JPH068932B2 - Large aperture zoom lens - Google Patents
Large aperture zoom lensInfo
- Publication number
- JPH068932B2 JPH068932B2 JP59038649A JP3864984A JPH068932B2 JP H068932 B2 JPH068932 B2 JP H068932B2 JP 59038649 A JP59038649 A JP 59038649A JP 3864984 A JP3864984 A JP 3864984A JP H068932 B2 JPH068932 B2 JP H068932B2
- Authority
- JP
- Japan
- Prior art keywords
- lens
- group
- positive
- focal length
- object side
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
- G02B15/144—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
- G02B15/1441—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Description
【発明の詳細な説明】 技術分野 本発明は、撮影用のズームレンズで特に撮像デバイスと
して電子撮像管、固体撮像素子を用いた撮影機用に適し
たコンパクトな大口径ズームレンズに関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zoom lens for photographing, and particularly to a compact large-diameter zoom lens suitable for a photographing device using an electronic image pickup tube or a solid-state image pickup device as an image pickup device.
従来技術 撮像デバイスとして電子撮像管、固体撮像素子を用いた
撮影機用のレンズとしてはほとんどズームレンズが用い
られる。これらのズームレンズはF/2.0以上の明るさ
で、3倍以上の変倍比を有している点では、35mmライカ
サイズフイルム使用のスチールカメラ用レンズに比べる
と優れているが、コンパクト性やコストの点ではあまり
考慮されていなかった。しかし最近では普及型の電子撮
像デバイスを用いた撮影機が出現しはじめ、その光学系
についてもコンパクト性やコスト性等が問われはじめて
いる。したがって前方のレンズ群の径が小さく全長が短
く、構成枚数もこの種のものとしては少ないズームレン
ズの必要性が高まっている。2. Description of the Related Art An electronic image pickup tube is used as an image pickup device, and a zoom lens is almost used as a lens for a photographing device using a solid-state image pickup element. These zoom lenses are brighter than F / 2.0 and have a zoom ratio of 3x or more, which is superior to steel camera lenses that use a 35mm Leica size film, but they are compact and compact. It wasn't considered much in terms of cost. However, recently, a photographing device using a popular electronic image pickup device has begun to appear, and its optical system is also required to be compact and cost effective. Therefore, there is an increasing need for a zoom lens in which the diameter of the front lens group is small, the total length is short, and the number of constituent lenses is small as this type.
この種のレンズ系は、システムの一つのエレメントとし
ての性格が強いので、バックフォーカス長の規制や、消
費電力の少ないオートフォーカスやパワーズームを行な
うための重力規制があるために、通常の第1群によるフ
ォーカスに代えてリアーフォーカスを用いたり、ズーム
時に動かすレンズ群の数を少なくしたり、バックフォー
カスを長くするリレー系を用いるのが好ましい。Since this type of lens system has a strong character as one element of the system, there is a regulation of the back focus length, and a gravity regulation for performing autofocus and power zoom with low power consumption. It is preferable to use rear focus instead of focus by groups, reduce the number of lens groups to be moved during zooming, or use a relay system that lengthens back focus.
F/2.0以上の明るさを有し、3倍以上の変倍比を持つ
撮影用ズームレンズは、多数存在するが、コンパクト性
(全長が短く前玉径が小)、コスト性(特にレンズ構成
枚数)やバックフォーカスを長くする点のすべてを満足
し、しかも将来撮像素子類の画素数増大に十分対応し得
る高性能なズームレンズはまだ知られていない。特にバ
ックフォーカスをズームレンズの最短焦点距離fWと最長
焦点距離fTとの相乗平均fSの0.9倍以上とりながらの高
性能化は試みられていない。There are many zoom lenses for photography that have a brightness of F / 2.0 or more and a zoom ratio of 3 or more, but are compact (the overall length is short and the front lens diameter is small), and the cost is high (especially the lens configuration). A high-performance zoom lens that satisfies all of the requirements for the number of pixels and the length of the back focus and is sufficiently capable of coping with an increase in the number of pixels of image pickup devices in the future has not yet been known. In particular, no attempt has been made to improve the performance while setting the back focus at 0.9 times or more the geometric mean f S of the shortest focal length f W and the longest focal length f T of the zoom lens.
バックフォーカスの長いレンズの必要性はレンズ後端か
ら撮像面の間に諸々の光学部材を挿入する必要性から生
ずるものであるが、画面サイズが小さくなりレンズ系の
焦点距離が短くなるにつれてバックフォーカスfBとfSと
の比を大きくする必要性が増大する。特公昭55−40
852号、特公昭48−32387号等構成枚数が少な
いズームレンズは知られているがこれら従来例はバック
フォーカスが短く又それを長くする考慮も特になされて
いない。The need for a lens with a long back focus arises from the need to insert various optical members between the rear end of the lens and the imaging surface, but as the screen size becomes smaller and the focal length of the lens system becomes shorter, the back focus becomes shorter. The need to increase the ratio of f B to f S increases. Japanese Patent Sho 55-40
No. 852, Japanese Patent Publication No. 48-32387, and other zoom lenses having a small number of constituents are known, but these prior art examples do not take into consideration a short back focus or a long back focus.
又従来例においては、オートフォーカス時も、径が大き
くて重い前方のレンズ群を駆動しながら合焦していた。
これを径が小さくて軽いレンズ群を駆動させて合焦する
リアーフォーカスを採用することによって消費電力の少
ないオートフォーカスが可能になる。この方式を用いた
ズームレンズとして特開昭57−78513号公報に記
載されたものが知られている。しかしこの方式のオート
フォーカスは、前述のようなメリットを有するものであ
るが、実施例1が近距離合焦時の収差変動特に非点収差
の変動が大きく性能上好ましくなく、又実施例2はF/
5.6で暗いレンズである。このようにこの従来例は前述
のようなF/2.0以上でバックフォーカスがfSの0.9倍以
上であるという要件を満足していてしかも近距離合焦時
の収差変動特に球面収差,コマ収差の変動を小さくする
ための一定の条件を満たしていない。Further, in the conventional example, even during autofocusing, focusing is performed while driving the front lens group having a large diameter and heavy weight.
By adopting a rear focus that drives a lens group that has a small diameter and is light to focus on it, autofocus with low power consumption becomes possible. As a zoom lens using this method, the one described in JP-A-57-78513 is known. However, although this type of autofocus has the above-described merits, Example 1 is not preferable in terms of performance due to large fluctuations in aberrations when focusing on a short distance, especially fluctuations in astigmatism, and in Example 2 F /
It is a dark lens at 5.6. As described above, this conventional example satisfies the requirement that the back focus is 0.9 times or more of f S at F / 2.0 or more as described above, and the fluctuation of aberrations at the time of short-distance focusing, particularly spherical aberration and coma aberration, It does not meet certain conditions to reduce fluctuations.
目的 本発明は、全画角が15°〜45°の変倍比3であって
F/2.0クラスの明るく高性能で又全長が短く、バック
フォーカスが長く更にオートフォーカスを採用しても駆
動トルクが小さくてすむリアーフォーカスが可能な大口
径ズームレンズを提供することを目的とするものであ
る。Purpose The present invention has a zoom ratio of 3 in which the total angle of view is 15 ° to 45 °, is bright and high-performance in the F / 2.0 class, has a short overall length, has a long back focus, and has a driving torque even when autofocus is adopted. It is an object of the present invention to provide a large-aperture zoom lens capable of rear focusing with a small size.
概要 本発明のズームレンズは前記の目的を達成するために、
第1図に示すように物体側から順に、正の焦点距離を有
する第1群と、いずれも負の焦点距離を有していて変倍
時にバリエーターの第2群とコンペンセーターの第3群
とから成る変倍系と、リレー系とから構成され、前記リ
レー系が前群と後群とから成っていて、該前群が物体側
から順に、正レンズと、正レンズと、両凹レンズと、正
レンズの4枚から成り、前記後群が2枚の正レンズから
成り、前記第1群は固定し前記リレー系の後群を光軸に
沿って物体側へ繰り出すことにより近距離物体へのフォ
ーカシングを行い、以下の条件を満足するものである。In order to achieve the above-mentioned object, the zoom lens of the present invention comprises:
As shown in FIG. 1, in order from the object side, a first group having a positive focal length, a second group of variators and a third group of compensators having negative focal lengths and having a negative focal length. And a relay system, the relay system is composed of a front group and a rear group, the front group in order from the object side, a positive lens, a positive lens, a biconcave lens, The rear lens group is composed of four positive lenses, and the rear lens group is composed of two positive lens elements. The first lens group is fixed, and the rear lens group of the relay system is extended toward the object side along the optical axis. Focusing is performed and the following conditions are satisfied.
(1)−0.3<fW/fA<0.2 ただし、fWは全系の最短焦点距離、fAは第1群からリレ
ー系の前群までの合成焦点距離である。(1) −0.3 <f W / f A <0.2 where f W is the shortest focal length of the entire system, and f A is the combined focal length from the first group to the front group of the relay system.
本発明のズームレンズにおいて、近距離物点への合焦
を、第1群Iを物体側へ繰り出して行ってもよいがこの
合焦方式では物点が近距離になる程口径食が大きくなり
やすくこれを防ぐためには第1群Iの径を大きくする必
要がある。その上この径が大きくて重い第1群Iを用い
てオートフォーカスを行うとモーターのトルクが大きく
なり、消費電力が多くなりやすい欠点がある。そのため
レンズ径が小さくて軽い後方にあるレンズ群の一部を動
かしてオートフォーカスを行うようにしたものが存在す
る。In the zoom lens of the present invention, focusing on a short-distance object point may be performed by moving the first group I toward the object side. However, in this focusing method, vignetting increases as the object point approaches a closer distance. In order to easily prevent this, it is necessary to increase the diameter of the first group I. In addition, when autofocusing is performed using the first group I having a large diameter and a large weight, the torque of the motor increases, and power consumption tends to increase. For this reason, there is a lens having a small lens diameter and a part of a light rear lens group that is moved to perform autofocus.
この場合、リレー系の前群IVa,後群IVbの間の比較的
大きな空気間隔を用い後群IVbを光軸に沿って物体側へ
繰り出すことにより合焦を行うことが出来る。しかしな
がらこの合焦方式は、近距離物点への合焦時における収
差変動が大きくなる傾向があり特に本発明のようにF/
2.0よりも明るいズームレンズの場合はこの合焦方式は
適用しにくい。In this case, focusing can be performed by moving the rear group IVb toward the object side along the optical axis by using a relatively large air space between the front group IVa and the rear group IVb of the relay system. However, this focusing method tends to have a large variation in aberration when focusing on an object point at a short distance, and in particular, as in the present invention, F /
This focusing method is difficult to apply to zoom lenses that are brighter than 2.0.
前記の合焦方式を適用し得るように本発明のレンズ系に
おいては第1群Iからリレー系の前群IVaまでの系(図
面にAにて示す系)をほぼアフォーカルになるように構
成してある。そしてバックフォーカスを0.9fSよりも長
くすると云う本発明の目的の一つを満足することを考え
合わせた場合、前記の系A(第1群Iからリレー系の前
群IVaまでの系)の合成焦点距離fAが前記条件(1)を満
足するようにしなければならない。In the lens system of the present invention, the system from the first group I to the front group IVa of the relay system (system shown by A in the drawing) is configured to be substantially afocal so that the above focusing method can be applied. I am doing it. In consideration of satisfying one of the objects of the present invention that the back focus is longer than 0.9 f S , the system A (the system from the first group I to the front group IVa of the relay system) described above is considered. The combined focal length f A must satisfy the above condition (1).
この条件(1)の下限を越えると近距離物点にフォーカス
した時に球面収差が補正過剰になりやすく、上限を越え
ると球面収差が補正不足になりやすいと同時にバックフ
ォーカスを0.9fS以上にすることが困難になる。If the lower limit of this condition (1) is exceeded, spherical aberration tends to be overcorrected when focusing on a near object point, and if it exceeds the upper limit, spherical aberration is likely to be undercorrected and the back focus is set to 0.9 f S or more. Becomes difficult.
またズームレンズの焦点距離がfSの時のアフォーカル系
の倍率は0.9倍近辺であることが好ましい。更に近距離
物点に合焦した時の非点収差の変動を小さくするために
はリレー系の後群IVbの物体側の正レンズ成分を瞳に対
してコンセントリックにすることが望ましいので、この
レンズ成分の像側に強い曲率の凸面を設けている。この
ことはF/2.0よりも明るい大口径ズームレンズを得る
ためには、球面収差の補正にとっても有利である。又後
群IVbの像側の正レンズ成分の物体側の面に像側よりも
明らかに強い曲率である凸面をもたせることも球面収差
の補正にとって有利である。The magnification of the afocal system when the focal length of the zoom lens is f S is preferably around 0.9. Further, in order to reduce the variation of astigmatism when focusing on an object point at a short distance, it is desirable to make the positive lens component on the object side of the rear lens group IVb of the relay system concentric with respect to the pupil. A convex surface having a strong curvature is provided on the image side of the lens component. This is also advantageous for correction of spherical aberration in order to obtain a large-diameter zoom lens brighter than F / 2.0. It is also advantageous for correction of spherical aberration that the object side surface of the positive lens component on the image side of the rear group IVb has a convex surface having a curvature which is obviously stronger than that on the image side.
又本発明の目的の一つであるバックフォーカスを長くす
るためにリレー群の前群IVa中に比較的強いパワーの負
レンズ成分を含むようにし、又その後群IVbを2枚の正
レンズにて構成した。更にリレー系の前群はF/2.0と
明るいレンズ系にしても球面収差やコマ収差を良好に補
正するのに必要十分な四つの成分にて構成した。又バッ
クフォーカスを長くすることと収差を良好に補正するこ
ととを合わせ考えると、前記の前群IVaと後群IVbとの
間の空気間隔を少し大きめにした方が好ましい。更にレ
ンズ系の全長も考慮するならば前群IVaのレンズ構成
は、物体側より順に二つの正レンズ成分,負レンズ成
分、正レンズ成分とすることが好ましい。それはバック
フォーカスを長くするためには前群IVaの負レンズ成分
の曲率を強くしなければならず、そのため球面収差やコ
マ収差等の高次の収差が発生しやすくなり、これを防ぐ
ためには負レンズ成分を出来る限り物体側に寄せた方が
良いからである。Further, in order to lengthen the back focus which is one of the objects of the present invention, the front lens group IVa of the relay group is made to include a negative lens component of relatively strong power, and thereafter the lens group IVb is composed of two positive lenses. Configured. Further, the front group of the relay system is composed of four components which are necessary and sufficient to satisfactorily correct spherical aberration and coma even if the lens system is as bright as F / 2.0. Considering both the lengthening of the back focus and the excellent correction of aberrations, it is preferable to make the air space between the front group IVa and the rear group IVb a little larger. Further, if the total length of the lens system is also taken into consideration, it is preferable that the lens configuration of the front lens group IVa has two positive lens components, a negative lens component, and a positive lens component in order from the object side. It is necessary to increase the curvature of the negative lens component of the front lens group IVa in order to lengthen the back focus, so that high-order aberrations such as spherical aberration and coma are likely to occur. This is because it is better to move the lens component as close to the object side as possible.
又前群IVaと後群IVbとの間の空気間隔Dは下記条件
(2)の範囲内に選ぶことが好ましい。The air gap D between the front group IVa and the rear group IVb is preferably selected within the range of the following condition (2).
(2)0.14fIV<D<0.5fIV ただしfIVはリレー系の焦点距離である。(2) 0.14f IV <D <0.5f IV where f IV is the focal length of the relay system.
条件(2)の下限を越えるとリレー系の前群IVaの負レ
ンズ成分の曲率が強くなり球面収差,コマ収差等の高次
の収差が発生しやすくなり、上限を越えるとレンズ系の
全長が長くなりやすい。If the lower limit of condition (2) is exceeded, the curvature of the negative lens component of the front lens group IVa of the relay system will become strong, and higher-order aberrations such as spherical aberration and coma will easily occur. If the upper limit is exceeded, the total length of the lens system will increase. It tends to be long.
更にリレー系の前群IVaの負レンズ成分の後群主点位置
のズームレンズ全系の後側焦点位置からの距離lは、次
の条件(3)を満足することが望ましい。Further, it is desirable that the distance l of the rear lens principal point position of the negative lens component of the front lens group IVa of the relay system from the rear focus position of the entire zoom lens system satisfies the following condition (3).
(3)1.5fIV<l<2.2fIV ただし、fIVはリレー系IVの焦点距離である。(3) 1.5f IV <l <2.2f IV where f IV is the focal length of the relay IV.
この条件(3)の下限を越えると前群IVaの負レンズ成
分の曲率が強くなり球面収差やコマ収差等の高次の収差
が発生しやすくなる。又逆に上限を越えるとレンズ系の
全長が長くなりやすい。When the value goes below the lower limit of the condition (3), the curvature of the negative lens component of the front lens group IVa becomes strong, and higher-order aberrations such as spherical aberration and coma are likely to occur. On the contrary, if the upper limit is exceeded, the total length of the lens system tends to be long.
本発明は、将来を見込んで現状の電子撮像素子にとって
余りある程の高性能なズームレンズを提供することを目
的としている。そのために本発明のズームレンズは、第
1群を物体側から順に負のメニスカスレンズと両凸レン
ズを接合した正レンズ成分と、単レンズの正メニスカス
レンズ成分の2群3枚構成とし、第2群IIを単レンズの
負メニスカス成分と両凸レンズと正レンズを接合した負
レンズ成分の2群3枚構成とし、第3群IIIを負レンズ
成分一つを含む構成とした。又第4群の前群IVaとして
は正レンズ,正レンズ,負レンズ,正レンズの4群4枚
構成でそれぞれ空気間隔をできる限り小さく配置し、後
群IVbはこの前群IVaより比較的大きな空気間隔をおい
て配置された2枚の正レンズにて構成した。そして更に
次に示す条件(4)乃至条件(13)を満足するようにした。An object of the present invention is to provide a high-performance zoom lens that has a surplus for current electronic image pickup devices in view of the future. Therefore, in the zoom lens according to the present invention, the first group is composed of a positive lens component in which a negative meniscus lens and a biconvex lens are cemented in order from the object side, and a positive meniscus lens component of a single lens. II is composed of a negative meniscus component of a single lens and a negative lens component in which a biconvex lens and a positive lens are cemented, and the third lens group III is configured to include one negative lens component. The front lens group IVa of the fourth lens group is composed of a positive lens element, a positive lens element, a negative lens element and a positive lens element and has a four-element four-lens element, and the air gap between them is as small as possible. It is composed of two positive lenses arranged with an air gap. Further, the following conditions (4) to (13) are satisfied.
(4) 0.5fS<fIVa<1.6fS (5) 0.42fS<|fIVan|<0.64fS (6) 2.5fW<fI<3.5fW (7) -1.2fW<fII<-0.8fW (8) 1.7<n4 (9) 0.05<n6−n5 (10) 1.6<n5 (11) 13<ν5−ν6 (12) 1.78<nIVan (13) νIVap<νIVbp ただしfIVaはリレー系の前群の焦点距離、fIVanはリレ
ー系の前群の負レンズの焦点距離、fIは第1群の焦点
距離、fIIは第2群の焦点距離、n4は第2群の負のメ
ニスカスレンズの屈折率、n5,ν5は第2群の両凹レ
ンズの屈折率、およびアツベ数、n6,ν6は第2群の
正レンズの屈折率およびアツベ数、nIVanはリレー系の
前群の負レンズの屈折率、νIVapはリレー系の前群の正
レンズのアツベ数の平均値、νIVbpはリレー系の後群の
正レンズのアツベ数の平均値である。(4) 0.5f S <f IVa <1.6f S (5) 0.42f S <| f IVan | <0.64f S (6) 2.5f W <f I <3.5f W (7) -1.2f W <f II <-0.8f W (8) 1.7 <n 4 (9) 0.05 <n 6 −n 5 (10) 1.6 <n 5 (11) 13 <ν 5 −ν 6 (12) 1.78 <n IVan (13) ν IVap <ν IVbp where f IVa is the focal length of the front lens group of the relay system, f IVan is the focal length of the negative lens of the front lens group of the relay system, f I is the focal length of the first lens group, and f II is the second lens group. Focal length, n 4 is the refractive index of the negative meniscus lens of the second group, n 5 and ν 5 are the refractive index of the biconcave lens of the second group, and the Atsube number, n 6 and ν 6 are the positive lenses of the second group the refractive index and Abbe's number, n Ivan the refractive index of the negative lens of the front group of the relay system, ν IVap the Abbe's number of the mean value of the positive lens of the front group of the relay system, ν IVbp the positive group of the relay system It is the average value of the Abbe number of the lens.
次に上記条件(4)乃至条件(13)の内容について詳細に述
べる。Next, the contents of the above conditions (4) to (13) will be described in detail.
条件(4),(5)は、バックフォーカスを長くし又レンズ系
の全長を短くしながら各収差が良好になるようにリレー
系の前群IVaと前群IVa中の負のレンズ成分の焦点距離
を設定した条件である。これら条件のうち条件(4)の上
限を越えるとリレー系の全長が長くなり、下限を越える
とバックフォーカスが短くなりやすい。又条件(5)の上
限を越えるとバックフォーカスが短くなり、下限を越え
ると高次の収差が発生しやすく収差補正が困難になる。Conditions (4) and (5) are the negative lens component in the front group IV a and the front group IV a of the relay system so that the back focus is lengthened and the total length of the lens system is shortened so that each aberration becomes good. This is a condition for setting the focal length of. If the upper limit of condition (4) is exceeded, the total length of the relay system will become long, and if the lower limit is exceeded, the back focus will tend to be short. If the upper limit of the condition (5) is exceeded, the back focus becomes short, and if the lower limit of the condition (5) is exceeded, higher-order aberrations are likely to occur and it becomes difficult to correct the aberration.
条件(6)は、第1群Iの焦点距離を規定するものであ
る。この条件の上限を越えると変倍系の全長が長くなり
又下限を越えると第1群Iの各面の曲率半径が小さくな
り必要とするレンズ径を得るためには肉厚が大になり好
ましくない。又収差も悪化し補正が困難になる。The condition (6) defines the focal length of the first lens group I. If the upper limit of this condition is exceeded, the overall length of the variable power system becomes long, and if the lower limit is exceeded, the radius of curvature of each surface of the first lens group I becomes small, and the wall thickness becomes large in order to obtain the required lens diameter. Absent. In addition, the aberration is deteriorated and the correction becomes difficult.
条件(7)は第2群IIの焦点距離を規定するものであっ
て、その上限を越えると変倍系の全長を短くする上では
有利であるが、ズーミングの時の収差変動が大きくなり
すぎる傾向になる。又下限を越えると変倍系の全長が長
くなる。The condition (7) defines the focal length of the second lens group II, and if it exceeds the upper limit, it is advantageous for shortening the total length of the zooming system, but the aberration fluctuation during zooming becomes too large. Become a trend. If the lower limit is exceeded, the total length of the variable power system becomes long.
又第1群I,第2群IIのパワーが強くなりすぎると両群
間での軸外光線の光軸とのなす角が大きくなり、それら
の間隔を相当縮めない限り入射瞳が像側へはなれそのた
め前玉径を大きくせざるえを得なくなる。Further, if the powers of the first group I and the second group II become too strong, the angle formed between the two groups and the optical axis of the off-axis ray becomes large, and the entrance pupil is directed toward the image side unless the distance between them is considerably reduced. As a result, the diameter of the front lens must be increased.
条件(8)乃至条件(11)は、第2群IIのレンズの硝材を規
定している。The conditions (8) to (11) define the glass material of the lens of the second lens group II.
条件(8)乃至条件(10)の下限を越えた場合いずれもズー
ム時の収差変動が大きくなりやすく好ましくない。If the lower limits of the conditions (8) to (10) are exceeded, the aberration variation during zooming tends to be large, which is not preferable.
条件(11)の下限を越えるとズーム時の色収差の変動が大
きくなる。If the lower limit of condition (11) is exceeded, the variation of chromatic aberration during zooming will increase.
条件(12),(13)は、リレー系(第4群)のレンズの硝材
の選択に関する条件である。Conditions (12) and (13) are conditions regarding selection of the glass material of the lens of the relay system (fourth group).
このズームレンズにおいて高次の収差係数の最も大きな
面は、このリレー系の負レンズの物体側の面である。そ
のためこの面の曲率をゆるくしながら所定のパワーを得
るためにはレンズの屈折率を高くする必要がある。その
ためにこのレンズの屈折率nIVanを規定したのが条件(1
2)である。この条件の下限を越えると高次の球面収差が
発生しやすくなる。The surface of the zoom lens having the highest aberration coefficient is the surface of the negative lens of the relay system on the object side. Therefore, it is necessary to increase the refractive index of the lens in order to obtain a predetermined power while loosening the curvature of this surface. As to that defines the refractive index n Ivan of the lens due to the condition (1
2). When the value goes below the lower limit of this condition, high-order spherical aberration is likely to occur.
条件(13)は倍率の色収差を良好に補正するために設けた
ものであって、この条件を満足しないと軸上の色収差は
補正出来ても倍率の色収差は補正不足になる。The condition (13) is provided in order to satisfactorily correct lateral chromatic aberration. If this condition is not satisfied, axial chromatic aberration can be corrected but lateral chromatic aberration will be insufficiently corrected.
実施例 次に以上詳細に説明した本発明の大口径ズームレンズの
各実施例を示す。EXAMPLES Next, examples of the large-diameter zoom lens of the present invention described in detail above will be shown.
実施例1 f=14〜24.25〜42 r1=84.1276 d1=1.1600 n1=1.80518 ν1=25.43 r2=29.0902 d2=7.3000 n2=1.62012 ν2=49.66 r3=-273.1915 d3=0.1700 r4=28.7778 d4=5.6000 n3=1.62012 ν3=49.66 r5=203.0683 d5=0.6000 r6=29.7145 d6=1.0400 n4=1.73400 ν4=51.49 r7=11.3398 d7=3.9500 r8=-21.5403 d8=1.0400 n5=1.69350 ν5=53.23 r9=15.9303 d9=3.1000 n6=1.84666 ν6=23.88 r10=1554.6274 d10=12.9984 r11=-14.7944 d11=1.0000 n7=1.69680 ν7=55.52 r12=-36.0319 d12=4.9325 r13=50.3787 d13=2.6753 n8=1.74950 ν8=35.27 r14=-29.8033 d14=0.6469 r15=∞(絞り) d15=2.0000 r16=20.2193 d16=5.3125 n9=1.69350 ν9=53.23 r17=-440.8891 d17=0.8000 r18=-25.3662 d18=1.4008 n10=1.84666 ν10=23.88 r19=18.0976 d19=1.8984 r20=104.9452 d20=3.0000 n11=1.56873 ν11=63.16 r21=-33.8872 d21=6.0137 r22=-1877.6563 d22=3.6497 n12=1.48749 ν12=70.15 r23=-18.1673 d23=0.1342 r24=27.7264 d24=3.3156 n13=1.48749 ν13=70.15 r25=-111.3847 l/fIV=1.642,D/fIV=0.237,fW/fA=-0.221 fIVa/fS=1.186,fIVan/fS=-0.507 fI/fW=2.996,fII/fW=-1.098,n4=1.73400 n6−n5=0.15316,n5=1.69350,ν5−ν6=29.35 nIVan=1.84666,νIVap−νIVbp=-19.597 fB=23.3 実施例2 f=14〜24.25〜42 r1=82.8380 d1=1.1600 n1=1.80518 ν1=25.43 r2=28.9584 d2=7.3000 n2=1.62012 ν2=49.66 r3=-243.9198 d3=0.1700 r4=28.9601 d4=5.6000 n3=1.62374 ν3=47.10 r5=203.8797 d5=0.6000 r6=29.0358 d6=1.0400 n4=1.73400 ν4=51.49 r7=11.4509 d7=3.9500 r8=-21.5434 d8=1.0400 n5=1.69680 ν5=55.52 r9=16.1419 d9=3.1000 n6=1.84666 ν6=23.88 r10=327.0857 d10=12.7201 r11=-15.1829 d11=1.0000 n7=1.69680 ν7=55.52 r12=-38.3036 d12=4.8880 r13=50.2085 d13=2.6726 n8=1.76200 ν8=40.10 r14=-29.8907 d14=0.6433 r15=∞(絞り) d15=2.0000 r16=20.1914 d16=5.5367 n9=1.69680 ν9=55.52 r17=2178.6990 d17=0.8000 r18=-25.1867 d18=1.4025 n10=1.84666 ν10=23.88 r19=18.2541 d19=1.8967 r20=89.3959 d20=3.0000 n11=1.62041 ν11=60.27 r21=-41.7577 d21=6.1391 r22=-2160.7673 d22=3.6490 n12=1.56873 ν12=63.16 r23=-20.1024 d23=0.1342 r24=28.7875 d24=3.3002 n13=1.48749 ν13=-70.15 r25=70.15 l/fIV=1.752,D/fIV=0.258,fW/fA=-0.253 fIVa/fS=1.180,fIVan/fS=-0.508 fI/fW=2.951,fII/fW=-1.068,n4=1.73400 n6−n5=0.14986,n5=1.69680,ν5−ν6=31.64 nIVan=1.84666,νIVap−νIVbp=-14.692 fB=23.3 実施例3 f=14〜24.25〜42 r1=83.0383 d1=1.1600 n1=1.80518 ν1=25.43 r2=29.1400 d2=7.3000 n2=1.62012 ν2=49.66 r3=-253.1450 d3=0.1700 r4=28.6874 d4=5.6000 n3=1.62012 ν3=49.66 r5=210.2929 d5=0.6000 r6=30.3630 d6=1.0400 n4=1.73400 ν4=51.49 r7=11.3638 d7=3.9500 r8=-21.4761 d8=1.0400 n5=1.69350 ν5=53.23 r9=17.0207 d9=3.1000 n6=1.84666 ν6=23.88 r10=1069.1825 d10=13.0418 r11=-14.1675 d11=1.0000 n7=1.69680 ν7=55.52 r12=-36.2700 d12=4.5289 r13=55.6389 d13=2.6729 n8=1.74950 ν8=35.27 r14=-31.9536 d14=0.6353 r15=∞(絞り) d15=2.0000 r16=21.0858 d16=5.0173 n9=1.69350 ν9=53.23 r17=-708.9650 d17=0.8000 r18=-27.0343 d18=1.4021 n10=1.84666 ν10=23.88 r19=19.1950 d19=1.9053 r20=45.3739 d20=3.0000 n11=1.56873 ν11=63.16 r21=-24.8871 d21=6.6760 r22=-119.5541 d22=3.6491 n12=1.48749 ν12=70.15 r23=-20.3750 d23=0.1342 r24=28.5509 d24=3.3004 n13=1.48749 ν13=70.15 r25=144.4908 l/fIV=1.863,D/fIV=0.296,fW/fA=-0.016 fIVa/fS=1.071,fIVan/fS=-0.539 fI/fW=2.939,fII/fW=-1.071,n4=1.73400 n6−n5=0.15316,n5=1.69350,ν5−ν6=29.35 nIVan=1.84666,νIVap−νIVbp=-19.597 fB=23.3 実施例4 f=14〜24.25〜42 r1=82.6129 d1=1.1600 n1=1.80518 ν1=25.43 r2=29.2181 d2=7.3000 n2=1.62012 ν2=49.66 r3=-246.0953 d3=0.1700 r4=28.4664 d4=5.6000 n3=1.62012 ν3=49.66 r5=217.2658 d5=0.6000 r6=34.0022 d6=1.0400 n4=1.73400 ν4=51.49 r7=11.4972 d7=3.9500 r8=-20.9945 d8=1.0400 n5=1.69350 ν5=53.23 r9=16.3829 d9=3.1000 n6=1.84666 ν6=23.88 r10=646.6454 d10=12.8886 r11=-14.2623 d11=1.0000 n7=1.69680 ν7=55.52 r12=-30.9806 d12=4.5295 r13=50.7675 d13=2.6656 n8=1.74950 ν8=35.27 r14=-30.6539 d14=0.5921 r15=∞(絞り) d15=2.0000 r16=19.1840 d16=5.6618 n9=1.69350 ν9=53.23 r17=3649.8366 d17=0.8000 r18=-24.4207 d18=1.4073 n10=1.84666 ν10=23.88 r19=18.4904 d19=3.8044 r20=80.9804 d20=3.0000 n11=1.56873 ν11=63.16 r21=-23.6744 d21=4.3200 r22=-81.0091 d22=3.6442 n12=1.48749 ν12=70.15 r23=-19.6764 d23=0.1342 r24=28.3524 d24=3.3101 n13=1.48749 ν13=70.15 r25=-150.6774 l/fIV=1.771,D/fIV=0.184,fW/fA=-0.010 fIVa/fS=1.095,fIVan/fS=-0.505 fI/fW=2.894,fII/fW=-1.021,n4=1.73400 n6−n5=0.15316,n5=1.69350,ν5−ν6=29.35 nIVan=1.84666,νIVap−νIVbp=-19.597 fB=23.3 ただしr1,r2,・・・はレンズ各面の曲率半径、 d1,d2,・・・は各レンズの肉厚および空気間隔、 n1,n2,・・・は各レンズの屈折率、ν1,ν2,
・・・は各レンズのアツベ数、fは全系の焦点距離、f
Bはバックフォーカスである。Example 1 f = 14 to 24.25 to 42 r 1 = 84.1276 d 1 = 1.1600 n 1 = 1.80518 v 1 = 25.43 r 2 = 29.0902 d 2 = 7.3000 n 2 = 1.62012 v 2 = 49.66 r 3 = -273.1915 d 3 = 0.1700 r 4 = 28.7778 d 4 = 5.6000 n 3 = 1.62012 ν 3 = 49.66 r 5 = 203.0683 d 5 = 0.6000 r 6 = 29.7145 d 6 = 1.0400 n 4 = 1.73400 ν 4 = 51.49 r 7 = 11.3398 d 7 = 3.9500 r 8 = -21.5403 d 8 = 1.0400 n 5 = 1.69350 ν 5 = 53.23 r 9 = 15.9303 d 9 = 3.1000 n 6 = 1.84666 ν 6 = 23.88 r 10 = 1554.6274 d 10 = 12.9984 r 11 = -14.7944 d 11 = 1.0000 n 7 = 1.69680 ν 7 = 55.52 r 12 = -36.0319 d 12 = 4.9325 r 13 = 50.3787 d 13 = 2.6753 n 8 = 1.74950 ν 8 = 35.27 r 14 = -29.8033 d 14 = 0.6469 r 15 = ∞ ( stop) d 15 = 2.0000 r 16 = 20.2193 d 16 = 5.3125 n 9 = 1.69350 ν 9 = 53.2 3 r 17 = -440.8891 d 17 = 0.8000 r 18 = -25.3662 d 18 = 1.4008 n 10 = 1.84666 ν 10 = 23.88 r 19 = 18.0976 d 19 = 1.8984 r 20 = 104.9452 d 20 = 3.0000 n 11 = 1.56873 ν 11 = 63.16 r 21 = -33.8872 d 21 = 6.0137 r 22 = -1877.6563 d 22 = 3.6497 n 12 = 1.48749 v 12 = 70.15 r 23 = -18.1673 d 23 = 0.1342 r 24 = 27.7264 d 24 = 3.315649 n 13 = 13. = 70.15 r 25 = -111.3847 l / f IV = 1.642, D / f IV = 0.237, f W / f A = -0.221 f IVa / f S = 1.186, f IVan / f S = -0.507 f I / f W = 2.996, f II / f W = -1.098, n 4 = 1.73400 n 6 -n 5 = 0.15316, n 5 = 1.69350, ν 5 -ν 6 = 29.35 n IVan = 1.84666, ν IVap -ν IVbp = -19.597 f B = 23.3 Example 2 f = 14 to 24.25 to 42 r 1 = 82.8380 d 1 = 1.1600 n 1 = 1.80518 ν 1 = 25.43 r 2 = 28.9584 d 2 = 7.3000 n 2 = 1.62012 ν 2 = 49.66 r 3 = -243.9198 d 3 = 0.1700 r 4 = 28.9601 d 4 = 5.6000 n 3 = 1.62374 ν 3 = 47.10 r 5 = 203.8797 d 5 = 0.6000 r 6 = 29.0358 d 6 = 1.0400 n 4 = 1.73400 ν 4 = 51.49 r 7 = 11.4509 d 7 = 3.9500 r 8 = -21.5434 d 8 = 1.0400 n 5 = 1.69680 ν 5 = 55.52 r 9 = 16.1419 d 9 = 3.1000 n 6 = 1.84666 ν 6 = 23.88 r 10 = 327.0857 d 10 = 12.7201 r 11 = -15.1829 d 11 = 1.0000 n 7 = 1.69680 ν 7 = 55.52 r 12 = -38.3036 d 12 = 4.8880 r 13 = 50.2085 d 13 = 2.6726 n 8 = 1.76200 ν 8 = 40.10 r 14 = -29.8907 d 14 = 0.6433 r 15 = ∞ (aperture) d 15 = 2.0000 r 16 = 20.1914 d 16 = 5.5367 n 9 = 1.69680 ν 9 = 55.52 r 17 = 2178.6990 d 17 = 0.8000 r 18 = -25.67 18 = 1.4025 n 10 = 1.84666 ν 10 = 23.88 r 19 = 18.2541 d 19 = 1.8967 r 20 = 89.3959 d 20 = 3.0000 n 11 = 1.62041 ν 11 = 60.27 r 21 = -41.7577 d 21 = 6.1391 r 22 = -2160.7673 d 22 = 3.6490 n 12 = 1.56873 ν 12 = 63.16 r 23 = -20.1024 d 23 = 0.1342 r 24 = 28.7875 d 24 = 3.3002 n 13 = 1.48749 ν 13 = -70.15 r 25 = 70.15 l / f IV = 1.752, D / f IV = 0.258, f W / f A = - 0.253 f IVa / f S = 1.180, f IVan / f S = -0.508 f I / f W = 2.951, f II / f W = -1.068, n 4 = 1.73400 n 6 -n 5 = 0.14986, n 5 = 1.69680 , Ν 5 −ν 6 = 31.64 n IVan = 1.84666, ν IVap −ν IVbp = -14.692 f B = 23.3 Example 3 f = 14 to 24.25 to 42 r 1 = 83.0383 d 1 = 1.1600 n 1 = 1.80518 ν 1 = 25.43 r 2 = 29.1400 d 2 = 7.3000 n 2 = 1.62012 ν 2 = 49.66 r 3 = -253.1450 d 3 = 0.1700 r 4 = 28.6874 d 4 = 5.6000 n 3 = 1.6 2012 ν 3 = 49.66 r 5 = 210.2929 d 5 = 0.6000 r 6 = 30.3630 d 6 = 1.0400 n 4 = 1.73400 ν 4 = 51.49 r 7 = 11.3638 d 7 = 3.9500 r 8 = -21.4761 d 8 = 1.0400 n 5 = 1.69350 ν 5 = 53.23 r 9 = 17.0207 d 9 = 3.1000 n 6 = 1.84666 ν 6 = 23.88 r 10 = 1069.1825 d 10 = 13.0418 r 11 = -14.1675 d 11 = 1.0000 n 7 = 1.69680 ν 7 = 55.52 r 12 = -36.2700 d 12 = 4.5289 r 13 = 55.6389 d 13 = 2.6729 n 8 = 1.74950 ν 8 = 35.27 r 14 = -31.9536 d 14 = 0.6353 r 15 = ∞ ( stop) d 15 = 2.0000 r 16 = 21.0858 d 16 = 5.0173 n 9 = 1.69350 ν 9 = 53.23 r 17 = -708.9650 d 17 = 0.8000 r 18 = -27.0343 d 18 = 1.4021 n 10 = 1.84666 ν 10 = 23.88 r 19 = 19.1950 d 19 = 1.9053 r 20 = 45.3739 d 20 = 3.0000 n 11 = 1.56873 ν 11 = 63.16 r 21 = -24.8871 d 21 = 6.6760 r 22 = -119.5541 d 22 = 3.6491 n 12 = 1.48749 ν 12 = 70.15 r 23 = -20.3750 d 23 = 0.1342 r 24 = 28.5509 d 24 = 3.3004 n 13 = 1.48749 ν 13 = 70.15 r 25 = 144.4908 l / f IV = 1.863, D / f IV = 0.296, f W / f A = -0.016 f IVa / f S = 1.071, f IVan / f S = -0.539 f I / f W = 2.939, f II / f W = -1.071, n 4 = 1.73400 n 6 -n 5 = 0.15316, n 5 = 1.69350, ν 5 -ν 6 = 29.35 n IVan = 1.84666, ν IVap −ν IVbp −19.597 f B = 23.3 Implemented example 4 f = 14~24.25~42 r 1 = 82.6129 d 1 = 1.1600 n 1 = 1.80518 ν 1 = 25.43 r 2 = 29.2181 d 2 = 7.3000 n 2 = 1.62012 ν 2 = 49.66 r 3 = -246.0953 d 3 = 0.1700 r 4 = 28.4664 d 4 = 5.6000 n 3 = 1.62012 ν 3 = 49.66 r 5 = 217.2658 d 5 = 0.6000 r 6 = 34.0022 d 6 = 1.0400 n 4 = 1.73400 ν 4 = 51.49 7 = 11.4972 d 7 = 3.9500 r 8 = -20.9945 d 8 = 1.0400 n 5 = 1.69350 ν 5 = 53.23 r 9 = 16.3829 d 9 = 3.1000 n 6 = 1.84666 ν 6 = 23.88 r 10 = 646.6454 d 10 = 12.8886 r 11 = -14.2623 d 11 = 1.0000 n 7 = 1.69680 ν 7 = 55.52 r 12 = -30.9806 d 12 = 4.5295 r 13 = 50.7675 d 13 = 2.6656 n 8 = 1.74950 ν 8 = 35.27 r 14 = -30.6539 921 d 14 15 = ∞ (stop) d 15 = 2.0000 r 16 = 19.1840 d 16 = 5.6618 n 9 = 1.69350 ν 9 = 53.23 r 17 = 3649.8366 d 17 = 0.8000 r 18 = -24.4207 d 18 = 1.4073 n 10 = 1.84666 ν 10 = 23.88 r 19 = 18.4904 d 19 = 3.8044 r 20 = 80.9804 d 20 = 3.0000 n 11 = 1.56873 ν 11 = 63.16 r 21 = -23.6744 d 21 = 4.3200 r 22 = -81.0091 d 22 = 3.6442 n 12 = 1.48749 ν 12 = 70.15 r 23 =- 19.6764 d 23 = 0.1342 r 24 = 28.3524 d 24 = 3.3101 n 13 = 1.48749 ν 13 = 70.15 r 25 = -150.6774 l / f IV = 1.771, D / f IV = 0.184, f W / f A = -0.010 f IVa / F S = 1.095, f IVan / f S = -0.505 f I / f W = 2.894, f II / f W = -1.021, n 4 = 1.73400 n 6 -n 5 = 0.15316, n 5 = 1.69350, ν 5 −ν 6 = 29.35 n IVan = 1.84666, ν IVap −ν IVbp −19.597 f B = 23.3 where r 1 , r 2 , ... Are the radii of curvature of each lens surface, and d 1 , d 2 ,. The thickness and air gap of each lens, n 1 , n 2 , ... Is the refractive index of each lens, ν 1 , ν 2 ,
... is the Abbe number of each lens, f is the focal length of the entire system, f
B is the back focus.
実施例1乃至実施例4は、いずれも第1図に示すもの
で、リレー系の前群IVaは正,正,負,正よりなってい
る。これら実施例の収差状況は、実施例1が第2図(ワ
イド),第3図(スタンダード),第4図(テレ)、実
施例2が第5図(ワイド),第6図(スタンダード),
第7図(テレ)、実施例3が第8図(ワイド),第9図
(スタンダード),第10図(テレ)、実施例4が第1
1図(ワイド),第12図(スタンダード),第13図
(テレ)に夫々示してある。All of the first to fourth embodiments are shown in FIG. 1, and the front group IVa of the relay system is composed of positive, positive, negative and positive. Regarding the aberrations of these examples, Example 1 is shown in FIG. 2 (wide), FIG. 3 (standard), FIG. 4 (tele), and Example 2 is shown in FIG. 5 (wide) and FIG. 6 (standard). ,
FIG. 7 (tele), Example 3 is FIG. 8 (wide), FIG. 9 (standard), FIG. 10 (tele), and Example 4 is first.
They are shown in FIG. 1 (wide), FIG. 12 (standard), and FIG. 13 (tele), respectively.
これら各実施例は、いずれもリレー系IVの後群IVbを繰
り出した合焦を行っている。その際の繰り出し量は下記
の通りである。In each of these embodiments, focusing is performed by extending the rear group IVb of the relay system IV. The amount of feeding at that time is as follows.
f=14f=24.25f=42 実施例1 0.183 0.542 1.633 実施例2 0.186 0.552 1.672 実施例3 0.173 0.510 1.505 実施例4 0.173 0.510 1.499 発明の効果 本発明のズームレンズは、以上詳細に述べたように、ま
た実施例より明らかなようにリレー系である第4群IVの
構成を適切なものにすることによってF/2.0,ズーム
比3、画角15°〜45°でしかもバックフォーカスを0.9f
S以上と長くしながら、収差が良好に補正された高性能
なズームレンズであって、将来撮像素子の画素数が増大
しても十分対応できるものである。f = 14f = 24.25f = 42 Example 1 0.183 0.542 1.633 Example 2 0.186 0.552 1.672 Example 3 0.173 0.510 1.505 Example 4 0.173 0.510 1.499 Advantages of the Invention As described in detail above, the zoom lens of the present invention is as follows. Further, as is apparent from the embodiment, by appropriately setting the configuration of the fourth group IV which is a relay system, F / 2.0, zoom ratio 3, angle of view of 15 ° to 45 ° and back focus of 0.9 f.
It is a high-performance zoom lens in which aberrations are favorably corrected while lengthening to S or more, and can sufficiently cope with future increase in the number of pixels of the image pickup device.
第1図は本発明の実施例1乃至実施例4の断面図、第2
図乃至第4図は実施例1の収差曲線図、第5図乃至第7
図は実施例2の収差曲線図、第8図乃至第10図は実施
例3の収差曲線図、第11図乃至第13図は実施例4の
収差曲線図である。FIG. 1 is a sectional view of Embodiments 1 to 4 of the present invention, and FIG.
4 to 4 are aberration curve diagrams of Embodiment 1, and FIGS.
8 is an aberration curve diagram of Example 2, FIGS. 8 to 10 are aberration curve diagrams of Example 3, and FIGS. 11 to 13 are aberration curve diagrams of Example 4.
Claims (2)
1群と、いずれも変倍時に移動する負の焦点距離を持つ
バリエータの第2群と負の焦点距離を持つコンペンセー
タの第3群とから成る変倍系と、リレー系とから構成さ
れ、前記リレーレンズ系が前群と後群とから成ってい
て、前記前群が物体側から順に、正レンズと、正レンズ
と、両凹レンズと、正レンズの4枚から成り、前記後群
が2枚の正レンズから成り、前記第1群は固定し前記リ
レーレンズ系の後群を光軸に沿って物体側へ繰り出すこ
とにより近距離物体へのフォーカシングを行ない、以下
の条件を満足する大口径ズームレンズ。 (1)−0.3<fW/fA<0.2 ただし、fWは全系の最短焦点距離、fAは第1群からリレ
ー系の前群までの合成焦点距離である。1. A first group having a positive focal length, a second group of variators each having a negative focal length that moves during zooming, and a third group of compensators each having a negative focal length in order from the object side. A variable power system including a group, and a relay system, wherein the relay lens system includes a front group and a rear group, and the front group includes, in order from the object side, a positive lens, a positive lens, and both lenses. The rear lens group is composed of four lenses, a concave lens and a positive lens, and the rear lens group is composed of two positive lenses. The first lens group is fixed, and the rear lens group of the relay lens system is extended toward the object side along the optical axis to bring the lens closer. A large-aperture zoom lens that focuses on a distance object and satisfies the following conditions. (1) −0.3 <f W / f A <0.2 where f W is the shortest focal length of the entire system, and f A is the combined focal length from the first group to the front group of the relay system.
面の方が強い曲率を持つ凸面であり、最も像側の正レン
ズは物体側の面の方が強い曲率を持つ凸面である特許請
求の範囲(1)の大口径ズームレンズ。2. A positive lens closest to the object in the rear group is a convex surface having a stronger curvature on the image side, and a positive lens closer to the image is a convex surface having a stronger curvature on the object side. A large-diameter zoom lens according to claim 1.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59038649A JPH068932B2 (en) | 1984-03-02 | 1984-03-02 | Large aperture zoom lens |
US06/706,863 US4701034A (en) | 1984-03-02 | 1985-02-28 | Large aperture zoom lens system |
DE19853507591 DE3507591A1 (en) | 1984-03-02 | 1985-03-04 | VARIO LENS |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59038649A JPH068932B2 (en) | 1984-03-02 | 1984-03-02 | Large aperture zoom lens |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60184220A JPS60184220A (en) | 1985-09-19 |
JPH068932B2 true JPH068932B2 (en) | 1994-02-02 |
Family
ID=12531098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59038649A Expired - Fee Related JPH068932B2 (en) | 1984-03-02 | 1984-03-02 | Large aperture zoom lens |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH068932B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4906079A (en) * | 1987-05-20 | 1990-03-06 | Olympus Optical Co., Ltd. | Zoom lens system |
JP4508604B2 (en) * | 2003-11-06 | 2010-07-21 | キヤノン株式会社 | Zoom lens and imaging apparatus having the same |
-
1984
- 1984-03-02 JP JP59038649A patent/JPH068932B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS60184220A (en) | 1985-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2538526B2 (en) | Zoom lens | |
JP3253405B2 (en) | Two-group zoom lens | |
JP3584107B2 (en) | Zoom lens | |
JP2816436B2 (en) | High-magnification large-aperture zoom optical system | |
JP2628633B2 (en) | Compact zoom lens | |
JPH083580B2 (en) | Compact high-magnification zoom lens | |
JP2558138B2 (en) | Zoom lens | |
JPH05188294A (en) | Inverse telephoto type large-aperture wide-angle lens | |
JPH09179026A (en) | Variable power optical system | |
JPH06201988A (en) | Large aperture ratio internal focusing telephoto lens | |
JP2003241097A (en) | High variable power ratio zoom lens | |
JP3352227B2 (en) | Zoom lens | |
JP2001033703A (en) | Rear focus type zoom lens | |
JP2002365548A (en) | Zoom lens | |
JP2001330777A (en) | Zoom lens | |
JP3292510B2 (en) | Zoom lens | |
JPH07253542A (en) | Zoom lens | |
JPH07107577B2 (en) | Zoom lenses | |
JP3429554B2 (en) | Zoom lens | |
JP2001091833A (en) | Zoom lens | |
JP3160846B2 (en) | Telephoto zoom lens | |
US4591234A (en) | Rear focus conversion lens | |
JP3445359B2 (en) | Zoom lens | |
JP3369598B2 (en) | Zoom lens | |
JP3821330B2 (en) | Zoom lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |