JPH0689711A - Sealed alkaline storabe battery - Google Patents

Sealed alkaline storabe battery

Info

Publication number
JPH0689711A
JPH0689711A JP4263150A JP26315092A JPH0689711A JP H0689711 A JPH0689711 A JP H0689711A JP 4263150 A JP4263150 A JP 4263150A JP 26315092 A JP26315092 A JP 26315092A JP H0689711 A JPH0689711 A JP H0689711A
Authority
JP
Japan
Prior art keywords
battery
negative electrode
storage battery
sealed alkaline
alkaline storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4263150A
Other languages
Japanese (ja)
Inventor
Toshio Murata
利雄 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP4263150A priority Critical patent/JPH0689711A/en
Publication of JPH0689711A publication Critical patent/JPH0689711A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Abstract

PURPOSE:To provide a sealed alkaline storage battery whose internal resistance is free from risk of rising excessively and whose range of electrolyte having a high oxygen gas absorbing performance at the negative electrode is much larger than a conventional sealed alkaline storage battery. CONSTITUTION:A sealed alkaline storage battery includes a separator consisting of nonwoven cloth wherein the fibers at the surface confronting the negative electrode are thicker than the fibers situated inside.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水酸化カリウムや水酸
化ナトリウムの水溶液を電解液に用い、水酸化ニッケ
ル、酸化第1銀、酸化第2銀などを正極の主活物質に用
い、カドミウム、水素吸蔵合金、亜鉛などを負極の主活
物質に用いる蓄電池に用いらる密閉形アルカリ蓄電池に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses an aqueous solution of potassium hydroxide or sodium hydroxide as an electrolytic solution, nickel hydroxide, silver (I) oxide, silver (II) oxide, etc. as the main active material of the positive electrode, and uses cadmium. The present invention relates to a sealed alkaline storage battery used as a storage battery using a hydrogen storage alloy, zinc or the like as a main active material of a negative electrode.

【0002】[0002]

【従来の技術】密閉型のアルカリ蓄電池では、電解液量
を少なくし、セパレータには、不織布を使用する。そし
て、負極の未充電活物質の容量を正極の未充電活物質の
容量よりも大きくして、電池の充電末期に、正極の充電
が負極の充電よりも先に終わって、正極から酸素ガスが
発生するように電池を構成する。このようにすることに
よって、充電末期に正極から発生する酸素ガスは、不織
布製セパレータの繊維間の孔部を通過して負極に到達
し、負極の表面で電気化学的に還元されて消費され、電
解液へと戻される。このようにして、ガスの蓄積を防い
で密閉電池内の内圧の著しい上昇を防止するとともに、
電解液の減少を防止している。このような電池では、セ
パレータの繊維間に保持されたアルカリ電解液が正負極
間のイオン伝導を担っている。
2. Description of the Related Art In a sealed alkaline storage battery, the amount of electrolyte is reduced and a non-woven fabric is used as a separator. Then, the capacity of the uncharged active material of the negative electrode is made larger than the capacity of the uncharged active material of the positive electrode, and at the end of charging of the battery, charging of the positive electrode ends before charging of the negative electrode, and oxygen gas is discharged from the positive electrode. Configure the battery to generate. By doing so, the oxygen gas generated from the positive electrode at the end of charging reaches the negative electrode through the pores between the fibers of the nonwoven fabric separator, is electrochemically reduced and consumed on the surface of the negative electrode, It is returned to the electrolyte. In this way, the accumulation of gas is prevented and the internal pressure in the sealed battery is prevented from rising significantly,
It prevents the electrolyte from decreasing. In such a battery, the alkaline electrolyte held between the fibers of the separator is responsible for ionic conduction between the positive and negative electrodes.

【0003】[0003]

【発明が解決しようとする課題】上記のように、従来の
アルカリ蓄電池では、電解液量を少なくすると、負極に
おける酸素ガス吸収性能が向上して、電池の内圧が低下
する。そして、電池を短時間に充電しようとして大きい
電流で充電すると、過充電時の酸素ガスの発生速度が大
きくなるので、電池内圧の上昇を防ぐためには、電解液
量をできるだけ少なくして、酸素ガス吸収性能を向上す
る必要がある。
As described above, in the conventional alkaline storage battery, when the amount of the electrolytic solution is reduced, the oxygen gas absorption performance of the negative electrode is improved and the internal pressure of the battery is lowered. When the battery is charged with a large current in a short time, the rate of generation of oxygen gas during overcharge increases, so in order to prevent the internal pressure of the battery from rising, the amount of electrolyte should be reduced as much as possible. It is necessary to improve the absorption performance.

【0004】一方、電解液量を少なくすると、電池の内
部抵抗が高くなって、高率放電時の分極が大きくなる。
On the other hand, when the amount of the electrolytic solution is reduced, the internal resistance of the battery increases and the polarization at the time of high rate discharge increases.

【0005】そこで、内部抵抗が著しく上昇することな
く、しかも、負極における酸素ガス吸収性能が高い電解
液の範囲を選択する。
Therefore, the range of the electrolytic solution is selected so that the internal resistance does not significantly increase and the oxygen gas absorption performance in the negative electrode is high.

【0006】ところが、従来の密閉形アルカリ蓄電池で
は、充電電流が大きく、しかも放電電流が大きい場合
に、内圧上昇を抑制してしかも放電時の分極を小さくす
るための電解液量の範囲が著しく狭いという不都合があ
った。このような場合には、電池の製造工程のばらつき
などによって、電池の内圧上昇が高い電池や、高率放電
時の分極が大きい電池が発生する危険が大きくなる。
However, in the conventional sealed alkaline storage battery, when the charging current is large and the discharging current is large, the range of the amount of the electrolytic solution for suppressing the increase of the internal pressure and reducing the polarization during discharging is remarkably narrow. There was an inconvenience. In such a case, due to variations in the manufacturing process of the battery, there is a great risk that a battery having a high internal pressure rise or a battery having a large polarization at the time of high rate discharge is generated.

【0007】そこで、内部抵抗が著しく上昇することな
く、しかも、負極における酸素ガス吸収性能が高い電解
液の範囲が広い密閉形アルカリ蓄電池が望まれていた。
Therefore, there has been a demand for a sealed alkaline storage battery in which the internal resistance does not significantly increase and the range of the electrolyte having a high oxygen gas absorption performance in the negative electrode is wide.

【0008】[0008]

【課題を解決するための手段】本発明では、上述の課題
を解決するために、負極に対向する面の繊維が内部の繊
維よりも太い不織布からなるセパレータを備える密閉形
アルカリ蓄電池を提供する。
In order to solve the above problems, the present invention provides a sealed alkaline storage battery comprising a separator made of a non-woven fabric in which the fibers on the surface facing the negative electrode are thicker than the fibers inside.

【0009】[0009]

【作用】本発明の構成を採用すると、次の作用が得られ
る。
When the configuration of the present invention is adopted, the following action is obtained.

【0010】すなわち、この密閉形アルカリ蓄電池で
は、セパレータの内部の繊維が負極に対向する面の繊維
よりも細いので、セパレータの内部の毛管力が負極に対
向する面の毛管力よりも高くなる。その結果、この電池
のセパレータの電解液は、負極に対向する面よりもセパ
レータの内部に集まる傾向が生じ、セパレータの電解液
量が多くても、負極の表面の電解液量が少なくなり、負
極の表面における酸素ガス吸収性能が向上する。しか
も、電解液量を極端に少なくしないので、内部抵抗の上
昇を招かない。
That is, in this sealed alkaline storage battery, since the fibers inside the separator are thinner than the fibers on the surface facing the negative electrode, the capillary force inside the separator is higher than the capillary force on the surface facing the negative electrode. As a result, the electrolytic solution of the separator of this battery tends to collect inside the separator rather than the surface facing the negative electrode, and even if the amount of the electrolytic solution of the separator is large, the amount of the electrolytic solution on the surface of the negative electrode is small, The oxygen gas absorption performance on the surface of the is improved. Moreover, since the amount of the electrolytic solution is not extremely reduced, the internal resistance is not increased.

【0011】従って、内部抵抗が著しく上昇することな
く、しかも、負極における酸素ガス吸収性能が高い電解
液の範囲が広い密閉形アルカリ蓄電池が得られる
Therefore, it is possible to obtain a sealed alkaline storage battery in which the internal resistance does not remarkably increase and the range of the electrolyte solution having a high oxygen gas absorption performance in the negative electrode is wide.

【0012】[0012]

【実施例】本発明を実施例によって詳しく説明する。 [電池A](本発明品) この電池は、次のようにして製作した。EXAMPLES The present invention will be described in detail with reference to Examples. [Battery A] (Invention Product) This battery was manufactured as follows.

【0013】長さが約4mmで2デニールのポリアミド
繊維からなる目付け重量(単位面積当たりの重量)20
g/m2 の不織布と、メルトブロー法で製作した平均デ
ニールが約0.1のポリアミド繊維からなる目付け重量
40g/m2 の不織布とを貼り合わせて、厚さ0.15
mmで目付け重量が60g/m2 の不織布からなるセパ
レータを製作した。
A basis weight (weight per unit area) of a polyamide fiber having a length of about 4 mm and a thickness of 2 denier 20
A non-woven fabric of g / m 2 and a non-woven fabric having a basis weight of 40 g / m 2 made of a polyamide fiber having an average denier of about 0.1 produced by the melt-blowing method are attached to each other to give a thickness of 0.15
A separator made of non-woven fabric having a weight per unit area of 60 g / m 2 was manufactured.

【0014】次に、上記のセパレータを用いて、アルカ
リ蓄電池を次のようにして製作した。
Next, using the above separator, an alkaline storage battery was manufactured as follows.

【0015】すなわち、正極および負極に、それぞれ公
知の帯状の焼結式水酸化ニッケル電極および焼結式カド
ミウム電極を1枚ずつ用い、これらの電極の間に上記の
セパレータ1枚を介在させて、このセパレータを引っ張
りながら捲回した。セパレータは、2デニールの繊維が
ある面を負極に対向させ、メルトブロー法で製作した細
い繊維がある面を正極に対向させた。
That is, one known strip-shaped sintered nickel hydroxide electrode and one known cadmium sintered electrode are used as the positive electrode and the negative electrode, respectively, and one separator is interposed between these electrodes, The separator was wound while being pulled. In the separator, the surface having the 2-denier fiber was opposed to the negative electrode, and the surface having the thin fiber produced by the melt-blowing method was opposed to the positive electrode.

【0016】そして、これを円筒形の金属ケースに収納
し、水酸化カリウムを主体とするアルカリ電解液を注入
し、安全弁付きの電池蓋を取り付けて封口し、公称容量
が0.7Ah の単3形の密閉形ニッケルカドミウム電池を製
作した。
Then, this is housed in a cylindrical metal case, an alkaline electrolyte mainly composed of potassium hydroxide is injected, a battery lid with a safety valve is attached and sealed, and an AA type with a nominal capacity of 0.7 Ah. A sealed nickel-cadmium battery was manufactured.

【0017】電解液の量は、1.2ml、1.3ml、
1.4ml、1.5ml、1.6mlおよび1.7ml
のものを製作した。 [電池B](比較例) この電池では、電池Aと同じセパレータを、太い繊維の
面を負極に対向させる代わりに正極に対向させ、細い繊
維を正極に対向させる代わりに負極に対向させた。そし
て、そのほかの構成は電池Aと同じにした。 [電池C](比較例) この電池では、電池Aのセパレータの代わりに、長さが
約4mmで2デニールのポリアミド繊維からなる厚さが
0.15mmで目付け重量60g/m2 の不織布をセパ
レータに用い、そのほかの構成は電池Aと同じにした。 [電池D](比較例) この電池では、電池Aのセパレータの代わりに、メルト
ブロー法で製作した平均デニールが約0.1のポリアミ
ド繊維からなる厚さが0.15mmで目付け重量60g
/m2 の不織布をセパレータに用い、そのほかの構成は
電池Aと同じにした。 <実験>上記の4種類の電池を、25℃において0.7A
(1時間率)の電流で充電し、1.5時間目の電池の内
圧を測定した。その内圧と電解液量との関係を図1に示
す。
The amount of electrolyte is 1.2 ml, 1.3 ml,
1.4 ml, 1.5 ml, 1.6 ml and 1.7 ml
I made one. [Battery B] (Comparative Example) In this battery, the same separator as in the battery A was made to face the positive electrode instead of facing the thick fiber surface to the negative electrode, and the thin fiber was made to face the negative electrode instead of facing the positive electrode. The other structure was the same as that of the battery A. [Battery C] (Comparative Example) In this battery, a non-woven fabric having a length of about 4 mm and a polyamide fiber of 2 denier having a thickness of 0.15 mm and a basis weight of 60 g / m 2 was used instead of the separator of the battery A. Other configurations were the same as those of Battery A. [Battery D] (Comparative Example) In this battery, instead of the separator of the battery A, a thickness of 0.15 mm made of a polyamide fiber having an average denier of about 0.1 manufactured by a melt-blowing method and a basis weight of 60 g
A non-woven fabric of / m 2 was used as the separator, and other configurations were the same as those of the battery A. <Experiment> The above four types of batteries were 0.7A at 25 ° C.
The battery was charged with a current of (1 hour rate), and the internal pressure of the battery was measured after 1.5 hours. The relationship between the internal pressure and the amount of electrolytic solution is shown in FIG.

【0018】図1から次のことがわかる。The following can be seen from FIG.

【0019】すなわち、比較例の電池(B)、(C)、
および(D)は、電解液量が約1.51mlから約1.
53mlを越えると内圧が2気圧を越えるのに対して、
本発明の電池(A)では、電解液量が1.7mlという
大きい値になって、ようやく内圧が2気圧に到達する。
従って、本発明の電池は、電解液量が多くても酸素ガス
吸収速度が大きいといえる。
That is, the batteries (B), (C) of the comparative example,
And (D), the amount of electrolyte is about 1.51 ml to about 1.
While the internal pressure exceeds 2 atm over 53 ml,
In the battery (A) of the present invention, the amount of electrolyte becomes a large value of 1.7 ml, and the internal pressure finally reaches 2 atm.
Therefore, it can be said that the battery of the present invention has a high oxygen gas absorption rate even when the amount of the electrolyte is large.

【0020】また、これらの電池を、3.5A(1/5時間
率)の電流で端子電圧が 0.8Vになるまで放電し、
6分目の端子電圧を測定した。その6分目の端子電圧と
電解液量との関係を図2に示す。
Further, these batteries were discharged with a current of 3.5 A (1/5 hour rate) until the terminal voltage became 0.8 V,
The terminal voltage at the 6th minute was measured. The relationship between the terminal voltage and the amount of electrolytic solution at the 6th minute is shown in FIG.

【0021】図2から次のことがわかる。The following can be seen from FIG.

【0022】すなわち、どの電池も、電解液量が1.4
mlよりも少なくなると、放電電圧の低下が顕著にな
る。
That is, each battery has an electrolytic solution amount of 1.4.
When it is less than ml, the discharge voltage is significantly reduced.

【0023】図1と図2とを合わせると、次のことがい
える。すなわち、急速充電時の内圧が2気圧よりも低く
て、しかも高率放電時の電圧低下が顕著でない電解液量
の範囲は、本発明の電池(A)では、1.4mlから
1.7mlの広い範囲であるのに対して、比較例の電池
(B)、(C)、および(D)では、1.4mlから約
1.5ml付近の極めて狭い範囲に過ぎない。
By combining FIG. 1 and FIG. 2, the following can be said. That is, in the battery (A) of the present invention, the range of the amount of the electrolytic solution in which the internal pressure at the time of rapid charging is lower than 2 atm and the voltage drop at the time of high rate discharging is not significant is 1.4 to 1.7 ml. In contrast to the wide range, the batteries (B), (C), and (D) of the comparative examples have an extremely narrow range from 1.4 ml to about 1.5 ml.

【0024】従って、本発明の密閉形アルカリ蓄電池
は、内部抵抗が著しく上昇することなく、しかも、負極
における酸素ガス吸収性能が高い電解液の範囲が、従来
の密閉形アルカリ蓄電池と比較して、著しく広いといえ
る。
Therefore, in the sealed alkaline storage battery of the present invention, the internal resistance does not remarkably increase, and the range of the electrolyte having a high oxygen gas absorption performance in the negative electrode is higher than that of the conventional sealed alkaline storage battery. It can be said that it is extremely wide.

【0025】なお、上記の実施例では、アルカリ蓄電池
としてニッケル−カドミウム電池の場合について説明し
たが、水酸化カリウムや水酸化ナトリウムの水溶液を電
解液に用い、水酸化ニッケル、酸化第1銀、酸化第2銀
などを正極の主活物質に用い、カドミウム、亜鉛、水素
吸蔵合金などを負極の主活物質に用いる蓄電池の場合に
も、同様の作用効果が得られる。
In the above embodiment, the nickel-cadmium battery was used as the alkaline storage battery. However, an aqueous solution of potassium hydroxide or sodium hydroxide was used as the electrolytic solution to obtain nickel hydroxide, silver (I) oxide, and oxide. Similar effects can be obtained also in the case of a storage battery in which secondary silver or the like is used as the main active material of the positive electrode and cadmium, zinc, hydrogen storage alloy or the like is used as the main active material of the negative electrode.

【0026】また、上記の実施例では、太い繊維と細い
繊維とのデニール比が約20のものを用いる場合につい
て説明したが、デニール比が約4以上であれば、上記実
施例と同様の作用効果が得られる。そして、上記の実施
例では、太い繊維の不織布と細い繊維の不織布との目付
け重量比が0.5の場合について説明したが、その目つ
け重量比が0.05以上2.0以下の範囲であれば、上
記実施例と同様の作用効果が得られる。
In the above embodiment, the case where the denier ratio of the thick fiber and the thin fiber is about 20 is used. However, if the denier ratio is about 4 or more, the same operation as the above embodiment is performed. The effect is obtained. In the above example, the case where the weight weight ratio of the thick fiber non-woven fabric and the thin fiber non-woven fabric is 0.5 has been described, but the weight weight ratio is in the range of 0.05 or more and 2.0 or less. If so, the same effects as those of the above-described embodiment can be obtained.

【0027】さらに、上記の実施例では、ポリアミド製
の不織布をセパレータに用いる場合について説明した
が、そのほかに、たとえばポリオレフィンやポリスチレ
ンをスルフォン化したり、ポリオレフィンをフッ素処理
したり、あるいはポリオレフィンの側鎖に親水基を結合
させたものなどのように親水性かつ耐アルカリ性の繊維
からなる不織布を用いる場合にも、繊維系の構成が上記
のようであれば、上記の実施例と同様の作用効果が得ら
れる。
Further, in the above-mentioned embodiment, the case where the polyamide non-woven fabric is used for the separator has been described. In addition to this, for example, polyolefin or polystyrene is sulfonated, polyolefin is fluorinated, or the side chain of the polyolefin is used. Even when using a non-woven fabric made of hydrophilic and alkali-resistant fibers such as those having a hydrophilic group bonded, if the fiber-based structure is as described above, the same effect as in the above-mentioned examples can be obtained. To be

【0028】[0028]

【発明の効果】本発明の構成を用いると、内部抵抗が著
しく上昇することなく、しかも、負極における酸素ガス
吸収性能が高い電解液の範囲が、従来の密閉形アルカリ
蓄電池と比較して、著しく広い密閉形アルカリ蓄電池を
提供することができる。
EFFECTS OF THE INVENTION By using the constitution of the present invention, the range of the electrolyte having a high oxygen gas absorption performance in the negative electrode is remarkably higher than that of the conventional sealed alkaline storage battery without the internal resistance being remarkably increased. A wide sealed alkaline storage battery can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】1時間率の電流で1.5時間充電した時の電池
の内圧と電解液量との関係をあらわす図。
FIG. 1 is a diagram showing the relationship between the internal pressure of a battery and the amount of electrolyte when it is charged for 1.5 hours at a current of 1 hour rate.

【図2】1/5時間率の電流で放電した6分目の端子電
圧と電解液量との関係をあらわす図。
FIG. 2 is a graph showing the relationship between the terminal voltage and the amount of electrolytic solution at the 6th minute after discharging at a current of 1/5 hour rate.

【符号の説明】[Explanation of symbols]

(A) 本発明の電池 (B)、(C)、(D) 比較例の電池 (A) Battery of the present invention (B), (C), (D) Battery of Comparative Example

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】負極に対向する面の繊維が内部の繊維より
も太い不織布からなるセパレータを備えることを特徴と
する密閉形アルカリ蓄電池。
1. A sealed alkaline storage battery comprising a separator made of a non-woven fabric in which the fibers on the surface facing the negative electrode are thicker than the fibers inside.
JP4263150A 1992-09-04 1992-09-04 Sealed alkaline storabe battery Pending JPH0689711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4263150A JPH0689711A (en) 1992-09-04 1992-09-04 Sealed alkaline storabe battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4263150A JPH0689711A (en) 1992-09-04 1992-09-04 Sealed alkaline storabe battery

Publications (1)

Publication Number Publication Date
JPH0689711A true JPH0689711A (en) 1994-03-29

Family

ID=17385503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4263150A Pending JPH0689711A (en) 1992-09-04 1992-09-04 Sealed alkaline storabe battery

Country Status (1)

Country Link
JP (1) JPH0689711A (en)

Similar Documents

Publication Publication Date Title
CA1060949A (en) Rechargeable nickel-zinc battery
JP3287367B2 (en) Sealed nickel zinc battery
JPH01187760A (en) Cylindrical alkaline zinc storage battery
JPS62291871A (en) Enclosed type nickel-cadmium storage battery
JPH0689711A (en) Sealed alkaline storabe battery
JP2917702B2 (en) Sealed nickel-hydrogen battery
JP3418721B2 (en) Sealed nickel / metal hydride storage battery
JPS63155552A (en) Enclosed type nickel-cadmium storage battery
JPH0787102B2 (en) Sealed nickel-zinc battery
JP2884570B2 (en) Sealed alkaline secondary battery
JP3006371B2 (en) Battery
JP3332139B2 (en) Sealed alkaline storage battery
JP2995893B2 (en) Nickel / metal hydride storage battery
JP2734523B2 (en) Battery separator
JPH01100872A (en) Sealed type nickel-zinc cell
JP3558082B2 (en) Nickel-cadmium secondary battery
JP2001283902A (en) Alkaline battery
JPH10106527A (en) Alkaline storate battery
JPS63261670A (en) Alkaline zinc storage battery
JP2802427B2 (en) Sealed alkaline storage battery and method of manufacturing the same
JP2755634B2 (en) Alkaline zinc storage battery
JPH02155159A (en) Alkaline zinc storage battery
JP2564176B2 (en) Cadmium negative electrode plate for sealed alkaline secondary battery and sealed alkaline secondary battery using the negative electrode plate
JPH0562706A (en) Metal oxide-hydrogen storage battery and manufacture thereof
JP2564172B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate