JPH0689048B2 - Stirring tower type polymerization reactor - Google Patents
Stirring tower type polymerization reactorInfo
- Publication number
- JPH0689048B2 JPH0689048B2 JP62128460A JP12846087A JPH0689048B2 JP H0689048 B2 JPH0689048 B2 JP H0689048B2 JP 62128460 A JP62128460 A JP 62128460A JP 12846087 A JP12846087 A JP 12846087A JP H0689048 B2 JPH0689048 B2 JP H0689048B2
- Authority
- JP
- Japan
- Prior art keywords
- stirring
- flow
- blade
- rotary shaft
- container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/18—Stationary reactors having moving elements inside
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
- B01F27/05—Stirrers
- B01F27/11—Stirrers characterised by the configuration of the stirrers
- B01F27/112—Stirrers characterised by the configuration of the stirrers with arms, paddles, vanes or blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
- B01F27/05—Stirrers
- B01F27/11—Stirrers characterised by the configuration of the stirrers
- B01F27/112—Stirrers characterised by the configuration of the stirrers with arms, paddles, vanes or blades
- B01F27/1125—Stirrers characterised by the configuration of the stirrers with arms, paddles, vanes or blades with vanes or blades extending parallel or oblique to the stirrer axis
- B01F27/11253—Stirrers characterised by the configuration of the stirrers with arms, paddles, vanes or blades with vanes or blades extending parallel or oblique to the stirrer axis the blades extending oblique to the stirrer axis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
- B01F27/80—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
- B01F27/82—Pan-type mixers, i.e. mixers in which the stirring elements move along the bottom of a pan-shaped receptacle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00074—Controlling the temperature by indirect heating or cooling employing heat exchange fluids
- B01J2219/00076—Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
- B01J2219/00081—Tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00074—Controlling the temperature by indirect heating or cooling employing heat exchange fluids
- B01J2219/00076—Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
- B01J2219/00083—Coils
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00074—Controlling the temperature by indirect heating or cooling employing heat exchange fluids
- B01J2219/00087—Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
- B01J2219/00094—Jackets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00164—Controlling or regulating processes controlling the flow
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/18—Details relating to the spatial orientation of the reactor
- B01J2219/185—Details relating to the spatial orientation of the reactor vertical
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Mixers Of The Rotary Stirring Type (AREA)
- Polymerisation Methods In General (AREA)
- Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は連続的に高分子体を製造するための高性能の重
合反応装置に関する。The present invention relates to a high-performance polymerization reactor for continuously producing a polymer.
更に詳しくは高粘度化する均相系の溶液重合および塊状
重合を主たる対象とする連続式重合反応装置に関する。More specifically, the present invention relates to a continuous polymerization reaction apparatus whose main object is homogenized solution polymerization and bulk polymerization for increasing the viscosity.
高分子を製造するための重合様式として、従来から溶液
重合法、塊状重合法が多用されている。溶液重合法や塊
状重合法においては、重合体が単量体や溶剤に溶解する
場合は、均一液相系となり、重合反応の進行に伴い高粘
度流体となる。As a polymerization mode for producing a polymer, a solution polymerization method and a bulk polymerization method have been frequently used. In the solution polymerization method or the bulk polymerization method, when the polymer is dissolved in a monomer or a solvent, it becomes a homogeneous liquid phase system and becomes a highly viscous fluid as the polymerization reaction progresses.
上記の形態をとる重合反応としては、ポリメチルメタア
クリレートの塊状重合、アクリルニトリル・スチレン樹
脂の溶液および塊状重合、アクリルニトリル・ブタジェ
ン・スチレン樹脂の溶液重合、ポリブタジェンの溶液重
合、スチレン・ブタジェンゴムの溶液重合、ε−カプロ
ラクタムを原料とするナイロン6の重宿業(特に最終段
階)、アジピン酸とヘキサメチレンジアミンを原料とし
たナイロン66の重縮合(特に中間段階)、ポリビニール
アセテートの溶液重合、等がある。As the polymerization reaction taking the above-mentioned form, bulk polymerization of polymethylmethacrylate, solution and bulk polymerization of acrylonitrile / styrene resin, solution polymerization of acrylonitrile / butadiene / styrene resin, solution polymerization of polybutadiene, solution of styrene / butadiene rubber. Polymerization, heavy duty operation of nylon 6 using ε-caprolactam as a raw material (especially the final step), polycondensation of nylon 66 using adipic acid and hexamethylenediamine as a raw material (especially the intermediate step), solution polymerization of polyvinyl acetate, etc. is there.
高粘度流体化での連続重合反応器に対し一般的に要求さ
れる機能については村上泰弘氏が文献(重合反応装置の
基礎と解析、培風館、1976年)で詳細に述べているが、
その内容から選択すると、下記の項目が挙げられる。Regarding the functions generally required for continuous polymerization reactors with high viscosity fluids, Yasuhiro Murakami has described in detail in the literature (Basics and analysis of polymerization reactors, Baifukan, 1976).
If you select from the contents, you can list the following items.
(1) 流れ方向の滞留時間分布がシャープであるこ
と。(1) The residence time distribution in the flow direction is sharp.
即ち、ピストンフロー性があること。That is, it has a piston flow property.
(2) 流れ方向の各領域に於ける温度、濃度の均一化
性能(混合性能)が高いこと。(2) High uniformity in temperature and concentration (mixing performance) in each region in the flow direction.
(3) 反応装置全域にわたり流動不良部(デッドスペ
ース)がないこと。(3) There is no poor flow area (dead space) over the entire reactor.
(4) 撹拌所要動力が低いこと。(4) The power required for stirring is low.
(5) 反応熱を除去するための伝熱面積が大きく、伝
熱係数が高いこと。(5) A large heat transfer area for removing reaction heat and a high heat transfer coefficient.
(6) 装置形状が単純で、清掃がやり易いこと。(6) The device shape is simple and easy to clean.
これらの機能を可能な限り満足しようとする試みは、従
来から行われており、数多くの重合反応装置が提案され
ている。しかしながら未だに満足するものが得られてい
ない。Attempts have been made so far to satisfy these functions as much as possible, and numerous polymerization reactors have been proposed. However, a satisfactory one has not been obtained yet.
従来に提案された連続式重合反応器例を挙げると、特開
昭54−127489の模型装置の場合は、撹拌所要動力が大き
く、伝熱面積が小さく、装置形状が複雑である欠点を有
している。また特開昭53−99290号公報に記載の反応器
の場合は、ピストンフロー性に問題がある。さらにまた
特開昭60−202720号公報に記載の反応器の場合は、2軸
であるため構造が複雑である。など従来に提案された連
続式重合反応装置には種々の問題点がある。本発明はか
かる現状に鑑みなされたものであり、滞留時間分布が狭
く即ちピストンフロー性があり、流れ方向の各撹拌区域
における混合効果が大きく、流動不良部がなく、かつ撹
拌所要動力が低く、伝熱性にすぐれ、装置構造が単純な
撹拌塔式重合反応装置を提供することを目的としたもの
である。To give an example of a continuous polymerization reactor proposed hitherto, in the case of the model device of JP-A-54-127489, the power required for stirring is large, the heat transfer area is small, and the device shape is complicated. ing. Further, in the case of the reactor described in JP-A-53-99290, there is a problem in piston flowability. Furthermore, in the case of the reactor described in JP-A-60-202720, the structure is complicated because it is biaxial. There are various problems in the continuous polymerization reaction apparatus proposed in the past. The present invention has been made in view of the present situation, the residence time distribution is narrow, that is, there is a piston flow property, the mixing effect is large in each stirring area in the flow direction, there is no flow failure portion, and the required power for stirring is low, It is an object of the present invention to provide a stirring tower type polymerization reaction device having excellent heat conductivity and a simple device structure.
本発明は液供給口と液排出口とを備えた円筒状の容器
と、同容器内に同容器の軸芯と同軸に挿着された回転軸
と、同回転軸の側面に複数組付設され同回転軸の軸芯と
その面が平行な平板翼と同平板翼と組みになり上記回転
軸の軸芯に対して傾斜して取付けられた傾斜翼とで構成
された撹拌手段と、同撹拌手段と撹拌手段との間に介装
され上記容器を長手方向に区切る仕切手段と、から構成
されたことを特徴とする撹拌塔式重合反応装置を提案す
るものである。The present invention provides a cylindrical container having a liquid supply port and a liquid discharge port, a rotary shaft inserted into the container coaxially with the axis of the container, and a plurality of sets attached to the side surface of the rotary shaft. A stirring means composed of a flat plate blade whose axis is parallel to the axis of the rotary shaft and an inclined blade which is attached to the flat plate blade so as to be inclined with respect to the rotary shaft axis, and the same stirring. The present invention proposes a stirring tower type polymerization reaction device, characterized in that it comprises a partitioning means interposed between the means and the stirring means to partition the container in the longitudinal direction.
このような構成の反応装置において、液は液供給口より
容器内に供給され、仕切手段で長手方向に区切られた撹
拌区域内に導入される。この撹拌区域内では、回転軸に
付設された撹拌手段である平板翼と傾斜翼とが回転し、
その相剰作用により、上昇流、下降流、水平流などの循
環流が生じ、その撹拌混合作用により液は十分に撹拌混
合されながら順次つぎの撹拌区域に送られ同様な作用を
受けながら容器の液排出口より系外に排出される。In the reaction apparatus having such a configuration, the liquid is supplied into the container through the liquid supply port and introduced into the stirring area partitioned by the partition means in the longitudinal direction. In this stirring area, the flat blade and the inclined blade that are stirring means attached to the rotating shaft rotate,
Due to the cumulative action, a circulating flow such as an upward flow, a downward flow, and a horizontal flow is generated, and the liquid is sufficiently agitated and mixed by the agitating and mixing action, and is sequentially sent to the next agitating zone to receive the same action while receiving the same action. It is discharged from the liquid outlet to the outside of the system.
以下、図面を用いて本発明に係る撹拌塔式重合反応装置
の実施例について詳細に説明する。Examples of the stirring tower type polymerization reaction device according to the present invention will be described in detail below with reference to the drawings.
第1図は本発明の一実施例の反応装置の縦断面図であ
る。FIG. 1 is a vertical sectional view of a reaction apparatus according to an embodiment of the present invention.
第1図および第2図において液供給口1、液排出口2お
よびジャケット3を有する容器4内に、回転軸5が挿着
されており、回転軸5は軸封部6で回転可能に軸封され
ている。容器4内は、仕切手段である多段の邪魔板7で
区切られており、これにより流れ方向にピストンフロー
性が生じる。邪魔板7としては開孔率が一定の多孔板を
用いている。邪魔板7で区切られた各撹拌室8内では、
回転軸5に撹拌手段が付設されている。この撹拌手段
は、回転軸5の軸芯30とその面が平行な平板翼9と、同
平板翼9と組になっており、回転軸5の側面に、水平面
で平板翼9および多の傾斜翼10と互いに角度が90゜離れ
た方向で、かつ軸方向に順次高さをずらした位置に取付
けられ、図示のように回転軸5の軸芯30に対して同じ向
きで同じ傾斜角で傾斜して取付けられた略長方形で板状
の3枚の傾斜翼10(a),10(b),10(c)で構成され
ている。In FIGS. 1 and 2, a rotary shaft 5 is inserted into a container 4 having a liquid supply port 1, a liquid discharge port 2 and a jacket 3, and the rotary shaft 5 is rotatably supported by a shaft sealing portion 6. It is sealed. The inside of the container 4 is divided by a multi-stage baffle plate 7 which is a partitioning means, and thereby a piston flow property is generated in the flow direction. As the baffle plate 7, a perforated plate having a constant aperture ratio is used. In each stirring chamber 8 divided by the baffle plate 7,
A stirring means is attached to the rotating shaft 5. This stirring means is a combination of a flat plate blade 9 whose plane is parallel to the axis 30 of the rotary shaft 5 and the flat plate blade 9, and the flat plate blade 9 and multiple inclinations on the side surface of the rotary shaft 5 in a horizontal plane. The blades 10 are mounted at positions 90 degrees apart from each other and at positions whose heights are sequentially shifted in the axial direction, and are tilted in the same direction and the same inclination angle with respect to the axis 30 of the rotary shaft 5 as shown in the figure. The inclined blades 10 (a), 10 (b), and 10 (c) are attached to each other and are substantially rectangular and plate-shaped.
第2図は、第1図のII−II線に沿う横断面を示したもの
である。回転軸5の回転により平板翼9は矢印11の方向
に移動し、この移動により排斥された流体は矢印12に示
すように、内周部に大きな循環流となる。この循環流の
流速は、傾斜翼10(a),10(b),10(c)の移動速度
よりも大きく、傾斜翼10(a),10(b),10(c)を追
い越して回転するため、相対的には循環流の流体は傾斜
翼10で押し上げられ、上方へ移動することとなる。一
方、容器壁面近傍の流体は、壁面からの粘性抵抗の影響
を受け、矢印13に示すように周方向にはゆるやかな動き
しかしないため、傾斜翼10の移動により押し下げられ、
下方へ移動する。このように、内周部では上昇流が、外
周部では下降流が発生し、これにより上下循環流が形成
される。なお傾斜翼を図示とは逆向きに傾斜して取付け
た場合、内周部では下降流が、外周部では上昇流が発生
する。FIG. 2 shows a cross section taken along the line II-II in FIG. The flat blade 9 moves in the direction of arrow 11 by the rotation of the rotary shaft 5, and the fluid displaced by this movement becomes a large circulation flow in the inner peripheral portion as shown by arrow 12. The flow velocity of this circulating flow is higher than the moving speed of the inclined blades 10 (a), 10 (b), 10 (c), and rotates past the inclined blades 10 (a), 10 (b), 10 (c). Therefore, the relatively circulating fluid is pushed up by the inclined blades 10 and moves upward. On the other hand, the fluid in the vicinity of the wall surface of the container is affected by the viscous resistance from the wall surface, and only moves slowly in the circumferential direction as shown by the arrow 13, and thus is pushed down by the movement of the inclined blades 10,
Move down. In this way, an ascending flow is generated at the inner peripheral portion and a downward flow is generated at the outer peripheral portion, whereby a vertical circulation flow is formed. In addition, when the inclined blades are attached in a direction opposite to that shown in the drawing, a downward flow is generated in the inner peripheral portion and an upward flow is generated in the outer peripheral portion.
以上の通り、撹拌室8内では、水平方向の循環流と上下
方向の循環流とが同時に発生するため、良好な混合状態
が得られる。As described above, in the stirring chamber 8, the horizontal circulating flow and the vertical circulating flow are simultaneously generated, so that a good mixed state can be obtained.
また、撹拌室8のコーナー部についても、平板翼9によ
る撹拌効果が行き届き、流動不良域となることはない。Further, also in the corner portion of the stirring chamber 8, the stirring effect of the flat plate blade 9 is well distributed, and it does not become a poor flow region.
通常の撹拌翼の場合には、回転軸の回りの流動が悪いた
め、ゲル状物質等の付着が往々にして発生するが、本実
施例の反応装置の場合には、回転軸5に沿った強い循環
流が形成されるため、付着物の生成が防止される。In the case of a normal stirring blade, since the flow around the rotary shaft is poor, gel substances and the like are often attached, but in the case of the reaction apparatus of the present embodiment, along the rotary shaft 5 The formation of a deposit is prevented because a strong circulating flow is formed.
大型の平板翼9は上記の通り、水平方向の循環流を発生
させる役割を持っているため、その大きさには適正な範
囲がある。第2図において、平板翼9の回転方向の前方
部では、平板翼9は流体を排除して移動するため正圧状
態となり、後方部では、平板翼9の移動で生じた空間を
満たすように循環流が流入するため負圧状態となる。こ
のように、平板翼の前後部では圧力差が生じるため、平
板翼9の端部と容器内壁31との間隙を短絡する流れが生
ずることとなる。短絡流の増大に比例して、循環流が減
少し撹拌効果が減少するため、短絡流を極力抑える必要
がある。本発明者らは種々の実験結果から、循環流を効
果的に発生させるためには、軸芯30と平板翼9の外縁で
囲まれた面積が回転軸の軸芯30と容器内壁31および邪魔
板7で囲まれた面積の60パーセント以上、好ましくは80
パーセント以上を占めればよいことを見い出した。As described above, the large flat blade 9 has a role of generating a circulating flow in the horizontal direction, so that its size has an appropriate range. In FIG. 2, in the front part of the flat plate blade 9 in the rotation direction, the flat plate blade 9 moves in a positive pressure state by removing the fluid, and in the rear part, the space generated by the movement of the flat plate blade 9 is filled. Since the circulating flow flows in, a negative pressure state occurs. As described above, since a pressure difference is generated between the front and rear portions of the flat plate blade, a flow that short-circuits the gap between the end portion of the flat plate blade 9 and the container inner wall 31 is generated. Since the circulating flow decreases and the stirring effect decreases in proportion to the increase in the short circuit flow, it is necessary to suppress the short circuit flow as much as possible. From the results of various experiments, the inventors have found that in order to effectively generate a circulating flow, the area surrounded by the shaft core 30 and the outer edge of the flat plate blade 9 is the shaft core 30 of the rotating shaft, the container inner wall 31, and the obstruction. 60% or more of the area surrounded by the plate 7, preferably 80
It has been found that it should occupy more than one percent.
次に撹拌所要動力は、通常の大型パドル翼相当であり、
高粘度流体用の撹拌翼としては低動力の範ちゅうに入
る。また壁面の伝熱係数に関しては、大型の平板翼の掻
き取り効果、および、上下循環流の発生による流体の入
れ換え効果により通常の高粘度流体用の撹拌翼以上の伝
熱係数が得られる。Next, the power required for stirring is equivalent to a normal large paddle blade,
It belongs to the category of low power as a stirring blade for high viscosity fluid. Regarding the heat transfer coefficient of the wall surface, due to the scraping effect of the large flat plate blade and the effect of exchanging the fluid due to the generation of the vertical circulation flow, a heat transfer coefficient higher than that of a stirring blade for a normal high viscosity fluid can be obtained.
構造の単純さについても、パドルやアンカー翼相当であ
り、高粘度流体の撹拌で多用されるヘリカルリボン翼
や、前述の従来の特許出願で提案されている撹拌翼に較
べても単純な構造である。Regarding the simplicity of the structure, it is equivalent to a paddle and an anchor blade, and has a simpler structure than the helical ribbon blade that is often used for stirring high-viscosity fluid and the stirring blades proposed in the above-mentioned conventional patent application. is there.
以上述べたように、上記の実施例の反応装置は、前述の
連続重合反応器に求められる全ての機能を満している。As described above, the reactor of the above-mentioned example fulfills all the functions required for the above continuous polymerization reactor.
なお、上記の実施例では邪魔板として多孔板の場合を示
したが、同心のリングなど、任意の形状、構造のものを
用いることができる。In the above embodiments, the case where the baffle plate is a perforated plate is shown, but a concentric ring or the like having an arbitrary shape and structure can be used.
第3図は本発明の他の実施例の反応装置の縦断面図であ
り、第4図は第3図のIV−IV線に沿う横断面図である。FIG. 3 is a vertical cross-sectional view of a reaction apparatus according to another embodiment of the present invention, and FIG. 4 is a horizontal cross-sectional view taken along the line IV-IV of FIG.
この実施例の場合は、回転時5の軸芯30とその面が平行
な平板翼9(a),9(b)2枚が回転軸5の側面に、水
平面上で180゜離れて取付けられている。また、それと
ともに上下各2枚の傾斜翼10(a),10(b),10
(c),10(d)が回転軸5の側面に平板翼9(a),9
(b)と水平面で90゜離れた位置で、図示のように同じ
向きで同じ傾斜角で回転軸5の軸芯30に対して傾斜して
も取付けられている。In the case of this embodiment, two flat plate blades 9 (a) and 9 (b) whose surfaces are parallel to the axis 30 of the rotating shaft 5 are mounted on the side surface of the rotating shaft 5 at a distance of 180 ° on the horizontal plane. ing. In addition, two inclined blades 10 (a), 10 (b), 10
(C) and 10 (d) are flat blades 9 (a) and 9 on the side surface of the rotary shaft 5.
It is also mounted at a position 90 ° apart from (b) in the horizontal plane even if it is tilted with respect to the axis 30 of the rotary shaft 5 at the same direction and the same tilt angle as shown in the figure.
このように、本発明に係る反応装置では平板翼および傾
斜翼の数には制限を受けない。また、各撹拌室8の間に
は仕切手段が設けられ、その仕切手段は管板20、シェル
21およびチューブ22で構成された熱交換部であり、チュ
ーブ22内を通過する高粘度液を、チューブ22外のシェル
21に流通させている熱媒体油等で加熱又は冷却すること
ができる。チューブ22は熱交換と同時に邪魔板の機能を
も果たしている。Thus, the reactor according to the present invention is not limited by the number of flat blades and inclined blades. Further, partition means is provided between the stirring chambers 8, and the partition means is the tube sheet 20 and the shell.
This is a heat exchange part composed of the tube 21 and the tube 22.
It can be heated or cooled with a heat carrier oil or the like circulating in 21. The tube 22 also functions as a baffle at the same time as heat exchange.
第5図は、本発明の更に他の実施例の反応装置の縦断面
図であり、第6図は第5図のVI−VI線に沿う横断面図で
ある。FIG. 5 is a vertical cross-sectional view of a reaction apparatus of still another embodiment of the present invention, and FIG. 6 is a horizontal cross-sectional view taken along the line VI-VI of FIG.
この実施例の場合は1枚の平板翼9とらせん状の傾斜翼
10を組み合わせた撹拌手段を示しており、本発明に係る
反応装置が平板状の傾斜翼に限定されないことを示して
いる。また、各撹拌室8の間の仕切手段には、コイル状
のチューブ22を挿入しており、チューブ内に熱媒体油等
を流すことにより、ここを通過する高粘度液の加熱又は
冷却を行うと共に、邪魔板の機能を持たせている。In the case of this embodiment, one flat plate blade 9 and a spiral inclined blade
10 shows a stirring means in which 10 are combined, and shows that the reaction device according to the present invention is not limited to a flat blade. A coil-shaped tube 22 is inserted in the partitioning means between the stirring chambers 8 and heating medium oil or the like is flown into the tube to heat or cool the high-viscosity liquid passing therethrough. At the same time, it has a baffle function.
なお、つぎに本発明の重合反応装置と従来の重合反応装
置について滞留時間分布を求めた実験結果について説明
する。The experimental results of the residence time distributions of the polymerization reactor of the present invention and the conventional polymerization reactor will be described below.
この実験では、内径200mmの透明アクリル樹脂製の長尺
の円筒状容器内を、8個の撹拌部と7個の熱交部で区切
った流れテスト装置を用いた。この実験ではこのテスト
装置に取付ける撹拌翼を種々取替えて実験を行なった。In this experiment, a flow test device was used in which a long cylindrical container made of a transparent acrylic resin having an inner diameter of 200 mm was divided into eight stirring sections and seven heat exchange sections. In this experiment, various stirring blades attached to this test device were replaced.
撹拌部の高さは100mmであり、熱交部は内径23mmのアク
リル樹脂製のチューブを4本取り付け、高さを100mmと
している。これらの組み合わせは、第3図の装置とほぼ
同様である。The height of the stirring section is 100 mm, and the heat exchange section is equipped with four acrylic resin tubes with an inner diameter of 23 mm and the height is 100 mm. The combination of these is almost the same as the apparatus of FIG.
供試体としては200ポイズの水飴を用い、ギヤポンプを
使い、容器底部から供給した。連続的に水飴を供給して
途中で、パルス的に赤インクで着色した水飴を注入し、
その流動状況を肉眼で観察すると共に、出口濃度の経時
変化を測定し、滞留時間分布を求めた。A 200 poise starch syrup was used as a sample, and a gear pump was used to supply the starch syrup from the bottom of the container. In the middle of continuously supplying starch syrup, pulse syrup colored with red ink is injected,
The flow state was observed with the naked eye, the change with time in the outlet concentration was measured, and the residence time distribution was obtained.
使用した撹拌翼の種類と、その際の流動状態の観察結果
を、第1表に示した。表中比較例は従来の反応装置の場
合、実験例は前述の実施例の場合を示す。Table 1 shows the types of stirring blades used and the observation results of the flow state at that time. In the table, the comparative example shows the case of the conventional reactor, and the experimental example shows the case of the above-mentioned embodiment.
第1表から、つぎのことから明らかである。 It is clear from Table 1 that:
(1) 従来の撹拌翼形式である大型パドル、ヘリカル
リボン翼の場合には流動不良域が存在した。(1) In the case of the conventional stirring blade type large paddle and helical ribbon blade, there was a flow failure region.
(2) 本発明に基づいた翼形式を用いた実施例1〜2
においては流動不良域は認められなかつた。第7図に
は、比較例および各実施例における水飴の筒状容器内で
の滞留時間分布の測定結果を示す。第7図において縦軸
のE(φ)は滞留時間分布函数であり、横軸のφは無次
元時間である。(2) Examples 1 to 2 using the blade type according to the present invention
No poor flow area was observed in. FIG. 7 shows the measurement results of the residence time distribution of starch syrup in the cylindrical container in the comparative example and each example. In FIG. 7, E (φ) on the vertical axis is the residence time distribution function, and φ on the horizontal axis is the dimensionless time.
比較例1の場合は、ピーク高さと位置が完全混合槽列モ
デルから大巾にずれており、また長時間滞留する流体も
異常に多いことがわかり、好ましい状態ではない。In the case of Comparative Example 1, the peak height and position are largely deviated from the perfect mixing tank row model, and it is found that the amount of fluid that stays for a long time is abnormally large, which is not a preferable state.
比較例2の場合は、ピーク高さが低く、完全混合槽例モ
デルの相当槽数としても小さな値となり、ピストン流か
ら遠ざかってくる。この原因としては、上下循環流が適
正値よりも大きいため、一部の流体が入口から出口方向
にショートパスする傾向があるためと考えられる。In the case of Comparative Example 2, the peak height is low, and the equivalent number of tanks in the perfect mixing tank example model is a small value, and the peak distance is far from the piston flow. It is considered that this is because the vertical circulation flow is larger than an appropriate value, and therefore some of the fluid tends to short-pass from the inlet to the outlet.
実施例1〜3は、完全混合槽列モデルに近い、非常に好
ましい滞留時間分布となっている。Examples 1 to 3 have very preferable residence time distributions close to the complete mixing tank row model.
本発明に係る反応装置は、次のような特別の顕著な効果
を奏し、本発明は産業上有用な撹拌塔式重合反応装置を
提供するものである。The reaction apparatus according to the present invention has the following special remarkable effects, and the present invention provides an industrially useful stirring tower type polymerization reaction apparatus.
(1) 本発明に係る反応装置は、撹拌手段間に仕切手
段を設置しているので、特有の撹拌効果とあいまってピ
ストンフロー性を有するとともに重合反応進行に応じて
反応混合物を、各々の撹拌区域毎に別々に温度調節を行
なうことができる。また仕切手段に熱交換用チューブを
挿入すると、各々の撹拌区域毎に別々の温度調節を行な
うことが一層容易となる。(1) Since the reactor according to the present invention is provided with the partition means between the stirring means, it has a piston flow property in combination with a unique stirring effect, and the reaction mixture is stirred according to the progress of the polymerization reaction. The temperature can be controlled separately for each area. Further, when the heat exchange tube is inserted into the partition means, it becomes easier to separately adjust the temperature for each stirring area.
(2) 本発明に係る反応装置には、回転軸に平板翼と
傾斜翼との2種類の撹拌翼が付設されているので、高粘
性の液状またはスラリー状物質を撹拌区域において迅速
に上昇流、下降流、水平流の循環流を形成せしめ、高い
混合性能を発揮することができまた流動不良部がない。(2) Since the reactor according to the present invention is provided with two types of stirring blades, a flat blade and an inclined blade, on the rotating shaft, a highly viscous liquid or slurry-like substance is rapidly flown upward in the stirring area. By forming a circulating flow of downward flow and horizontal flow, high mixing performance can be achieved and there is no flow failure part.
(3) 従来の反応装置では、撹拌回転軸の周りの流動
が悪いため、ゲル状物質等の付着が頻繁に発生したが、
本発明に係る反応装置では、混合性能が良好であるので
ゲル状付着物の発生がない。(3) In the conventional reaction apparatus, since the flow around the rotating shaft for stirring was poor, gel-like substances and the like frequently adhered.
In the reactor according to the present invention, the mixing performance is good, and therefore gel-like deposits are not generated.
(4) 本発明に係る反応装置は、平板翼と傾斜翼との
2種類の撹拌翼が配設されているので、平板翼のみより
なるものに較べて所要撹拌動力は小さい。(4) Since the reactor according to the present invention is provided with two types of stirring blades, a flat blade and an inclined blade, the required stirring power is smaller than that of a reactor having only flat blades.
(5) 平板翼の掻き取り効果、および上下循環流の発
生による流体の入れ換え効果により伝熱係数が大きく伝
熱性にすぐれている。(5) The heat transfer coefficient is large and the heat transfer is excellent due to the scraping effect of the flat blades and the effect of fluid exchange due to the generation of the vertical circulation flow.
(6) 装置構造が簡単である。(6) The device structure is simple.
第1図は本発明の一実施例の反応装置の縦断面図、第2
図は第1図のII−II線に沿う横断面図、第3図は本発明
の他の実施例の反応装置の縦断面図、第4図は第3図の
IV−IV線に沿う横断面図、第5図は本発明の更に他の実
施例の反応装置の縦断面図、第6図は第5図のVI〜VI線
に沿う横断面図、第7図は本発明の実験例と比較例の滞
留時間分布を示すグラフである。 1……液供給口、2……液排出口、3……ジャケット 4……容器、5……回転軸、7……邪魔板 8……撹拌部、9……平板翼、10……傾斜翼 20……管板、21……シェル、22……チューブFIG. 1 is a vertical sectional view of a reaction apparatus according to an embodiment of the present invention,
1 is a transverse sectional view taken along the line II-II of FIG. 1, FIG. 3 is a longitudinal sectional view of a reactor of another embodiment of the present invention, and FIG. 4 is a sectional view of FIG.
Fig. 5 is a cross-sectional view taken along line IV-IV, Fig. 5 is a vertical cross-sectional view of a reactor according to still another embodiment of the present invention, and Fig. 6 is a cross-sectional view taken along line VI-VI in Fig. 5, The figure is a graph showing the residence time distributions of the experimental example of the present invention and the comparative example. 1 ... Liquid supply port, 2 ... Liquid discharge port, 3 ... Jacket 4 ... Container, 5 ... Rotating shaft, 7 ... Baffle plate 8 ... Stirring part, 9 ... Plate blade, 10 ... Inclination Wings 20 …… Tube plate, 21 …… Shell, 22 …… Tube
───────────────────────────────────────────────────── フロントページの続き (72)発明者 大本 節男 広島県広島市西区観音新町4丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 小林 一登 広島県広島市西区観音新町4丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 山崎 嵩雄 神奈川県横浜市緑区松風台24−10 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Setsuo Omoto 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Mitsubishi Heavy Industries Ltd. Hiroshima Research Institute (72) Inventor Kazuto Kobayashi Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture 4-6-22 Mitsubishi Heavy Industries, Ltd. Hiroshima Research Laboratory (72) Inventor Takao Yamazaki 24-10 Matsufudai, Midori-ku, Yokohama-shi, Kanagawa
Claims (1)
器と、同容器内に同容器の軸芯と同軸に挿着された回転
軸と、同回転軸の側面に複数組付設され同回転軸の軸芯
とその面が平行な平板翼と同平板翼と組みになり上記回
転軸の軸芯に対して傾斜して取付けられた傾斜翼とで構
成された撹拌手段と、同撹拌手段と撹拌手段との間に介
装され上記容器を長手方向に区切る仕切手段と、から構
成されたことを特徴とする撹拌塔式重合反応装置。1. A cylindrical container having a liquid supply port and a liquid discharge port, a rotary shaft inserted into the container coaxially with the axis of the container, and a plurality of sets on the side surface of the rotary shaft. An agitating means provided with a flat blade and a flat blade whose surface is parallel to the rotary shaft of the same rotary shaft, and a slanting blade that is mounted obliquely with respect to the rotary shaft. A stirring tower type polymerization reaction device, comprising: a stirring means interposed between the stirring means and a partitioning means for partitioning the container in the longitudinal direction.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62128460A JPH0689048B2 (en) | 1987-05-27 | 1987-05-27 | Stirring tower type polymerization reactor |
AU16101/88A AU609477B2 (en) | 1987-05-19 | 1988-05-12 | Stirring apparatus and stirring tower type apparatus for polymerization reactions |
AR88310845A AR242124A1 (en) | 1987-05-19 | 1988-05-13 | Stirring apparatus and stirring tower type apparatus for polmerization reactions |
MX011490A MX167571B (en) | 1987-05-19 | 1988-05-16 | AGITATOR APPARATUS FOR POLYMERIZATION REACTIONS |
DE3817380A DE3817380A1 (en) | 1987-05-19 | 1988-05-18 | Stirring device |
BR8802423A BR8802423A (en) | 1987-05-19 | 1988-05-18 | APPLIANCE FOR SHAKING AND APPLIANCE OF THE TYPE OF SHAKING TOWER FOR POLYMERIZATION REACTIONS |
KR1019880005906A KR910005676B1 (en) | 1987-05-19 | 1988-05-19 | Agitation device for polymerization |
US07/627,880 US5145255A (en) | 1987-05-19 | 1990-12-13 | Stirring apparatus and stirring tower type apparatus for polmerization reactions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62128460A JPH0689048B2 (en) | 1987-05-27 | 1987-05-27 | Stirring tower type polymerization reactor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63295602A JPS63295602A (en) | 1988-12-02 |
JPH0689048B2 true JPH0689048B2 (en) | 1994-11-09 |
Family
ID=14985260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62128460A Expired - Lifetime JPH0689048B2 (en) | 1987-05-19 | 1987-05-27 | Stirring tower type polymerization reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0689048B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6350054B1 (en) * | 1997-12-08 | 2002-02-26 | Bp Corporation North America Inc. | Agitator for a horizontal polymerization reactor having contiguous paddle stations with paddles and sub-stations with sub-station paddles |
JP3958107B2 (en) * | 2002-04-26 | 2007-08-15 | キヤノン株式会社 | Method for producing polymerization toner |
DE102010005864B4 (en) * | 2010-01-26 | 2012-02-16 | Heraeus Medical Gmbh | Mixing device and a process for the preparation of polymethyl methacrylate bone cement pastes |
-
1987
- 1987-05-27 JP JP62128460A patent/JPH0689048B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63295602A (en) | 1988-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5145255A (en) | Stirring apparatus and stirring tower type apparatus for polmerization reactions | |
EP0647468B1 (en) | Stirring apparatus | |
KR940005110B1 (en) | Polymerization reaction apparatus | |
US6582116B2 (en) | Apparatus and method for mixing small volumes of reaction materials | |
US3476522A (en) | High viscosity reactors | |
JP4701056B2 (en) | Stirrer | |
JPS62186929A (en) | Reaction vessel | |
JP3206683B2 (en) | Stirrer | |
KR910005676B1 (en) | Agitation device for polymerization | |
JPH0689048B2 (en) | Stirring tower type polymerization reactor | |
Karcz et al. | An effect of the eccentric position of the propeller agitator on the mixing time | |
Takahashi et al. | Laminar mixing in eccentric stirred tank with different bottom | |
CN212492911U (en) | Polymeric kettle is used in production of electrochemical aluminium gum resin | |
CN1118318C (en) | Agitating element and mixing apparatus equipped with the same | |
CN217189504U (en) | High-viscosity material stirring device and reaction kettle comprising same | |
CN211463176U (en) | High viscosity liquid resin reation kettle | |
JPS61234917A (en) | Horizontal-type reactor having surface renewability | |
CN210752662U (en) | Ethylene glycol antimony's reaction crystallization kettle device | |
JPH0685862B2 (en) | Stirring blade | |
JPH03267136A (en) | Vertical type stirrer | |
JPS6349299Y2 (en) | ||
CN213680458U (en) | Water phase heat preservation device for emulsion explosive production | |
CN211537726U (en) | Novel reaction kettle | |
CN212040045U (en) | Stirring device for emulsion explosive emulsifier | |
CN214915332U (en) | Quick stirring device for corrosion inhibitor |