w be the mass absorption coefficient be μw, and let the length of the fluid to be measured (3) along the radiation path be t, then the following equation is obtained.
k1+k2=1 (2) t(k1μ1ρ1+k2μ2ρ2)lnI0/I−2dρwμw
(3) t,d,ρw,ρ1,ρ2,μw,μ1,μ2は予め知ることができ、
また入射放射線強度I0も予め測定しておくことができ
る。従つて、物質1,2の成分割合がわからないとき、透
過放射線強度Iを測定すれば、(2),(3)式から
k1,k2を求めることができ、未知の物質1,2の割合を求め
ることができる。透過放射線強度の測定は放射線検出器
(4)を用いて行なうことができ、(2),(3)式に
よりk1,k2を求めることは信号処理・演算処理装置
(5)で行なうことができる。つまり、透過放射線の測
定により被測定流体(3)の成分分析が可能である。k 1 + k 2 = 1 (2) t (k 1 μ 1 ρ 1 + k 2 μ 2 ρ 2 ) lnI 0 / I−2dρwμw
(3) t, d, ρw, ρ 1 , ρ 2 , μw, μ 1 , μ 2 can be known in advance,
The incident radiation intensity I 0 can also be measured in advance. Therefore, when the transmitted radiation intensity I is measured when the component ratios of substances 1 and 2 are not known, from equations (2) and (3),
It is possible to obtain k 1 and k 2, and it is possible to obtain the ratio of unknown substances 1 and 2. The transmitted radiation intensity can be measured using the radiation detector (4), and the signal processing / arithmetic processing unit (5) must be used to obtain k 1 and k 2 from the equations (2) and (3). You can That is, the component analysis of the fluid under measurement (3) is possible by measuring the transmitted radiation.
さて、被測定流体(3)の成分1,2が例えば水,油など
C,H,Oなどの軽元素で構成されている場合、成分1と成
分2の放射線吸収係数μ1とμ2が有意な差を持つため
には、使用する放射線の光子エネルギーが小さくなけれ
ばならない。例えば光子エネルギーを60keV程度以下に
する必要がある。また、放射線透過窓(6)での放射線
の吸収は小さいことが望ましく、使用する放射線に対す
る放射線吸収係数が小さくなければならない。通常、原
子番号の小さいベリウムの薄板が放射線透過窓(6)と
して用いられる。配管(2)の材料は鉄や鋼が多く、ベ
リリウム製放射線透過窓(6)の、配管(2)への取付
けは溶接では困難であり、ロウ付けによつて取付けられ
ている。Now, the components 1 and 2 of the fluid to be measured (3) are, for example, water, oil, etc.
In the case of being composed of light elements such as C, H, O, in order for the radiation absorption coefficient μ 1 and μ 2 of component 1 and component 2 to have a significant difference, the photon energy of the radiation used must be small. I won't. For example, the photon energy needs to be about 60 keV or less. Further, it is desirable that the radiation transmission window (6) absorbs little radiation, and the radiation absorption coefficient for the radiation used must be small. Usually, a thin plate of beryllium having a small atomic number is used as the radiation transmission window (6). The pipe (2) is mostly made of iron or steel, and the radiation transmission window (6) made of beryllium is difficult to attach to the pipe (2) by welding, and is attached by brazing.
なお、放射線透過窓(6)の材料としてベリリウムを用
いることの有効性は、次の表から容易に理解される。こ
の表は、放射線透過厚さをパラメータにして60keVの放
射線に対する減衰を、鉄とベリリウムとについて比較し
たものである。The effectiveness of using beryllium as the material of the radiation transmitting window (6) can be easily understood from the following table. This table compares the attenuation for 60 keV radiation for iron and beryllium with the radiation transmission thickness as a parameter.
〔発明が解決しようとする問題点〕 上述したような従来の放射線分析計において、石油井戸
から産出された流体を分析する場合などでは流体の圧力
は100〜300kg/cm2にもなり、配管母管はもちろん、放射
線透過窓(6)、放射線透過窓(6)の配管(2)への
取付け部等は、この圧力に対して耐圧性を持たなければ
ならない。ベリリウム製の放射線透過窓(6)はその厚
さを厚くすれば耐圧性を増すが、このような厚いベリリ
ウム製の放射線透過窓(6)では、配管(2)への取付
けをロウ付接合で行なつても、信頼性ある接合を行なえ
ないという問題点があつた。 [Problems to be Solved by the Invention] In the conventional radiation analyzer as described above, when the fluid produced from the oil well is analyzed, the fluid pressure becomes 100 to 300 kg / cm 2 , and the piping mother The radiation transmitting window (6), the attachment portion of the radiation transmitting window (6) to the pipe (2), and the like, as well as the tube, must have pressure resistance against this pressure. The radiation-transmissive window (6) made of beryllium increases the pressure resistance by increasing its thickness. However, in such a thick radiation-transmission window (6) made of beryllium, the pipe (2) is attached by brazing. However, there was a problem that reliable joining could not be performed.
この発明は、このような問題点を解決するためになされ
たもので、信頼性の高い耐圧性放射線透過窓を有する配
管内流体の放射線分析計を得ることを目的とする。The present invention has been made to solve such a problem, and an object thereof is to obtain a radiation analyzer for a fluid in a pipe having a highly reliable pressure resistant radiation transmission window.
この発明に係る放射線分析計は、放射線透過窓をベリリ
ウム円筒とこのベリリウム円筒の外側に嵌合された円筒
状ガードとで構成したものである。In the radiation analyzer according to the present invention, the radiation transmitting window includes a beryllium cylinder and a cylindrical guard fitted outside the beryllium cylinder.
この発明においては、ベリリウム円筒は外側から円筒状
ガードで拘束されているので、ベリリウム円筒に生じる
応力は非常に小さくなり、ベリリウム円筒の厚さをこの
圧力に耐える厚さにすることができる。In the present invention, since the beryllium cylinder is constrained from the outside by the cylindrical guard, the stress generated in the beryllium cylinder is extremely small, and the thickness of the beryllium cylinder can be set to withstand this pressure.
第1図はこの発明の一実施例を示す概略断面図であり、
(1)〜(5)は上述した従来の放射線分析計における
ものと全く同一である。(7)は放射線透過窓、(8)
はこの放射線透過窓(7)を構成するベリリウム円筒、
(9)は同じく放射線透過窓(7)を構成し、ベリリウ
ム円筒(8)の外側に嵌合された厚肉鋼製の円筒状ガー
ド、(10)はこの円筒状ガード(9)の同一軸上ほぼ中
央に設けられた貫通穴、(11)は円筒状ガード(9)の
端部に設けられたフランジ、(12)はベリリウム円筒
(8)の端面に設置されたO(オウ)−リング、(13)
は放射線透過窓(7)を配管(2)に取付けるために配
管(2)の端部に設けられたフランジであり、フランジ
(11)とフランジ(13)とは例えばネジ(図示しない)
により締結されている。FIG. 1 is a schematic sectional view showing an embodiment of the present invention,
(1) to (5) are exactly the same as those in the conventional radiation analyzer described above. (7) is a radiation transparent window, (8)
Is a beryllium cylinder forming the radiation transmission window (7),
(9) is a cylindrical guard made of thick-walled steel, which also constitutes the radiation transmission window (7) and is fitted on the outside of the beryllium cylinder (8), and (10) is the same axis of this cylindrical guard (9). A through hole provided in the upper center, (11) a flange provided at the end of the cylindrical guard (9), (12) an O-ring installed at the end face of the beryllium cylinder (8) ,(13)
Is a flange provided at the end of the pipe (2) for attaching the radiation transmission window (7) to the pipe (2). The flange (11) and the flange (13) are, for example, screws (not shown).
It is concluded by.
上述したように構成された配管内流体放射線分析計にお
いては、被測定流体(3)を通過した放射線を放射線検
出器(4)で検出し、この放射線検出器(4)からの信
号を用いて信号処理・演算処理装置(5)で被測定流体
(3)のある物理量例えば成分割合を出力することは上
述した従来分析計の場合と同様であるので、放射線透過
窓(7)について詳しく説明する。In the in-pipe fluid radiation analyzer configured as described above, the radiation that has passed through the fluid to be measured (3) is detected by the radiation detector (4), and the signal from this radiation detector (4) is used. Since the signal processing / arithmetic processing unit (5) outputs a certain physical quantity of the fluid to be measured (3), for example, the component ratio, is the same as in the conventional analyzer described above, the radiation transmission window (7) will be described in detail. .
配管(2)内部の被測定流体(3)の圧力が高いとき、
ベリリウム円筒(8)に応力が生じるが、この応力はベ
リリウム円筒(8)がその外側から円筒状ガード(9)
によつて拘束されているので非常に小さくなる。従つ
て、ベリリウム円筒(8)の厚さを、実質的に円筒状ガ
ード(9)の貫通穴(10)部分に対応したところでの応
力に耐える厚さにしておけばよく、貫通穴(10)部分に
対応した部分のみをベリリウムで製作する場合に比べ、
その必要厚さは殆んど同じにできる。そのため、放射線
透過窓(7)部分における放射線の減衰は、貫通穴(1
0)部分のみをベリリウムとした場合と殆んど同じにす
ることができる。さらに、この放射線透過窓(7)を使
用すれば、圧力の高い比測定流体(3)を測定すること
ができる。一方、貫通穴(10)の内側部分のみをベリリ
ウムにすると、配管(2)への耐圧性を持たせた取付け
は非常に困難となるが、ベリリウムを円筒状すなわち、
ベリリウム円筒(8)にすることによつて、例えばO−
リング(12)を用いて容易に取付けることができる。ま
た、このようなベリリウム円筒(8)を用いれば、形状
が単純であるので耐圧性能の信頼性を高めることができ
る。When the pressure of the fluid to be measured (3) inside the pipe (2) is high,
A stress is generated in the beryllium cylinder (8), and this stress is generated by the beryllium cylinder (8) from the outside of the cylindrical guard (9).
It is very small because it is constrained by. Therefore, the thickness of the beryllium cylinder (8) should be set to a thickness that can withstand the stress at a position substantially corresponding to the through hole (10) of the cylindrical guard (9). Compared to the case where only the part corresponding to the part is made of beryllium,
The required thickness can be almost the same. Therefore, the radiation attenuation in the radiation transmission window (7) is
It can be made almost the same as the case where only the 0) part is made of beryllium. Furthermore, by using this radiation transmission window (7), a high specific pressure measuring fluid (3) can be measured. On the other hand, if only the inner part of the through hole (10) is made of beryllium, it will be very difficult to attach the beryllium to the pipe (2) with pressure resistance.
By using a beryllium cylinder (8), for example, O-
It can be easily attached using the ring (12). Further, if such a beryllium cylinder (8) is used, since the shape is simple, the reliability of the pressure resistance performance can be improved.
なお、ベリリウム円筒(8)の外径を7cm,内径を5cm,長
さを10cmとし、貫通穴(10)の直径を2.5cmとした放射
線透過窓(7)を製作し、700kg/cm2まで内圧をかけて
テストした結果、この放射線透過窓(7)は漏れ、破損
等何らの異常も示さなかつた。The beryllium cylinder (8) has an outer diameter of 7 cm, an inner diameter of 5 cm, a length of 10 cm, and a through hole (10) with a diameter of 2.5 cm. A radiation transmission window (7) is manufactured up to 700 kg / cm 2. As a result of testing by applying internal pressure, the radiation transmitting window (7) showed no abnormality such as leakage or breakage.
なお、上述した実施例では、円筒状ガード(9)の材質
を鋼にしたが、鉄やその他の材料であつてもよい。ま
た、ベリリウム円筒(8)の長さと円筒状ガード(9)
の長さを同じにしたが、ベリリウム円筒(8)の長さを
短くし、円筒状ガード(9)より内側に入つた部分でO
−リング(12)を用い、配管(2)と接続することもで
きる。In the above-mentioned embodiment, the material of the cylindrical guard (9) is steel, but iron or other materials may be used. Also, the length of the beryllium cylinder (8) and the cylindrical guard (9)
The length of the beryllium cylinder (8) was shortened, and the length of the beryllium cylinder (8) was shortened to O
-A ring (12) can also be used to connect to the pipe (2).
さらに、上述した実施例では、放射線分析計は2成分の
分析を行なう場合について説明したが、密度計測や不純
物計測など種々の分析を行なうことができる。また、放
射線は被測定流体(3)を透過する場合について説明し
たが、後方散乱線や励起X線を測定する場合についても
同様に適用することができる。Furthermore, in the above-described embodiment, the case where the radiation analyzer performs two-component analysis has been described, but various analyzes such as density measurement and impurity measurement can be performed. Moreover, although the case where the radiation passes through the fluid to be measured (3) has been described, the same can be applied to the case where the backscattered ray or the excited X-ray is measured.
この発明は以上説明したとおり、放射線透過窓をベリリ
ウム円筒とこのベリリウム円筒の外側に嵌合された円筒
状ガードとで構成したので、放射線の減衰を大きくせず
に、簡単な構造で信頼性の高い耐圧性能を得ることがで
き、さらに圧力の高い被測定流体の測定を行なうことが
できるという効果がある。As described above, according to the present invention, the radiation transmitting window is composed of the beryllium cylinder and the cylindrical guard fitted to the outside of the beryllium cylinder. Therefore, the radiation attenuation window is not increased, and a simple structure and a reliable structure are provided. It is possible to obtain high pressure resistance and to measure a fluid to be measured having a high pressure.
第1図はこの発明の一実施例を示す概略断面図、第2図
は従来の配管内流体の放射線分析計を示す概念図であ
る。 図において、(1)は放射線源、(2)は配管、(3)
は被測定流体、(4)は放射線検出器、(5)は信号処
理・演算処理装置、(6),(7)は放射線透過窓、
(8)はベリリウム円筒、(9)は円筒状ガード、(1
0)は貫通穴、(11),(13)はフランジ、(12)はO
−リングである。 なお、各図中、同一符号は同一または相当部分を示す。FIG. 1 is a schematic sectional view showing an embodiment of the present invention, and FIG. 2 is a conceptual view showing a conventional radiation analyzer for fluid in piping. In the figure, (1) is a radiation source, (2) is piping, and (3)
Is a fluid to be measured, (4) is a radiation detector, (5) is a signal processing / arithmetic processing device, (6) and (7) are radiation transmission windows,
(8) beryllium cylinder, (9) cylindrical guard, (1
0) is a through hole, (11) and (13) are flanges, (12) is O
-A ring. In each drawing, the same reference numerals indicate the same or corresponding parts.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 友田 利正 兵庫県尼崎市塚口本町8丁目1番1号 三 菱電機株式会社中央研究所内 (72)発明者 中田 省三 兵庫県尼崎市塚口本町8丁目1番1号 三 菱電機株式会社生産技術研究所内 (72)発明者 久森 洋一 兵庫県尼崎市塚口本町8丁目1番1号 三 菱電機株式会社生産技術研究所内 (56)参考文献 特開 昭56−129846(JP,A) 実公 昭46−19755(JP,Y1) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshinasa Tomoda 8-1-1 Tsukaguchi Honcho, Amagasaki City, Hyogo Prefecture Inside the Central Research Laboratory, Sanryo Electric Co., Ltd. (72) Shozo Nakata 8 Tsukaguchi Honcho, Amagasaki City, Hyogo Prefecture 1-1-1 Sanritsu Electric Co., Ltd. Production Technology Laboratory (72) Inventor Yoichi Kumori 8-1-1 Tsukaguchi Honcho, Amagasaki City, Hyogo Prefecture Sanryo Electric Co., Ltd. Production Technology Laboratory (56) Reference Showa 56-129846 (JP, A) Showa 46-19755 (JP, Y1)
Claims (5)
源の放射線照射方向に設けられ、上記放射線源からの放
射線を通過させる貫通穴が設けられた円筒状ガードと、
この円筒状ガードの内側に嵌合されたベリリウム円筒
と、これら円筒状ガードおよびベリリウム円筒の両端に
接続され、被測定流体を流す配管と、上記円筒状ガート
に対して上記放射線源と反対側に設けられ、上記ベリリ
ウム円筒の貫通穴を通過しかつ上記配管内の被測定流体
を透過した放射線を検出する放射線検出器と、この放射
線検出器からの信号を処理し、上記被測定流体の物理量
を出力する信号処理・演算処理装置とを備えたことを特
徴とする配管内流体の放射線分析計。1. A radiation source for irradiating radiation, and a cylindrical guard provided in a radiation irradiation direction of the radiation source and having a through hole for passing radiation from the radiation source,
Beryllium cylinders fitted inside this cylindrical guard, pipes connected to both ends of these cylindrical guards and beryllium cylinders, through which the fluid to be measured flows, and on the side opposite to the radiation source with respect to the cylindrical ghat. Provided, a radiation detector that detects the radiation that has passed through the through hole of the beryllium cylinder and that has passed through the fluid to be measured in the pipe, and processes the signal from this radiation detector to determine the physical quantity of the fluid to be measured. A radiation analyzer for fluid in a pipe, comprising: a signal processing / arithmetic processing device for outputting.
に接続された配管は、ベリリウム円筒端面と配管端面と
の間にO−リングが用いられ、かつ円筒状ガード端部に
設けられたフランジおよび配管端部に設けられたフラン
ジを締結して接続されたことを特徴とする特許請求の範
囲第1項記載の配管内流体の放射線分析計。2. A pipe connected to both ends of a cylindrical guard and a beryllium cylinder uses an O-ring between an end face of the beryllium cylinder and an end face of the pipe, and a flange and a pipe provided at the end of the cylindrical guard. The radiation analyzer for fluid in a pipe according to claim 1, characterized in that the flanges provided at the ends are connected by fastening.
さは同じであることを特徴とする特許請求の範囲第1項
または第2項記載の配管内流体の放射線分析計。3. A radiation analyzer for pipe fluid according to claim 1 or 2, wherein the beryllium cylinder and the cylindrical guard have the same length.
さより短かいことを特徴とする特許請求の範囲第1項ま
たは第2項記載の配管内流体の放射線分析計。4. The radiation analyzer for a fluid in a pipe according to claim 1 or 2, wherein the length of the beryllium cylinder is shorter than the length of the cylindrical guard.
を特徴とする特許請求の範囲第1項記載の配管内流体の
放射線分析計。5. The radiation analyzer for fluid in piping according to claim 1, wherein the radiation source is an X-ray source or a γ-ray source.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61280554A JPH0690153B2 (en) | 1986-11-25 | 1986-11-25 | Radiation analyzer for fluid in piping |
CA000552640A CA1290866C (en) | 1986-11-25 | 1987-11-24 | Analyzer for fluid within piping |
DE8787310400T DE3776095D1 (en) | 1986-11-25 | 1987-11-25 | ANALYZING DEVICE FOR A LIQUID WITHIN A PIPELINE. |
EP87310400A EP0269432B2 (en) | 1986-11-25 | 1987-11-25 | Analyzer for fluid within piping |
NO874914A NO176630C (en) | 1986-11-25 | 1987-11-25 | Fluid pipeline analyzer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61280554A JPH0690153B2 (en) | 1986-11-25 | 1986-11-25 | Radiation analyzer for fluid in piping |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63142246A JPS63142246A (en) | 1988-06-14 |
JPH0690153B2 true JPH0690153B2 (en) | 1994-11-14 |
Family
ID=17626663
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61280554A Expired - Lifetime JPH0690153B2 (en) | 1986-11-25 | 1986-11-25 | Radiation analyzer for fluid in piping |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0690153B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010024997A3 (en) * | 2008-08-29 | 2010-05-14 | Services Petroliers Schlumberger | A downhole sanding analysis tool |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4468092B2 (en) * | 2004-06-30 | 2010-05-26 | 株式会社東芝 | Hydrogen production equipment |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2069688B (en) * | 1980-02-15 | 1983-10-26 | Coal Industry Patents Ltd | Assessing the concentration of mineral matter in coal-derived liquids |
-
1986
- 1986-11-25 JP JP61280554A patent/JPH0690153B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010024997A3 (en) * | 2008-08-29 | 2010-05-14 | Services Petroliers Schlumberger | A downhole sanding analysis tool |
Also Published As
Publication number | Publication date |
---|---|
JPS63142246A (en) | 1988-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2006242964A (en) | Method for analyzing fluorescent x-ray based solution | |
WO2006056132A1 (en) | Security inspection method for liquid by radiation source and its device | |
DE69013348D1 (en) | SAND DETECTOR. | |
NO172415B (en) | BRIDGE LOG EVIL | |
AU679064B2 (en) | Fluid composition meter | |
JP2008139114A (en) | Radon detector | |
US3936638A (en) | Radiology | |
US5125017A (en) | Compton backscatter gage | |
EP0269432B1 (en) | Analyzer for fluid within piping | |
CA1160364A (en) | Device for determining the proportions by volume of a multiple-component mixture by irradiation with several gamma lines | |
JPH0690153B2 (en) | Radiation analyzer for fluid in piping | |
US20160306069A1 (en) | Radiation source device | |
JPH01165943A (en) | Apparatus and method for measuring bulk density using scattering and vanishing of positron | |
KR102397712B1 (en) | Pulsed Neutron Generation Instant Gamma Ray Emission Measurement System for Surface Defect Detection and Analysis | |
US3396272A (en) | Isotope-powered X-ray instrument for detecting the arrival of an interface in a pipeline | |
Lopes et al. | Detection of paraffin deposition inside a draining tubulation by the Compton Scattering Technique | |
US9020099B1 (en) | Miniaturized pipe inspection system for measuring corrosion and scale in small pipes | |
KR102009667B1 (en) | Pipe-type apparatus for detecting radiation | |
US3035172A (en) | Radiation counter | |
JP7223420B2 (en) | Temperature measuring device, temperature measuring method | |
GB2235763A (en) | Characteristic X-ray detecting device | |
JPS6362694B2 (en) | ||
JPH03131752A (en) | Detection of defect | |
JPH04355355A (en) | Method of detecting pollution of window material for fluorescence x-ray analysis | |
RU2114418C1 (en) | Gear for analysis of oil-bearing rocks |