JPH0689745A - Secondary battery system - Google Patents

Secondary battery system

Info

Publication number
JPH0689745A
JPH0689745A JP4240356A JP24035692A JPH0689745A JP H0689745 A JPH0689745 A JP H0689745A JP 4240356 A JP4240356 A JP 4240356A JP 24035692 A JP24035692 A JP 24035692A JP H0689745 A JPH0689745 A JP H0689745A
Authority
JP
Japan
Prior art keywords
battery
secondary battery
discharge
voltage
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4240356A
Other languages
Japanese (ja)
Other versions
JP3237229B2 (en
Inventor
Mamoru Mizumoto
守 水本
Hidetoshi Honbou
英利 本棒
Akihiro Goto
明弘 後藤
Katsunori Nishimura
勝憲 西村
Tatsuo Horiba
達雄 堀場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24035692A priority Critical patent/JP3237229B2/en
Publication of JPH0689745A publication Critical patent/JPH0689745A/en
Application granted granted Critical
Publication of JP3237229B2 publication Critical patent/JP3237229B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To give information about the number of charging cycles admitted till the battery replacement or the date of it previously and prevent occurrence of accident by furnishing a current sensor, cumulator, counter, memory part, calculation part, and display part. CONSTITUTION:When operation of the system is started, the discharging capacity during discharging period is cumulated via a current sensor 11, counter 12, and cumulator 13 installed in series to a pack of batteries and is stored in a memory part 14. A calculation part 51 determines the factor while the discharge capacity per cycle is used as a function of the number of cycles, and the number of cycles until the minimum guaranteed discharge capacity of the secondary battery system as the object is attained, is calculated by means of extrapolation, and the anticipated lifetime is given on a display part 52. As this anticipation of the system lifetime allows knowing in advance the timing of battery replacement, it is practicable to operate the system with well-prepared schedule, and the coordination with the load side using secondary battery can be enhanced. It is also possible to prevent occurrence of accident by sensing failure in advance in the system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルカリ金属を負極活
物資とする二次電池システムに係り、特に二次電池の残
存する充放電サイクル寿命の表示装置を備えた二次電池
システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery system using an alkali metal as a negative electrode active material, and more particularly to a secondary battery system including a display device for the remaining charge / discharge cycle life of the secondary battery.

【0002】[0002]

【従来の技術】二次電池では充放電を繰り返して電池寿
命が尽きると電池交換が必要となる。交換時期の指示が
予告期間を置かず現われた場合には、予備電池への自動
切替え等の機能を持たない場合には負荷側への電力供給
が停止する。電池が大型化すれば、予備電池の併設には
大きな負担が伴い、負荷側への電力供給が停止した場合
の影響も甚大である。このため、残存サイクル寿命を予
測すること、すなわちあらかじめ一定の予告期間を置い
て電池の交換時期を知ることは、負荷側への電力供給停
止を避け、電池交換に対して計画的に対処できるため大
きな意味を持つ。従来、使用中の電池において使用可能
な残りの時間のめやす、残存容量を示すことは、一次電
池においては電池交換の時期を、二次電池においては充
電の時期を知る必要から技術開発が進められてきた。例
えばその時点までに放電した電気量を積算して初期容量
との差を計算するか、あるいは特開昭59−75581 号に記
載されているように、電池電圧を測定して基準電圧と比
較する方法等により残存容量表示は可能である。
2. Description of the Related Art In a secondary battery, the battery must be replaced when the life of the battery is exhausted by repeating charging and discharging. When the instruction of the replacement time appears without the notice period, the power supply to the load side is stopped when the replacement battery does not have a function such as automatic switching to the spare battery. If the battery becomes larger, a large load will be added to the auxiliary battery, and the effect of stopping the power supply to the load side will be great. For this reason, predicting the remaining cycle life, that is, knowing when to replace the battery with a certain notice period in advance can avoid the power supply to the load side and can systematically deal with the battery replacement. Has a big meaning. Conventionally, technological development has been advanced because it is necessary to know the time for battery replacement in a primary battery and the time for charging in a secondary battery to indicate the estimated remaining time and remaining capacity of a battery in use. Came. For example, the amount of electricity discharged up to that point is integrated to calculate the difference from the initial capacity, or as described in JP-A-59-75581, the battery voltage is measured and compared with a reference voltage. The remaining capacity can be displayed by a method or the like.

【0003】これに対して、繰返し充放電があと何回可
能であるかという残存サイクル寿命の予測に関しては、
技術的な困難さのためほとんど行われていない。開放型
の鉛蓄電池に関しては電池交換時期を指示するための手
法として、電解液の比重あるいは電解液の液面の位置を
検知する方法が良く知られている。この方法は電池容器
内に遊離の電解液が多量に充填されている開放型の鉛蓄
電池においてのみ可能である。一方密閉型の鉛蓄電池の
寿命表示に関しては、例えば特開昭60−30067号に記載
されているように、格子集電体の膨張を検出する方法が
提案されている。しかしこれらの方法は鉛蓄電池に特有
の方法である。
On the other hand, regarding the prediction of the remaining cycle life as to how many times the repeated charge / discharge can be performed,
Little done due to technical difficulties. For open type lead storage batteries, a method of detecting the specific gravity of the electrolytic solution or the position of the liquid surface of the electrolytic solution is well known as a method for instructing the battery replacement timing. This method is possible only in an open-type lead acid battery in which a large amount of free electrolyte is filled in the battery container. On the other hand, regarding the display of the life of a sealed lead-acid battery, a method of detecting expansion of a grid current collector has been proposed, as described in, for example, JP-A-60-30067. However, these methods are peculiar to lead-acid batteries.

【0004】他の電池系においては寿命予測が困難なた
め、例えば特開平4−87159号あるいは特開平4−98769号
に記載されているように充電回数を計測して、公称サイ
クル寿命との差から残存サイクル寿命を推定する方法が
提案されている。
Since it is difficult to predict the life of other battery systems, the number of times of charging is measured as described in, for example, JP-A-4-87159 or JP-A-4-98769, and the difference from the nominal cycle life is calculated. Has proposed a method for estimating the remaining cycle life.

【0005】[0005]

【発明が解決しようとする課題】本発明では二次電池シ
ステムにおいて、寿命が尽きる時期を予測して二次電池
の計画的運用に資するため、集合二次電池群の使用中の
運転データ及び開回路状態のデータを採取して、その時
点における残存サイクル寿命を推算し、これに基づき電
池交換までの充電回数あるいは電池交換の日時をあらか
じめ告知する表示部を備えた電池システムを提供するこ
とを目的とした。併せて電池の異常を事前に検知して事
故を未然に防止するためのシステムを提供することを目
的とした。
SUMMARY OF THE INVENTION In the present invention, in a secondary battery system, in order to predict the end of life and contribute to the planned operation of the secondary battery, in order to contribute to the planned operation of the secondary battery group, the operating data and the open data of the secondary battery group during use are displayed. An object of the present invention is to provide a battery system equipped with a display unit that collects circuit state data, estimates the remaining cycle life at that time, and notifies in advance of the number of times of charging until battery replacement or the date and time of battery replacement based on this. And At the same time, the aim was to provide a system for detecting battery abnormalities in advance and preventing accidents.

【0006】[0006]

【課題を解決するための手段】二次電池の寿命を、使用
不能に至る前に一定の猶予期間を置いて予告するために
は電池が寿命となる原因を検出可能な指標を用いて定量
化し、これにより寿命劣化に至るまでの期間あるいは充
放電回数を推算することが必要である。二次電池が寿命
となる原因は大別すると、電極活物質の劣化により充電
あるいは放電反応が進まなくなる場合と、電解液の枯渇
により電池の内部抵抗が増大して、内部抵抗による電圧
低下が大きくなり充放電不能になる場合とがある。
[Means for Solving the Problems] In order to give advance notice of the life of a secondary battery with a certain grace period before it becomes unusable, the cause of battery life is quantified using a detectable index. Therefore, it is necessary to estimate the period until the life is deteriorated or the number of times of charge and discharge. The causes of the life of a secondary battery are broadly divided into two cases: when the charging or discharging reaction does not proceed due to the deterioration of the electrode active material, and when the electrolyte depletes, the internal resistance of the battery increases and the voltage drop due to the internal resistance is large. In some cases, charging / discharging becomes impossible.

【0007】電極活物質の劣化に関しては、二次電池の
放電容量の変化率及び電池の交流インピーダンスから得
られる指標の変化率が指標として利用できる。すなわち
放電容量の変化率は充電から次の充電までの間に放電さ
れた電気量を積算して放電容量として、この放電容量の
サイクル毎の変化率を外挿して電池システムで保証する
下限の放電容量まで低下する回数を推算し、残存サイク
ル寿命として表示する。もし二次電池システムを放電量
一定の条件で運転する場合には、放電容量の変化は原理
的には検出されないため、別の指標として、特にリチウ
ム二次電池の場合に特に有効であるが、放電終了時の電
圧あるいは放電終了後の開回路電圧を用いて残存サイク
ル寿命を外挿することができる。放電終了時の電圧とし
ては、電池の内部抵抗による電圧低下分を差し引いた値
を使用するのが望ましい。以下放電容量の変化を利用す
る残存サイクル寿命の予測法を主体に述べるが、放電終
了電圧による予測法も同様の手法により実施することが
できる。
Regarding the deterioration of the electrode active material, the change rate of the discharge capacity of the secondary battery and the change rate of the index obtained from the AC impedance of the battery can be used as the index. That is, the rate of change of discharge capacity is the discharge capacity obtained by integrating the amount of electricity discharged from one charge to the next, and the rate of change of this discharge capacity for each cycle is extrapolated to the lower limit of the discharge guaranteed by the battery system. Estimate the number of times the capacity is reduced and display it as the remaining cycle life. If the secondary battery system is operated under the condition that the discharge amount is constant, a change in the discharge capacity is not detected in principle, so as another index, it is particularly effective in the case of a lithium secondary battery. The remaining cycle life can be extrapolated using the voltage at the end of discharge or the open circuit voltage after the end of discharge. As the voltage at the end of discharge, it is desirable to use a value obtained by subtracting the voltage drop due to the internal resistance of the battery. Hereinafter, the method of predicting the remaining cycle life using the change in discharge capacity will be mainly described, but the method of predicting the discharge end voltage can also be implemented by the same method.

【0008】寿命予測の精度を高めるために、放電容量
の外挿と併せて充電終了後あるいは放電終了後に、開回
路状態において電池の交流インピーダンスを測定し、こ
れを指標として加えることは効果がある。交流インピー
ダンスの測定は、上述した二次電池の劣化原因のうち、
電解液の枯渇及び電極活物質の劣化の双方の評価に関し
て有効である。電解液の枯渇に関する指標は比較的周波
数の高い領域で交流インピーダンスを測定することによ
り得られる。一方電極活物質の劣化に関しては比較的周
波数の低い領域で交流インピーダンスを測定し、複素数
表示して虚数部と実数部の比を求めることにより指標が
得られる。電池の種類,大きさ,形状等によりそれぞれ
最も適した測定周波数領域が異なるため、あらかじめ対
象となる電池システムに対してそれぞれ最適な2つの測
定周波数領域を決める必要がある。低周波数領域として
は例えば1Hz以下の周波数が利用できる。測定された
交流インピーダンスを複素数表示して、その虚数成分
(容量成分)と実数成分(抵抗成分)の比を計算しこれ
を一つの指標として用いる。高周波数領域としては例え
ば1kHz 程度の周波数で交流インピーダンスを測定
し、抵抗成分の値を一つの指標として用いる。
In order to improve the accuracy of life prediction, it is effective to measure the AC impedance of the battery in an open circuit state after charging or discharging, together with extrapolation of the discharge capacity, and add this as an index. . Among the causes of deterioration of the secondary battery described above, the measurement of AC impedance is
It is effective for evaluating both depletion of the electrolyte and deterioration of the electrode active material. An indicator of electrolyte depletion is obtained by measuring the AC impedance in the region of relatively high frequency. On the other hand, regarding the deterioration of the electrode active material, an index can be obtained by measuring the AC impedance in a relatively low frequency region and displaying the complex number to obtain the ratio of the imaginary part and the real part. Since the most suitable measurement frequency range differs depending on the type, size, shape, etc. of the battery, it is necessary to determine in advance two optimum measurement frequency ranges for the target battery system. As the low frequency region, for example, a frequency of 1 Hz or less can be used. The measured AC impedance is displayed as a complex number, the ratio of the imaginary number component (capacitance component) and the real number component (resistance component) is calculated, and this is used as one index. In the high frequency region, for example, the AC impedance is measured at a frequency of about 1 kHz, and the resistance component value is used as one index.

【0009】通常小型の電池パックでは数本の電池が使
用され、大型の電池になればさらに多数の電池を直列に
接続して、100Vあるいは200Vの電圧が得られる
ようにする。電池を直列に接続した場合、電池群を構成
する個々の電池間の特性の不均等が拡大して電池群の特
性を低下させるおそれがある。例えば、容量の低い電池
が先に放電を完了して電池群の放電電圧を低下させ容量
低下を引き起こす。さらには、アルカリ金属を負極活物
質とする電池においては、先に放電が完了した電池が他
の電池に引きずられて放電が継続されて過放電から転極
に至った場合、正極上へ負極活物質であるアルカリ金属
が析出し(逆充電反応)、重大な事故に至る危険性が生
じる。これを避けるため、集合電池内の特定の電池にお
いて放電電圧が0Vにまで低下する事態が発生した場合
には使用を中止することが必要である。
Usually, a small battery pack uses several batteries, and when a large battery is used, a larger number of batteries are connected in series to obtain a voltage of 100V or 200V. When the batteries are connected in series, the unevenness of the characteristics among the individual batteries forming the battery group may be expanded and the characteristics of the battery group may be deteriorated. For example, a battery having a low capacity completes the discharge first to lower the discharge voltage of the battery group, causing a decrease in the capacity. Further, in a battery using an alkali metal as a negative electrode active material, when a battery that has been completely discharged is dragged by another battery to continue discharging and overpolarization occurs, the negative electrode is activated on the positive electrode. Alkali metal, which is a substance, is deposited (reverse charging reaction), which may cause a serious accident. In order to avoid this, it is necessary to stop the use when the discharge voltage of the specific battery in the assembled battery drops to 0V.

【0010】電池を数本直列に接続する電池パックの場
合はすべての電池の電圧を測定することは可能である。
しかし100Vあるいは200V程度の電圧を発生させ
る大型電池の場合には、リチウム二次電池の場合で30
本から70本の電池を直列に接続する必要がある。この
場合、すべての電池について電圧を測定することも原理
的には可能であるが、数本単位で素電池を直列に接続し
た電池群(モジュール)毎に電圧を測定する方が簡便であ
る。この場合には異常が発生した場合にはモジュール単
位で交換が可能であり、電池交換作業が簡略化できる。
モジュールごとに電圧を測定する場合、例えば図5に示
すように5本直列に接続した電池モジュールのうち1本
の電池の容量が他に比べて半分である場合、放電中のモ
ジュール電圧変化に段差が生じる。これをモジュール電
圧の放電電気量に対する微分値の異常として検出するこ
とができる。この検出法においては放電中の微小な電圧
変化による誤差を避けるために、モジュールとして直列
接続する電池の数を少なくすることが望ましい。例えば
リチウム二次電池の場合、1本の電池で過放電反応に対
応する2V付近から0Vまでの電圧変化が起これば、5
本直列では2V/15V=0.133の変化として、1
0本直列では2V/30V=0.0667の変化とな
り、5本直列の場合の方が検出が容易である。
In the case of a battery pack in which several batteries are connected in series, it is possible to measure the voltages of all the batteries.
However, in the case of a large battery that generates a voltage of about 100 V or 200 V, it is 30 in the case of a lithium secondary battery.
It is necessary to connect 70 to 70 batteries in series. In this case, it is possible in principle to measure the voltage for all the batteries, but it is easier to measure the voltage for each battery group (module) in which unit cells are connected in series in units of several batteries. In this case, if an abnormality occurs, the modules can be replaced, and the battery replacement work can be simplified.
When the voltage is measured for each module, for example, when the capacity of one of the five battery modules connected in series as shown in FIG. Occurs. This can be detected as an abnormality of the differential value of the module voltage with respect to the discharged electricity amount. In this detection method, it is desirable to reduce the number of batteries connected in series as a module in order to avoid an error due to a minute voltage change during discharging. For example, in the case of a lithium secondary battery, if a voltage change from near 2V to 0V corresponding to an overdischarge reaction occurs in one battery, 5
In this series, change of 2V / 15V = 0.133 is 1
The change of 2V / 30V = 0.0667 occurs in the case of 0 series, and the detection is easier in the case of 5 series.

【0011】大型電池群の場合、電池の交流インピーダ
ンス測定も各モジュール毎に実施し、交流インピーダン
ス及び放電電圧変化により検知されるモジュールの異常
警報を電池システムの寿命予測に優先させ、電圧及び交
流インピーダンスに異常の発生したモジュールを交換す
るよう指示を出す。これにより通常のサイクル寿命劣化
原因以外の突発的に発生する異常事態に対処できる。
In the case of a large battery group, the AC impedance of the battery is also measured for each module, and the abnormality alarm of the module detected by the change of the AC impedance and the discharge voltage is prioritized for the life prediction of the battery system, and the voltage and AC impedance Instruct to replace the module in which the error occurred. This makes it possible to deal with an abnormal situation that occurs suddenly other than the normal cause of deterioration in cycle life.

【0012】[0012]

【作用】本発明の対象とする二次電池システムの運用を
開始すると、該電池群に直列に設置した電流検出装置に
より放電期間中における放電容量を積算して記憶装置に
貯える。各サイクル毎の放電容量をサイクル数の関数と
して係数を決め、対象となる二次電池システムの最低保
証放電容量に至るまでのサイクル数を外挿により計算す
ることにより寿命予測は基本的には為される。
When the operation of the secondary battery system which is the object of the present invention is started, the discharge capacities during the discharging period are integrated by the current detecting device installed in series with the battery group and stored in the storage device. The life prediction is basically done by determining the coefficient as a function of the discharge capacity for each cycle and calculating the number of cycles until reaching the minimum guaranteed discharge capacity of the target secondary battery system by extrapolation. To be done.

【0013】この時二次電池の放電容量の繰返し充放電
サイクル毎の変化の様子には図6に示すように2つのパ
ターンがあることに留意する必要がある。第一のパター
ンはサイクル末期まで一定の放電容量で経過した後、急
激に放電容量が低下する場合(タイプI)である。第二
のパターンは充放電サイクルが進むにつれてほぼ直線的
に放電容量が低下する場合(タイプII)である。これら
両者の違いは電池系の違い、例えばニッケル−カドミウ
ム電池はタイプIのような挙動を示し、リチウム二次電
池はタイプIIのような挙動を示す例が多い。もちろん、
同じ電池系においても電池の設計あるいは使用条件によ
り異なった挙動を示す。例えば設計容量に対して浅い放
電条件で放電を繰り返せば、深い放電条件では本来タイ
プIIの挙動を示すリチウム二次電池においてもタイプI
の挙動を示す場合もある。
At this time, it should be noted that there are two patterns of changes in the discharge capacity of the secondary battery with each repeated charge / discharge cycle, as shown in FIG. The first pattern is a case where the discharge capacity rapidly decreases after a certain discharge capacity has passed until the end of the cycle (Type I). The second pattern is the case where the discharge capacity decreases almost linearly as the charge / discharge cycle progresses (Type II). The difference between the two is often a difference in battery system, for example, a nickel-cadmium battery behaves like type I and a lithium secondary battery behaves like type II in many cases. of course,
Even the same battery system behaves differently depending on the battery design and usage conditions. For example, if the discharge is repeated under a discharge condition shallow with respect to the design capacity, a type I lithium-ion battery that behaves originally as a type II under deep discharge conditions
In some cases, the behavior of

【0014】この点を踏まえて、二次電池の公称サイク
ル寿命,放電容量,放電電圧及び交流インピーダンス
(低周波数と高周波数の2点)の数値を組み合わせて残
存サイクル寿命を予測する手法について種々検討した結
果、図6に示す放電容量の充放電サイクルの進行に伴う
変化のパターンと寿命予測時点までの使用状況に応じ
て、上記各パラメータ間に優先順位を付けることによ
り、残存サイクル寿命予測の精度を上げることができこ
とがわかった。タイプII電池では放電容量のサイクル毎
の変化から残存サイクル寿命を予測できる。より正確な
残存サイクル寿命を予測するため、外挿と基礎となる式
の係数を一定間隔毎に、例えば直前の100サイクルの
放電容量のデータを用いて更新し、残存サイクル寿命の
予測を修正することが望ましい。前者の場合には放電容
量が一定である期間中は寿命を意識することは少ない。
Based on this point, various studies are made on a method of predicting the remaining cycle life by combining numerical values of the nominal cycle life, discharge capacity, discharge voltage and AC impedance (two points of low frequency and high frequency) of the secondary battery. As a result, the accuracy of the remaining cycle life prediction is determined by prioritizing the above parameters according to the pattern of changes in the discharge capacity with progress of the charge / discharge cycle shown in FIG. 6 and the usage status until the life prediction time. Turned out to be able to raise. For type II batteries, the remaining cycle life can be predicted from the change in discharge capacity with each cycle. To more accurately predict the remaining cycle life, extrapolation and the coefficients of the underlying equation are updated at regular intervals, for example, using the last 100 cycles of discharge capacity data to correct the remaining cycle life prediction. Is desirable. In the former case, the life is rarely considered during the period when the discharge capacity is constant.

【0015】これに対してタイプI電池では、各サイク
ル毎の放電容量を比較することにより現在フェーズIの
領域にあることが確認できれば、公称サイクル寿命から
それまでの充放電サイクル数を差し引くか、あるいはリ
チウム二次電池においては、F.O.M.の考え方を用
いて残存サイクル寿命を概算するか、放電終了時の電圧
の値を外挿して寿命を予測することができる。各放電サ
イクル毎の放電容量を比較して放電容量に減少傾向が検
出されるようになると、フェーズIIの領域に移ったと判
断し、放電容量のサイクル毎の変化を外挿して残存サイ
クル寿命を推算する。タイプI電池のフェーズII以降
は、タイプII電池と同様の方法により寿命を予測する。
一定間隔での放電容量の変化に基づく寿命予測の修正と
併せて、使用休止中には各電池モジュール毎の交流イン
ピーダンスを2つの周波数で測定し、放電中には各モジ
ュールの電圧変化を計測する。交流インピーダンスに関
しては低周波数側及び高周波数側のそれぞれの値につい
てモジュール間の偏差をとり、交流インピーダンスが大
きく変化したモジュールが発生すれば、フェーズIIIと
して点検あるいはモジュール交換の警報を出す。放電時
の電圧変化に関しては各モジュール毎に放電量に対する
微分値を計算して、設定値を超えた場合にモジュール交
換の警報を出す。
On the other hand, in the case of the type I battery, if it can be confirmed by comparing the discharge capacities for each cycle that it is in the phase I region at present, the number of charge / discharge cycles until then is subtracted from the nominal cycle life, Alternatively, in the lithium secondary battery, the F. O. M. Can be used to estimate the remaining cycle life, or the value of the voltage at the end of discharge can be extrapolated to predict the life. When the discharge capacity of each discharge cycle is compared and a decreasing tendency is detected in the discharge capacity, it is judged that the discharge capacity has shifted to the phase II area, and the change in discharge capacity for each cycle is extrapolated to estimate the remaining cycle life. To do. After the phase II of the type I battery, the life is predicted by the same method as the type II battery.
Along with correction of life prediction based on changes in discharge capacity at regular intervals, AC impedance of each battery module is measured at two frequencies during non-use, and voltage change of each module is measured during discharge. . Regarding the AC impedance, the deviation between the modules is taken for each value on the low frequency side and the high frequency side, and if a module with a large change in the AC impedance occurs, an alarm for inspection or module replacement is issued as Phase III. Regarding the voltage change at the time of discharge, the differential value with respect to the discharge amount is calculated for each module, and when the set value is exceeded, a module replacement alarm is issued.

【0016】[0016]

【実施例】以下本発明の実施例について図に従って説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】−実施例1− 図1に本発明になる二次電池システムを電力貯蔵設備に
適用した場合の概要を示す。交流母線1からスイッチ4
及びインバータ/整流器5を介して負荷2と集合電池3
を並列に接続する。この集合電池3は電圧測定装置7に
より電圧を測定し、放電時においては一定の下限電圧ま
で放電させるように条件を設定しておく。スイッチ4に
はタイマ6を取付け充電時間を設定する。充電時間は例
えば夜間の午後11時から翌朝の7時までの8時間に設
定する。集合電池3に直列に電流検出器11を接続す
る。電流検出器11は電流の方向も検出可能なように構
成する。これにより電流の方向の変化を検出して充電及
び放電を検知し、充電から次の充電までの間に放電方向
に流れた電流を積算器13により積算する。併せて放電
状態から充電状態へ電流の方向が変わったときにカウン
タ12にパルスを送り、サイクル数の増加として積算す
る。積算された電気量及びサイクル数を記憶部14に貯
え、演算部51において放電された電気量の積算値をサ
イクル数の関数として係数を決め、外挿によりあらかじ
め決められた下限放電容量に達するまでの寿命を推算
し、その結果を表示部52に表示する。寿命の表示法は
次のようにして行う。記憶部14に貯えられた直前20
回分の放電容量を演算部51において比較し、変化が認
められない間は寿命は表示しない。直前20回分の放電
容量に低下が認められるようになってくると、演算部5
1において計算された寿命値を内蔵のカレンダーにより
換算して電池交換時期として月単位で表示する。100サ
イクル経過ごとに最新の放電容量のデータを用いて推算
を繰り返す。残存サイクル寿命が200サイクルを割り
込むと、電池交換時期を10日単位で表示する。
Example 1 FIG. 1 shows an outline of a case where the secondary battery system according to the present invention is applied to power storage equipment. AC bus 1 to switch 4
And the load 2 and the assembled battery 3 via the inverter / rectifier 5.
Are connected in parallel. The voltage of the assembled battery 3 is measured by the voltage measuring device 7, and conditions are set so that the battery 3 is discharged to a certain lower limit voltage during discharging. A timer 6 is attached to the switch 4 to set the charging time. The charging time is set to, for example, 8 hours from 11:00 pm at night to 7:00 the next morning. A current detector 11 is connected to the assembled battery 3 in series. The current detector 11 is configured to be able to detect the direction of current as well. Thereby, the change in the direction of the current is detected to detect charging and discharging, and the current flowing in the discharging direction between charging and the next charging is integrated by the integrator 13. At the same time, a pulse is sent to the counter 12 when the direction of the current changes from the discharge state to the charge state, and integration is performed as an increase in the number of cycles. The accumulated amount of electricity and the number of cycles are stored in the storage unit 14, and the accumulated value of the amount of electricity discharged in the calculation unit 51 is determined as a function of the number of cycles, and a coefficient is determined until the lower limit discharge capacity determined by extrapolation is reached. , And the result is displayed on the display unit 52. The life is displayed as follows. 20 just before being stored in the storage unit 14
The discharge capacities are compared in the calculation unit 51, and the life is not displayed while no change is recognized. When the discharge capacity of the last 20 discharges starts to decrease, the calculation unit 5
The life value calculated in 1 is converted by the built-in calendar and displayed as the battery replacement time on a monthly basis. The estimation is repeated every 100 cycles using the latest discharge capacity data. When the remaining cycle life falls below 200 cycles, the battery replacement time is displayed in units of 10 days.

【0018】集合電池3は図2に示すように、所定の電
圧を得るために必要な個数の素電池を、まず5本程度直
列に接続した電池モジュール21とし、これをさらに直
列に接続して電池群を構成する。
As shown in FIG. 2, the assembled battery 3 is a battery module 21 in which a number of unit cells required to obtain a predetermined voltage are first connected in series to form a battery module 21, which is further connected in series. Configure a battery group.

【0019】発振周波数が1kHzと0.05Hz の交
流電源17及び信号解析部18を設け、配線24,接点
切り替え装置22及びスイッチ25を介して集合電池の
電池モジュール21に接続する。放電及び充電が終了し
た後、スイッチ23により負荷及び計測部から開放した
後、切り替えスイッチ25により交流電源17及び信号
解析部18に接続して、二つの周波数で交流インピーダ
ンスを測定する。測定された交流インピーダンスはそれ
ぞれ記憶部/演算部53に送り、モジュール間で交流イ
ンピーダンスを比較し偏差を計算する。偏差が設定値を
超えれば警報部55に該当モジュール交換の警報を出
す。
An AC power supply 17 having an oscillation frequency of 1 kHz and 0.05 Hz and a signal analysis unit 18 are provided, and are connected to a battery module 21 of an assembled battery via a wiring 24, a contact switching device 22 and a switch 25. After discharging and charging are completed, the load and the measuring unit are opened by the switch 23, and then the changeover switch 25 is connected to the AC power supply 17 and the signal analyzing unit 18 to measure the AC impedance at two frequencies. The measured AC impedances are sent to the storage unit / calculation unit 53, and the AC impedances of the modules are compared to calculate the deviation. If the deviation exceeds the set value, an alarm for replacing the corresponding module is issued to the alarm unit 55.

【0020】同じくモジュールから配線24,接点切り
替え装置22及びスイッチ25を介して電圧計測部16
に接続する。放電運転中の各モジュールの電圧は接点切
り替え装置22で順次入力を切り替えて電圧計測部16
に送られ各モジュールの電圧を計測する。モジュール電
圧は演算部54にて放電電気量により微分し、微分値が
設定値より大きければ、警報部55に該当モジュール交
換の警報を出す。
Similarly, the voltage measuring unit 16 is connected from the module via the wiring 24, the contact switching device 22 and the switch 25.
Connect to. The voltage of each module during the discharging operation is sequentially switched by the contact switching device 22 to change the input voltage.
Is sent to and the voltage of each module is measured. The module voltage is differentiated by the discharge electricity amount in the calculation unit 54, and if the differential value is larger than the set value, the alarm unit 55 issues an alarm for replacement of the corresponding module.

【0021】−実施例2− 図3に本発明になる二次電池システムを電力貯蔵設備に
適用した場合の概要を示す。交流母線1からスイッチ4
及びインバータ/整流器5を介して負荷2及び集合電池
3を並列に接続する。この集合電池は放電時には積算器
13により一定の電気量が放電された場合には放電を停
止するように設定しておく。スイッチ4にはタイマ6を
取付け充電時間を設定する。充電時間は例えば夜間の午
後11時から翌朝の7時までの8時間に設定する。集合
電池3に直列に電流検出器11を接続する。電流検出器
11は電流の方向も検出可能なように構成する。これに
より電流の方向の変化を検出して充電,放電及び開回路
状態を検知する。放電から開回路状態に移行する直前の
電圧を電圧測定装置7により計測し、抵抗損失分を差し
引いて記憶部14に貯え、放電から開回路状態に移行す
るたびにデータを更新する。開回路状態から次の充電に
移行する時点で記憶部14に残っているデータを放電終
了電圧として記憶させる。併せて放電状態から充電状態
へ電流の方向が変わったときにカウンタ12にパルスを
送り、サイクル数の増加として積算し、サイクル数とし
て記憶部14に貯える。演算部51において放電終了電
圧をサイクル数の関数として係数を決め、外挿によりあ
らかじめ決められた下限放電終了電圧に達するまでの寿
命を推算し、その結果を表示部52に表示する。寿命の
表示法は次のようにして行う。記憶部14に貯えられた
直前20回分の放電終了電圧を演算部51において比較
し、変化が認められない間は表示しない。直前20回分
の放電終了電圧に低下が認められるようになってくる
と、演算部51において計算された寿命値を内蔵のカレ
ンダーにより換算して電池交換時期として月単位で表示
する。100サイクル経過ごとに最新の放電終了電圧容
量のデータを用いて推算を繰り返す。残存サイクル寿命
が200サイクルを割り込むと、電池交換時期を10日
単位で表示する。異常時の警報表示に関しては実施例1
に示すのと同じ方法により実施する。
Example 2 FIG. 3 shows an outline of the case where the secondary battery system according to the present invention is applied to power storage equipment. AC bus 1 to switch 4
And the load 2 and the assembled battery 3 are connected in parallel via the inverter / rectifier 5. This battery pack is set to stop discharging when a certain amount of electricity is discharged by the integrator 13 during discharging. A timer 6 is attached to the switch 4 to set the charging time. The charging time is set to, for example, 8 hours from 11:00 pm at night to 7:00 the next morning. A current detector 11 is connected to the assembled battery 3 in series. The current detector 11 is configured to be able to detect the direction of current as well. As a result, changes in the direction of current are detected to detect charging, discharging, and open circuit conditions. The voltage immediately before the transition from the discharge to the open circuit state is measured by the voltage measuring device 7, the resistance loss is subtracted and stored in the storage unit 14, and the data is updated every time the transition from the discharge to the open circuit state is made. The data remaining in the storage unit 14 at the time of shifting from the open circuit state to the next charge is stored as the discharge end voltage. At the same time, when the direction of the current changes from the discharge state to the charge state, a pulse is sent to the counter 12 and integrated as an increase in the number of cycles and stored in the storage unit 14 as the number of cycles. The calculation unit 51 determines a coefficient by using the discharge end voltage as a function of the number of cycles, estimates the life until reaching a predetermined lower limit discharge end voltage by extrapolation, and displays the result on the display unit 52. The life is displayed as follows. The discharge end voltage for the last 20 times stored in the storage unit 14 is compared in the calculation unit 51 and is not displayed while no change is recognized. When a decrease in the discharge end voltage for the last 20 times is recognized, the life value calculated by the calculation unit 51 is converted by the built-in calendar and displayed as the battery replacement time on a monthly basis. The estimation is repeated every 100 cycles using the latest discharge end voltage capacity data. When the remaining cycle life falls below 200 cycles, the battery replacement time is displayed in units of 10 days. Example 1 for displaying an alarm when an abnormality occurs
It is carried out by the same method as shown in.

【0022】−実施例3− 図4に本発明になる二次電池システムをリチウム二次電
池パックに適用した場合の概要を示す。5本直列に接続
した電池群15に直列に電流検出装置11を接続し、そ
れぞれの電池の両極端子から電圧検出用の配線26を引
き出す。電流検出装置11には電流の方向の反転により
パルスを発生させるような機能を持たせておく。充電方
向から放電方向に電流が反転した場合のパルスにより電
流検出装置11からの出力の積算を開始し、放電方向か
ら充電方向に電流が反転するまで積算器13により積算
を継続する。積算結果は記憶部14に貯えられる。同時
に放電方向から充電方向に電流が反転したときのパルス
によりカウンター12を一つ進め、サイクル数として記
憶部14に貯える。演算部51において積算されたサイ
クルごとの放電容量をサイクル数の関数として係数を決
め、あらかじめ設定された下限容量に至るまでのサイク
ル数を推算して、表示部52に残存するサイクル数とし
て表示する。
Example 3 FIG. 4 shows an outline of the case where the secondary battery system according to the present invention is applied to a lithium secondary battery pack. The current detection device 11 is connected in series to the battery group 15 in which five batteries are connected in series, and the wiring 26 for voltage detection is drawn out from the bipolar terminals of each battery. The current detection device 11 has a function of generating a pulse by reversing the direction of the current. The integration of the output from the current detection device 11 is started by the pulse when the current is reversed from the charging direction to the discharging direction, and the integration is continued by the integrator 13 until the current is reversed from the discharging direction to the charging direction. The integrated result is stored in the storage unit 14. At the same time, the counter 12 is advanced by one by the pulse when the current is reversed from the discharging direction to the charging direction, and is stored in the storage unit 14 as the number of cycles. A coefficient is determined as a function of the number of cycles of the discharge capacity accumulated for each cycle in the calculation unit 51, and the number of cycles until reaching a preset lower limit capacity is estimated and displayed as the number of cycles remaining on the display unit 52. .

【0023】5本の電池の電圧は電圧検出装置16によ
り測定する。このとき電圧検出装置は図4に示すように
接点切り替え装置22を介して1つだけ設置してもよい
し、それぞれの電池に電圧検出装置を設置することもで
きる。接点切り替え装置を介して1つの電圧検出装置を
使用する場合は一定間隔で電池からの入力を切り替え
る。放電中の各電池の電圧を順次測定し、比較回路15
において設定値と比較して、設定値を下回った場合には
使用中止の警報を表示部55に出す。
The voltage of the five batteries is measured by the voltage detecting device 16. At this time, only one voltage detection device may be installed via the contact switching device 22 as shown in FIG. 4, or the voltage detection device may be installed in each battery. When one voltage detection device is used via the contact switching device, the input from the battery is switched at regular intervals. The voltage of each battery being discharged is sequentially measured, and the comparison circuit 15
In comparison with the set value at, if the set value is less than the set value, a warning of discontinuation of use is issued on the display unit 55.

【0024】[0024]

【発明の効果】本発明により二次電池システムの寿命を
予測してあらかじめ電池交換の時期を知ることができる
ため、二次電池システムを計画的に運用することがで
き、二次電池を使用する負荷側との協調を高めることが
できる。また本発明により二次電池システム内の異常を
事前に検知することができ、二次電池システムにおける
事故の発生を防止することができる。
According to the present invention, the life of the secondary battery system can be predicted and the battery replacement timing can be known in advance, so that the secondary battery system can be systematically operated and the secondary battery is used. Cooperation with the load side can be enhanced. Further, according to the present invention, the abnormality in the secondary battery system can be detected in advance, and the occurrence of the accident in the secondary battery system can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明になる二次電池システムを電力貯蔵設備
に適用した場合の構成を表わす。
FIG. 1 shows a configuration in which a secondary battery system according to the present invention is applied to power storage equipment.

【図2】本発明になる二次電池システムにおける電池群
の構成を表わす。
FIG. 2 shows a configuration of a battery group in the secondary battery system according to the present invention.

【図3】本発明になる二次電池システムを電力貯蔵設備
に適用した場合の構成を表わす。
FIG. 3 shows a configuration when the secondary battery system according to the present invention is applied to power storage equipment.

【図4】本発明になる二次電池システムをリチウム二次
電池パックに適用した場合の構成を表わす。
FIG. 4 shows a configuration when the secondary battery system according to the present invention is applied to a lithium secondary battery pack.

【図5】5直列リチウム二次電池における放電電圧変化
の様子を表わす。
FIG. 5 shows how the discharge voltage changes in a 5-series lithium secondary battery.

【図6】二次電池の放電容量のサイクル変化の様子を表
わす。
FIG. 6 shows how the discharge capacity of the secondary battery changes in cycles.

【符号の説明】[Explanation of symbols]

1…交流母線、2…負荷、3…集合電池、4,23,2
5…スイッチ、5…インバータ/整流器、6…タイマ、
7…電圧測定装置、11…電流検出器、12…カウン
タ、13…積算器、14…記憶部、15…電池群、16
…電圧計測部、17…交流電源、18…信号解析部、2
1…電池モジュール、22…接点切り替え装置、24…
配線、51,54…演算部、52…表示部、53…記憶
部/演算部、55…警報部、71…正常な電池を接続し
た場合の電圧変化、72…1本の電池の容量が半分に低
下した場合の電圧変化、81…繰返し充放電に伴うタイ
プI電池の放電容量の変化、82…繰返し充放電に伴う
タイプII電池の放電容量の変化。
1 ... AC bus bar, 2 ... Load, 3 ... Assembly battery, 4, 23, 2
5 ... Switch, 5 ... Inverter / rectifier, 6 ... Timer,
7 ... Voltage measuring device, 11 ... Current detector, 12 ... Counter, 13 ... Accumulator, 14 ... Storage part, 15 ... Battery group, 16
… Voltage measuring unit, 17… AC power supply, 18… Signal analysis unit, 2
1 ... Battery module, 22 ... Contact switching device, 24 ...
Wiring, 51, 54 ... Calculation section, 52 ... Display section, 53 ... Storage section / calculation section, 55 ... Alarm section, 71 ... Voltage change when a normal battery is connected, 72 ... Half the capacity of one battery Voltage change when the voltage drops to 81, a change in discharge capacity of the type I battery due to repeated charge and discharge, and a change in discharge capacity of the type II battery due to repeated charge and discharge.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 勝憲 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 堀場 達雄 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsunori Nishimura 4026 Kuji Town, Hitachi City, Ibaraki Prefecture Hitate Works, Ltd., Hitachi Research Laboratory (72) Inventor Tatsuo Horiba 4026 Kuji Town, Hitachi City, Ibaraki Prefecture Nitate Works Co., Ltd. Hitachi Research Laboratory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】複数個の二次電池を直列に接続してなる集
合型二次電池群において、経時的に充放電を繰り返して
使用する過程で、その時点から寿命に至るまでに充放電
可能な回数を推算し、これを表示する機能を備えたこと
を特徴とする二次電池システム。
1. A collective type secondary battery group comprising a plurality of secondary batteries connected in series, which can be charged and discharged from that point to the end of its life in the process of repeatedly charging and discharging over time. A secondary battery system having a function of estimating the number of times and displaying this.
【請求項2】複数個の二次電池を直列に接続してなる集
合型二次電池群において、経時的に充放電を繰り返して
使用する過程で、その時点から寿命に至るまでに充放電
可能な回数を推算し、これを電池交換日時として表示す
る機能を備えたことを特徴とする二次電池システム。
2. A collective type secondary battery group in which a plurality of secondary batteries are connected in series can be charged / discharged from that point to the end of its life in the process of repeatedly charging and discharging over time. A secondary battery system that has a function of estimating the number of times and displaying it as a battery replacement date and time.
【請求項3】複数個の二次電池を直列に接続してなる集
合型二次電池群において、経時的に充放電を繰り返して
使用する過程で、 (2)各放電サイクル毎の放電容量、あるいは(2)各放電
サイクル毎の放電終了時の電圧を外挿して、その時点か
ら寿命に至るまでに充放電可能な回数を推算し、これを
表示する機能を備えたことを特徴とする二次電池システ
ム。
3. An assembly type secondary battery group comprising a plurality of secondary batteries connected in series, wherein (2) the discharge capacity of each discharge cycle during the process of repeatedly charging and discharging over time. Alternatively, (2) the voltage at the end of discharge in each discharge cycle is extrapolated, the number of times that charging and discharging can be performed from that time to the end of the life is estimated, and the function to display this is provided. Secondary battery system.
【請求項4】複数個の二次電池を直列に接続してなる集
合型二次電池群において、該電池群を複数個の電池モジ
ュールに分割し、該電池モジュールの交流インピーダン
スを開回路状態で測定し、各電池モジュール間の測定結
果を比較し、偏差が設定値を超えた場合に電池モジュー
ル交換の警報を出すことを特徴とする請求項1から請求
項3に記載の二次電池システム。
4. An assembled secondary battery group comprising a plurality of secondary batteries connected in series, wherein the battery group is divided into a plurality of battery modules, and the AC impedance of the battery modules is in an open circuit state. The secondary battery system according to any one of claims 1 to 3, wherein the secondary battery system measures the measured values, compares the measured results between the battery modules, and issues an alarm for battery module replacement when the deviation exceeds a set value.
【請求項5】複数個の二次電池を直列に接続してなる集
合型二次電池群において、該電池群を複数個の電池モジ
ュールに分割し、該電池モジュールの放電電圧を検出
し、放電電圧を放電電気量に対して微分した値が設定値
を超えた場合に、該当する電池モジュール交換の警報を
出すことを特徴とする請求項1から請求項3に記載の二
次電池システム。
5. A collective type secondary battery group formed by connecting a plurality of secondary batteries in series, dividing the battery group into a plurality of battery modules, detecting the discharge voltage of the battery modules, and discharging. The secondary battery system according to any one of claims 1 to 3, wherein when the value obtained by differentiating the voltage with respect to the discharged electricity amount exceeds a set value, an alarm for replacement of the corresponding battery module is issued.
JP24035692A 1992-09-09 1992-09-09 Secondary battery system Expired - Fee Related JP3237229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24035692A JP3237229B2 (en) 1992-09-09 1992-09-09 Secondary battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24035692A JP3237229B2 (en) 1992-09-09 1992-09-09 Secondary battery system

Publications (2)

Publication Number Publication Date
JPH0689745A true JPH0689745A (en) 1994-03-29
JP3237229B2 JP3237229B2 (en) 2001-12-10

Family

ID=17058275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24035692A Expired - Fee Related JP3237229B2 (en) 1992-09-09 1992-09-09 Secondary battery system

Country Status (1)

Country Link
JP (1) JP3237229B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309796A (en) * 2003-07-22 2008-12-25 Makita Corp Diagnostic device and diagnostic method for battery
WO2009075109A1 (en) * 2007-12-13 2009-06-18 Panasonic Corporation Lifetime estimating method and deterioration suppressing method for lithium secondary cell, lifetime estimator and deterioration suppressor, battery pack using the same, and charger
WO2011125213A1 (en) 2010-04-09 2011-10-13 トヨタ自動車株式会社 Secondary battery degradation determination device and degradation determination method
CN111919329A (en) * 2018-04-06 2020-11-10 株式会社日立制作所 Electricity storage system
WO2023031990A1 (en) 2021-08-30 2023-03-09 TeraWatt Technology株式会社 Deterioration state estimation device, deterioration state estimation method, and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102559199B1 (en) 2015-11-02 2023-07-25 삼성전자주식회사 Method of managing battery and batter management appratus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309796A (en) * 2003-07-22 2008-12-25 Makita Corp Diagnostic device and diagnostic method for battery
WO2009075109A1 (en) * 2007-12-13 2009-06-18 Panasonic Corporation Lifetime estimating method and deterioration suppressing method for lithium secondary cell, lifetime estimator and deterioration suppressor, battery pack using the same, and charger
JP2009162750A (en) * 2007-12-13 2009-07-23 Panasonic Corp Methods and apparatuses of estimating service life and inhibiting deterioration of lithium secondary battery, battery pack using the same, and charger
US8373419B2 (en) 2007-12-13 2013-02-12 Panasonic Corporation Lifetime estimating method and deterioration suppressing method for rechargeable lithium battery, lifetime estimating apparatus, deterioration suppressor, and battery pack and charger using the same
WO2011125213A1 (en) 2010-04-09 2011-10-13 トヨタ自動車株式会社 Secondary battery degradation determination device and degradation determination method
US9435866B2 (en) 2010-04-09 2016-09-06 Toyota Jidosha Kabushiki Kaisha Device and method for determining deterioration of secondary battery
CN111919329A (en) * 2018-04-06 2020-11-10 株式会社日立制作所 Electricity storage system
CN111919329B (en) * 2018-04-06 2024-04-02 株式会社日立制作所 Power storage system
WO2023031990A1 (en) 2021-08-30 2023-03-09 TeraWatt Technology株式会社 Deterioration state estimation device, deterioration state estimation method, and program
KR20240027757A (en) 2021-08-30 2024-03-04 테라와트 테크놀로지 가부시키가이샤 Deterioration state estimation device, deterioration state estimation method and program

Also Published As

Publication number Publication date
JP3237229B2 (en) 2001-12-10

Similar Documents

Publication Publication Date Title
JP5520580B2 (en) Storage battery cell short-circuit detection method and detection device
US6469512B2 (en) System and method for determining battery state-of-health
US6157169A (en) Monitoring technique for accurately determining residual capacity of a battery
CN101558320B (en) Secondary battery deterioration judging device and backup power supply
EP2811312B1 (en) Battery state detection device
EP1835297B1 (en) A method and device for determining characteristics of an unknown battery
EP2728368B1 (en) Condition estimation device and method for battery
EP2798693B1 (en) Method and system for controlling energy storage device
US9112371B2 (en) Refresh charging method for an assembled battery constituted from a plurality of lead-acid storage batteries and charging apparatus
JP2007309839A (en) Battery pack condition measuring device, degradation of battery pack discrimination method and program for the same
JP7145865B2 (en) Rechargeable battery short-circuit prediction device and rechargeable battery short-circuit prediction method
EP3913726B1 (en) Soh/soc detecting device for power storage element, and power storage element managing unit
JP2007311255A (en) Battery pack status measuring device, battery pack deterioration determining method, and battery pack deterioration determining program
JPH08140270A (en) Method of measuring parameter of secondary cell, method of controlling charging/discharging of secondary cell by using the parameter measuring method, method of predicting life of secondary cell by using the parameter measuring method, device for controlling charging/discharging of secondary cell, and power storage device using the charging/discharging controlling device
US10444296B2 (en) Control device, control method, and recording medium
JP2012013472A (en) Method for estimating deterioration in power storage means, power source device, and railway vehicle
JP2005331482A (en) Remaining capacity operational equipment for electricity accumulation device
JP3195130B2 (en) Battery cell power failure detection device
JPH0689745A (en) Secondary battery system
US20240044996A1 (en) Systems, methods, and devices for power rating estimation in energy storage systems
KR100984556B1 (en) A bettery restoration unit and restoration method
JP2007163145A (en) Discharge time calculation device and discharge time calculation method
US20180034113A1 (en) Estimation of cell voltage excursion in the presence of battery pack sensing faults
JPH10260236A (en) Method for monitoring remaining capacity of secondary battery
JPH0973923A (en) Deterioration judging method for nickel battery and deterioration state detecting circuit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071005

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081005

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091005

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091005

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees