JPH068852B2 - Electrical insulation diagnosis method - Google Patents

Electrical insulation diagnosis method

Info

Publication number
JPH068852B2
JPH068852B2 JP17228487A JP17228487A JPH068852B2 JP H068852 B2 JPH068852 B2 JP H068852B2 JP 17228487 A JP17228487 A JP 17228487A JP 17228487 A JP17228487 A JP 17228487A JP H068852 B2 JPH068852 B2 JP H068852B2
Authority
JP
Japan
Prior art keywords
partial discharge
voltage
frequency
discharge
condition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17228487A
Other languages
Japanese (ja)
Other versions
JPS6416971A (en
Inventor
弘二 芳賀
欣二郎 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP17228487A priority Critical patent/JPH068852B2/en
Publication of JPS6416971A publication Critical patent/JPS6416971A/en
Publication of JPH068852B2 publication Critical patent/JPH068852B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高電圧回転電機のコイル絶縁,樹脂モール
ド変圧器のモールドコイル,樹脂モールドブッシング,
高圧電力ケーブル等主として固体絶縁方式の高電圧電気
機器とその部品を対象とした部分放電の測定による電気
絶縁診断方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to a coil insulation of a high-voltage rotating electric machine, a mold coil of a resin mold transformer, a resin mold bushing,
The present invention relates to a method for diagnosing electrical insulation by measuring partial discharge mainly for high-voltage electrical equipment of solid insulation type such as high-voltage power cables and parts thereof.

〔従来の技術〕[Conventional technology]

固体絶縁方式の高電圧電気機器,ことに電気的,熱的,
機械的ストレスにさらされる度合が最も著しい6KV以上
の高圧回転電機コイルの絶縁診断手法としては、電気的
あるいは材料化学的絶縁診断手法があるが、後者の材料
化学的絶縁診断手法は未だ研究の段階であり実際の高圧
回転電機コイルとの対応が難しいことから一般には前者
の電気的絶縁診断手法が用いられる。この電気的絶縁診
断手法としては、熱,ヒートサイクル等種々の劣化スト
レスにより高圧回転電機コイルの絶縁層に発生する空隙
を検知する手段として、直流抵抗,誘電正接(tanδ)
および部分放電を測定する方法がある。直流抵抗の測定
は絶縁層の空隙箇所の湿潤度合を判定するものであり、
誘電正接の測定は絶縁層の吸湿,枯れおよび空隙で発生
するコロナ放電を平均的に測定判定するものであり、部
分放電の測定は局所的な空隙に着目してその空隙の部分
で発生するコロナ放電を測定し判定するものである。
Solid insulation high voltage electrical equipment, especially electrical, thermal,
There are electrical or material chemical insulation diagnosis methods as insulation diagnosis methods for high-voltage rotating electric machine coils of 6KV or more, which are most exposed to mechanical stress, but the latter material chemical insulation diagnosis method is still at the stage of research. Therefore, the former electrical insulation diagnosis method is generally used because it is difficult to correspond to the actual high-voltage rotating electric machine coil. This electrical insulation diagnosis method includes direct current resistance and dielectric loss tangent (tan δ) as means for detecting voids generated in the insulating layer of the high voltage rotating electric machine coil due to various deterioration stresses such as heat and heat cycles.
And there is a method of measuring partial discharge. The measurement of the DC resistance is to determine the degree of wetting of the void portion of the insulating layer,
The dielectric loss tangent is an average of the moisture absorption, withdrawal and corona discharge of the insulating layer, and the partial discharge is measured by focusing on the local void and corona discharge generated in the void. The discharge is measured and determined.

ところで、高圧回転電機の絶縁層を結合する樹脂は古く
はアスファルトコンパウンドであったが、現在製作され
ているあるいは実際に運転に供されている高圧回転電機
の大部分な耐熱特性に優れたポリエステルあるいはエポ
キシ樹脂等のレジン系に変わっている。このため、耐熱
性の悪いアスファルトコンパウンド絶縁での劣化は絶縁
層のふくれすなわち絶縁層の空隙発生から始まることか
らこの空隙を検知すれば良く、これまでの電気的絶縁診
断手法はこの面で有効に活用されてきた。しかしながら
現在のポリエステルあるいはエポキシ樹脂等のレジン系
絶縁では絶縁の耐熱性が優れていることからコイル絶縁
層内で空隙が生じ、その部分のコロナ放電によって絶縁
層が侵蝕され,事故に至ることはまれになり、劣化の発
端がコイル絶縁層内から他の部分に移行しており、これ
までの電気的手法では劣化をその種類別にとらえること
は困難となっている。
By the way, the resin that binds the insulating layer of the high-voltage rotating electric machine was an asphalt compound in the old days, but most of the high-voltage rotating electric machines that are currently manufactured or are actually used for operation are polyester or It has been changed to resin such as epoxy resin. Therefore, deterioration in asphalt compound insulation, which has poor heat resistance, begins with blistering of the insulating layer, that is, voids in the insulating layer.It is sufficient to detect this void, and conventional electrical insulation diagnostic methods are effective in this respect. It has been used. However, current resin-based insulation such as polyester or epoxy resin has excellent heat resistance of insulation, and therefore voids are created in the coil insulation layer, and corona discharge in that area corrodes the insulation layer, which rarely leads to an accident. Therefore, the origin of the deterioration is shifted from the inside of the coil insulating layer to another portion, and it is difficult to catch the deterioration according to the type by the electric method so far.

第6図は高圧回転電機コイルを鉄心スロットに収納した
状態を示す破砕断面図であり、鉄心1のスロットに収納
されたコイル2は整型コイル導体3とこれを包囲するレ
ジン系の対地主絶縁層4からなり、主絶縁層4の表面に
はスロット挿通部分を幾分超える長さにわたって低抵抗
塗料等からなる外部コロナ防止層5が施され、外部コロ
ナ防止層5が鉄心1と同電位に保持されることによりコ
イルと鉄心との隙間での部分放電(スロット放電とよ
ぶ)の発生が阻止される。また外部コロナ防止層5の両
端部には高抵抗塗料等からなるエンドコロナ防止層6が
施され、外部コロナ防止層5の端部の電界集中によって
生ずる沿面方向の部分放電(エンド放電とよぶ)の発生
が阻止される。
FIG. 6 is a fragmentary cross-sectional view showing a state where the high-voltage rotating electric machine coil is housed in the iron core slot. The coil 2 housed in the slot of the iron core 1 is a shaped coil conductor 3 and a resin-based ground main insulation surrounding the shaped coil conductor 3. The surface of the main insulating layer 4 is provided with an outer corona preventive layer 5 made of a low resistance paint or the like over a length slightly exceeding the slot insertion part, and the outer corona preventive layer 5 is at the same potential as the iron core 1. By being held, the occurrence of partial discharge (called slot discharge) in the gap between the coil and the iron core is prevented. Further, end corona preventive layers 6 made of high resistance paint or the like are applied to both ends of the outer corona preventive layer 5, and a partial discharge in a creeping direction caused by electric field concentration at the ends of the outer corona preventive layer 5 (called end discharge). Is prevented from occurring.

このように形成された高圧回転電機コイルの事故例を詳
細に述べると、先ず高圧回転電機コイルでの劣化の発端
は外部コロナ防止層5の損傷あるいはエンドコロナ防止
層6の損傷が多い。次にその内容であるが、外防コロナ
防止層の損傷の場合は、高圧回転電機コイルを押え込ん
でいる楔などの枯れによってコイルの固定がゆるむと電
磁振動によりコイルが振動し、コイル表面に施されてい
る外部コロナ防止層5が欠落し、外部コロナ防止層5と
鉄心1の間の電気的接触が不具合となり、鉄心スロット
内でスロット放電が発生し、遂にはコイル絶縁層が侵蝕
されて絶縁破壊に至るものである。またエンドコロナ防
止層6の損傷の場合は、エンドコロナ防止層6の表面上
に吸湿性の導電性ダストが付着し、これまでコイル絶縁
表面にかかる運転電圧をエンドコロナ防止層6で徐々に
低下させて沿面放電を抑制していた機能が低下し、沿面
放電(エンド放電)が生じ遂にはエンドコロナ防止層の
欠損あるいは絶縁層が侵蝕されて絶縁破壊に至るもので
ある。
Explaining in detail an example of an accident in the high-voltage rotating electric machine coil formed in this way, first, the start of deterioration in the high-voltage rotating electric machine coil is often damage to the outer corona preventing layer 5 or the end corona preventing layer 6. Next, regarding the content, in the case of damage to the outer protective corona prevention layer, the coil vibrates due to electromagnetic vibration when the coil is loosened due to withdrawal of the wedge that holds the high-voltage rotating electrical machine coil, and the coil surface vibrates. The outer corona preventing layer 5 applied is missing, electrical contact between the outer corona preventing layer 5 and the iron core 1 becomes defective, slot discharge occurs in the iron core slot, and finally the coil insulating layer is eroded. It leads to dielectric breakdown. When the end corona preventive layer 6 is damaged, hygroscopic conductive dust adheres to the surface of the end corona preventive layer 6, and the operating voltage applied to the coil insulating surface is gradually decreased by the end corona preventive layer 6 until now. As a result, the function of suppressing the creeping discharge is deteriorated, and a creeping discharge (end discharge) occurs, and finally, the defect of the end corona preventive layer or the insulating layer is eroded to cause dielectric breakdown.

従来の絶縁診断方法においては、鉄心1のスロットに巻
装されたコイル2複数個からなる巻線に商用周波数の交
流電圧を印加して部分放電を測定し、得られた最大放電
電荷−電圧特性曲線の傾向を経験的に判断して内部放
電,スロット放電,およびエンド放電を弁別する方法が
とられていた。
In the conventional insulation diagnosis method, an AC voltage of a commercial frequency is applied to a winding formed of a plurality of coils 2 wound in a slot of an iron core 1 to measure partial discharge, and the maximum discharge charge-voltage characteristic obtained is obtained. The method of discriminating the internal discharge, the slot discharge, and the end discharge by empirically judging the tendency of the curve has been adopted.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

第7図は従来方法による最大放電電荷−電圧特性を示す
特性線図であり、曲線10Aは主絶縁層4内に人工空隙
を,曲線10Bは外部コロナ防止層5に人工欠陥を,曲
線10Cはエンドコロナ防止層6に人工欠陥をそれぞれ
作ったコイルの特性を示したものである。曲線10A,
10B,および10Cは最大放電電荷量は互いに異なる
ものの、印加電圧に対する傾向はほとんど差が認められ
ず、かつ欠陥の大きさによっては最大放電電荷量が逆転
する場合もあり得るので、このような特性曲線から経験
的に部分放電発生部位を特定することは著しい無理があ
り、信頼できる診断結果を得難いという欠点があった。
FIG. 7 is a characteristic diagram showing the maximum discharge charge-voltage characteristic by the conventional method. Curve 10A shows an artificial void in the main insulating layer 4, curve 10B shows an artificial defect in the outer corona preventing layer 5, and curve 10C shows. The characteristics of the coils having artificial defects formed in the end corona preventive layer 6 are shown. Curve 10A,
Although 10B and 10C have different maximum discharge charge amounts, there is almost no difference in the tendency with respect to the applied voltage, and the maximum discharge charge amount may be reversed depending on the size of the defect. It is extremely difficult to empirically identify the partial discharge occurrence site from the curve, and there is a drawback that it is difficult to obtain a reliable diagnostic result.

また、絶縁診断結果の信頼性が低いために、外部コロナ
を主絶縁層の劣化に基づく内部コロナと誤判断して巻線
の巻き替えを行ってしまうなどの不都合が間々生ずると
いう問題があった。
Further, since the reliability of the insulation diagnosis result is low, there is a problem that the external corona is mistakenly judged to be the internal corona due to the deterioration of the main insulating layer and the winding is rewound. .

この発明の目的は、電気機器絶縁の欠陥の種類と部分放
電特性との新たな結び付きを利用することにより、部分
放電発生部位の標定を可能にすることにある。
An object of the present invention is to enable localization of a partial discharge occurrence site by utilizing a new connection between the type of defect in electrical equipment insulation and the partial discharge characteristic.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために、この発明によれば、供試
電気機器等の絶縁に交流高電圧を印加して部分放電を検
出することにより前記絶縁の異常診断を行う方法におい
て、商用周波交流電圧および数Hz以下,好ましくは数
分の−Hz以下の低周波交流電圧を印加してそれぞれ部
分放電パルスをその正負極性別に測定し、前記印加電圧
の周波数,部分放電検出の有無,および部分放電パルス
の極性の組合わせ条件を前記絶縁の部分放電発生部位ご
とにあらかじめ定まる組合わせ条件と照合することによ
り部分放電発生部位を標定することとする。
In order to solve the above-mentioned problems, according to the present invention, a method for diagnosing an insulation abnormality by applying a high AC voltage to the insulation of a test electrical device or the like to detect a partial discharge is used. Voltage and a low-frequency alternating voltage of several Hz or less, preferably a few minutes of −Hz or less, and each partial discharge pulse is measured according to its positive or negative polarity. The frequency of the applied voltage, the presence or absence of partial discharge detection, and the partial discharge pulse are measured. The partial discharge occurrence site is determined by collating the combination condition of the discharge pulse polarities with the combination condition determined in advance for each insulating partial discharge occurrence site.

〔作用〕[Action]

この発明方法は、人工欠陥を有する高電圧回転電機コイ
ルの最大放電電荷量−電圧特性を印加電圧の周波数を商
用周波数(50Hz,60Hz)から0.01Hz程度
の低周波領域まで変えて測定する過程で発見された前記
特性の特異性に基づいてなされたもので、商用周波数の
交流電圧を印加して得られた特性はすでに第7図につい
て説明したように、主絶縁層中に空隙を作ったコイル
(内部放電),外部コロナ防止層に欠陥を作ったコイル
(スロット放電),エンドコロナ防止層に欠陥を作った
コイル(エンド放電)のいずれにおいても部分放電が検
出され、かつ正負両極性の部分放電パルスが検出される
が、低周波領域においては内部放電については商用周波
電圧における特性とほぼ同じ特性を示すものに対し、ス
ロット放電は正極性パルスのみ検出され負極性パルスは
検出されず、エンド放電は正負両極性パルスともに検出
されず、部分発生部位により低周波部分放電特性に差異
を生ずることが明らかとなった。この発明は、上記周波
数と正負極性放電パルスの組合わせ条件を絶縁診断の欠
陥の種類(部分放電発生部位)の標定に利用することに
より従来ほとんど不可能であった部分放電発生部位の標
定を可能にしたものである。具体的な手段としては、供
試電気機器に商用周波交流電圧および数Hz以下、好ま
しくは数分の−Hz以下の低周波交流電圧を印加してそ
れぞれ部分放電パルスをその正負極性別に測定し、正負
部分放電パルスの有る無しと周波数との組合せ条件を部
分放電発生部位毎にあらかじめ定まる組合わせ条件と照
合するようにしたことにより、対象とする電気機器ごと
に部分放電発生部位に対応した組合せ条件をあらかじめ
把握しておけば、この組合わせ条件と測定結果との照合
により供試電気機器の部分放電発生部位を標定できる。
また、部分放電発位部の標定が最大部分放電電荷の大き
さの比較でなく、部分放電電荷の検出の有無によって行
われるので、監視技術者の経験的判断ミスに基づく誤判
断が回避され、信頼性の高い標定結果が得られる。
The method of the present invention is a process of measuring the maximum discharge charge amount-voltage characteristics of a high voltage rotating electric machine coil having an artificial defect by changing the frequency of the applied voltage from a commercial frequency (50 Hz, 60 Hz) to a low frequency region of about 0.01 Hz. The characteristics obtained by applying an AC voltage of a commercial frequency were created based on the peculiarities of the above-mentioned characteristics found in 1. As described above with reference to FIG. 7, a void was formed in the main insulating layer. Partial discharge is detected in both the coil (internal discharge), the coil with a defect in the outer corona prevention layer (slot discharge), and the coil with a defect in the end corona prevention layer (end discharge), and both positive and negative polarities are detected. Although a partial discharge pulse is detected, in the low frequency region, internal discharge shows almost the same characteristics as commercial frequency voltage, whereas slot discharge has positive polarity. Negative pulse is detected only pulse is not detected, the end discharge is not detected in both the positive and negative bipolar pulse, can result a difference in low frequency partial discharge characteristics revealed by partial generation site. The present invention makes it possible to locate a partial discharge occurrence site, which was almost impossible in the past, by utilizing the combination condition of the above frequency and positive / negative polarity discharge pulse for locating the defect type (partial discharge occurrence site) of insulation diagnosis. It is the one. As a concrete means, a commercial frequency AC voltage and a low frequency AC voltage of several Hz or less, preferably a few minutes of −Hz or less are applied to the electrical equipment under test, and the partial discharge pulses are measured according to their positive and negative polarities. By matching the combination conditions of the presence / absence of positive / negative partial discharge pulse and frequency with the combination condition determined in advance for each partial discharge occurrence site, the combination corresponding to the partial discharge occurrence site for each target electric device If the conditions are known in advance, it is possible to determine the partial discharge occurrence site of the electrical equipment under test by comparing the combination conditions with the measurement results.
Further, since the orientation of the partial discharge starting portion is determined not by comparing the magnitudes of the maximum partial discharge charges but by the presence or absence of the detection of the partial discharge charges, erroneous determinations based on empirical determination errors of the monitoring engineer are avoided, Reliable orientation results are obtained.

〔発明の実施例〕Example of Invention

以下この発明方法を実施例に基づいて説明する。 The method of the present invention will be described below based on examples.

第1図はこの発明方法における部分放電測定回路を示す
原理的構造図であり、高電圧回転電機等の供試体100
に可変周波数の交流電圧を印加する高電圧電源11,供
試体に並列接続された結合コンデンサ12,結合コンデ
ンサ12の大地電位側に設けられた部分放電測定器1
3,および測定データのモニター14とで構成される。
高電圧電源11としては、一般に商用周波(50Hzあ
るいは60Hz)の周波数固定の高圧トランスが用いら
れるが、ここでは部分放電の周波数特性を測定するため
に周波数可変高電圧電源が用いられる。周波数可変高電
圧電源11としては、正極性および負極性の直流高電圧
を組合せプログラムコントロールにより正弦波を作る方
式(特開昭60−219965号公報参照)が最も簡単
で、可変周波数範囲は約0.01〜100Hzである。
ただし、商用周波電源と低周波電源と各々別のものを使
用してもよい。部分放電検出器13としては市販の同調
式コロナ測定器、あるいは低周波領域では部分放電パル
ス発生間隔が長くなるためピークホールド形のコロナ測
定器あるいはデジタルメモリーなど記憶装置を有する部
分放電測定器などが用いられる。
FIG. 1 is a principle structural diagram showing a partial discharge measuring circuit in the method of the present invention. A test piece 100 such as a high voltage rotating electric machine is shown.
High-voltage power supply 11 for applying an alternating voltage of variable frequency to the capacitor, a coupling capacitor 12 connected in parallel to the sample, and a partial discharge measuring instrument 1 provided on the ground potential side of the coupling capacitor 12.
3 and a monitor 14 for measurement data.
As the high-voltage power supply 11, a high-voltage transformer having a fixed commercial frequency (50 Hz or 60 Hz) is generally used. Here, a variable frequency high-voltage power supply is used to measure the frequency characteristic of partial discharge. As the frequency variable high voltage power source 11, the method of making a sine wave by program control combining positive and negative DC high voltages is the simplest (see JP-A-60-219965), and the variable frequency range is about 0. 0.01 to 100 Hz.
However, a commercial frequency power source and a low frequency power source may be used separately. As the partial discharge detector 13, a commercially available tuned corona measuring device, or a peak hold type corona measuring device or a partial discharge measuring device having a storage device such as a digital memory because the interval of partial discharge pulse generation becomes long in a low frequency region. Used.

このように構成された部分放電の測定回路において、供
試体100としての高圧回転電機の巻線に高電圧電源か
ら供給される電圧を徐々に高めると、供試体が欠陥を含
む場合にはその欠陥部分から部分放電が発生し、図中実
線矢印で示す部分放電パルス101および破線矢印で示
す部分放電パルス102が供試体100と結合コンデン
サ12とで形成される部分放電パルスの閉ループに互い
に逆向きに流れ部分放電測定器13で検出され、モニタ
ー14で観測される。ここでは、実線矢印方向に向う部
分放電パルス101を正極性パルス,逆向きの部分放電
パルス102を負極性パルスと定義する。
In the partial discharge measuring circuit configured as described above, when the voltage supplied from the high-voltage power supply to the winding of the high-voltage rotating electric machine as the test piece 100 is gradually increased, the test piece including the defect will be defective. Partial discharge is generated from the part, and a partial discharge pulse 101 indicated by a solid line arrow and a partial discharge pulse 102 indicated by a broken line arrow in the closed loop of the partial discharge pulse formed by the test object 100 and the coupling capacitor 12 in opposite directions. It is detected by the flow partial discharge measuring instrument 13 and observed by the monitor 14. Here, the partial discharge pulse 101 directed in the direction of the solid arrow is defined as a positive polarity pulse, and the reverse partial discharge pulse 102 is defined as a negative polarity pulse.

つぎに、対地主絶縁層に故意に空隙を形成した回転電機
コイルに電圧が一定で周波数が変化する交流高電圧を印
加して最大放電電荷量一周波数特性を測定した。その結
果は第2図に示すように、正極性内部放電パルス101
A,負極性内部放電パルス102Aともに数10Hzか
ら0.01Hzまでの広い周波領域にわたって最大放電
電荷量1000Pcオーダの放電パルスが発生し、商用
周波数と数Hz以下の低周波領域とで顕著な差異は認め
られなかった。
Next, an AC high voltage with a constant voltage and varying frequency was applied to a rotating electrical machine coil in which an air gap was intentionally formed in the ground main insulating layer, and the maximum discharge charge-frequency characteristic was measured. As a result, as shown in FIG.
Both the A and the negative polarity internal discharge pulse 102A generate a discharge pulse with a maximum discharge charge amount of 1000 Pc over a wide frequency range from several tens Hz to 0.01 Hz, and a significant difference between the commercial frequency and the low frequency region of several Hz or less I was not able to admit.

第3図は外部コロナ防止層に故意に欠落部を設けた前記
と同じ定格の回転電機コイルに前記と同じ電圧を印加し
て求めた最大放電電荷量−周波数特性線図であり、正極
性のスロット放電パルス101Bの最大放電電荷量が前
記内部放電パルス101Aに比べて数十倍大きいもの
の、周波数に対する放電電荷量の変化は少い。一方、負
極性のスロット放電パルス102Bは数Hz以上の商用
周波数領域では発生するものの、1Hz以下の低周波領
域では検出されず、内部放電パルスの特性と容易に弁別
できる特性傾向を示した。
FIG. 3 is a maximum discharge charge amount-frequency characteristic diagram obtained by applying the same voltage as the above to a rotating electric machine coil having the same rating as the above, in which the external corona prevention layer is intentionally provided with a missing portion, Although the maximum discharge charge amount of the slot discharge pulse 101B is several ten times larger than that of the internal discharge pulse 101A, the change of the discharge charge amount with respect to the frequency is small. On the other hand, although the negative polarity slot discharge pulse 102B is generated in the commercial frequency region of several Hz or higher, it is not detected in the low frequency region of 1 Hz or lower, showing a characteristic tendency that can be easily distinguished from the characteristic of the internal discharge pulse.

第4図はエンドコロナ防止層に欠陥を形成したコイルに
ついて求めたエンド放電パルスの特性線図であり、1H
z以下の低周波領域では正極性のエンド放電パルス10
1C,負極性のエンド放電パルス102Cともに検出さ
れず、前記内部放電パルス,スロット放電パルスと容易
に弁別できる特性傾向を示した。
FIG. 4 is a characteristic diagram of an end discharge pulse obtained for a coil having a defect in the end corona preventive layer.
In the low frequency region below z, the positive end discharge pulse 10
Neither 1C nor the negative polarity end discharge pulse 102C was detected, showing a characteristic tendency that could be easily discriminated from the internal discharge pulse and the slot discharge pulse.

第5図は第2図から第4図に示した特性線図における正
負両極性パルスの有無と周波数との組合わせ条件を欠陥
の種類(部分放電発生部位)別にまとめた結果を示し、
低周波交流電圧を印加して得られる正負両極性パルスの
有無を相互に比較することにより、部分放電発生部位を
容易に弁別できる。したがって、供試体に先ず商用周波
交流電圧を印加して部分放電の発生とその印加電圧を求
め、これと同じ電圧値の低周波交流電圧を印加して正負
両極性放電パルスの有無を調べ、第5図に示す組合わせ
条件と照合すれば、供試体の部分放電発生部位が容易に
標定される。また、数千Pcオーダの部分放電パルスが
検出されるか否かによって標定が行われるので商用周波
数における部分放電電荷の大きさの差異から部分放電発
生部位を経験的に弁別する従来方法に比べて遥かに信頼
性の高い標定結果が得られる。
FIG. 5 shows the result of summarizing the combination conditions of the presence / absence of positive and negative bipolar pulses and the frequency in the characteristic diagrams shown in FIGS. 2 to 4 by defect type (partial discharge occurrence site),
By comparing the presence / absence of positive / negative bipolar pulses obtained by applying the low-frequency AC voltage with each other, it is possible to easily discriminate the partial discharge occurrence site. Therefore, first, a commercial frequency AC voltage is applied to the test piece to determine the occurrence of partial discharge and its applied voltage, and a low frequency AC voltage of the same voltage value is applied to check for the presence of positive / negative bipolar discharge pulses. By comparing with the combination conditions shown in FIG. 5, the partial discharge occurrence site of the sample can be easily located. Further, since the orientation is performed depending on whether or not the partial discharge pulse in the order of several thousand Pc is detected, compared to the conventional method of empirically discriminating the partial discharge occurrence site from the difference in the magnitude of the partial discharge charge at the commercial frequency. Much more reliable orientation results are obtained.

なお、実施例は回転電機コイルを対象とした場合を例に
説明したが、固体絶縁方式の他の電気機器例えば樹脂モ
ールドトランス,樹脂モールドブッシング,プラスチッ
ク絶縁電力ケーブル等においても、高電圧導体を包囲す
る主絶縁層と、主絶縁層の外側に配された接地金属部を
有する点では共通した絶縁構造を有しており、この発明
による電気絶縁診断方法を有効に利用できる。
Although the embodiment has been described by taking the case of the rotary electric machine coil as an example, the high voltage conductor is also enclosed in other solid insulation type electric devices such as a resin mold transformer, a resin mold bushing, and a plastic insulated power cable. The main insulating layer has a common insulating structure in that it has a main insulating layer and a ground metal portion arranged outside the main insulating layer, and the electrical insulation diagnosis method according to the present invention can be effectively used.

〔発明の効果〕〔The invention's effect〕

この発明方法は前述のように、供試体に商用周波交流電
圧および数Hz以下,好ましくは数分の−Hz以下の低
周波交流電圧を印加して正負両極性部分放電パルスの有
無と周波数との組合わせ条件を求め、部分放電発生部位
ごとにあらかじめ用意された組合せ条件と照合すること
により部分放電発生部位を標定できるよう構成した。そ
の結果、部分放電パルスの有無によって部分放電発生部
位を標定できるので、従来方法における最大部分放電電
荷の差による標定に比べて著しく信頼性の高い標定が可
能となり、かつ絶縁診断技術者の経験的判断の必要性が
排除され、したがって実施が容易で標定精度の高い電気
絶縁診断方法を提供できる。また、絶縁異常をその欠陥
別に把握できるので的確な寿命余知が可能となり、計画
的な修繕計画や修繕内容を把握でき、したがって従来方
法で問題となった誤判断に基づく過剰な修繕とそれに伴
う修理期間の長期化や経済的負担が排除され、高い予防
保全効果を得ることができる。ことにレジン系絶縁コイ
ルを用いた回転電機においては、残存寿命に大きな影響
を及ぼす外部コロナ防止層やエンドコロナ防止層の欠陥
と、主絶縁層の劣化に基づく空隙の発生とをはっきり弁
別できることにより、コロナ防止層を補修する比較的軽
い修繕によって回転電機の残存寿命を大幅に延長できる
利点が得られる。
As described above, the method of the present invention applies a commercial frequency AC voltage and a low frequency AC voltage of several Hz or less, preferably -min. It was constructed so that the partial discharge occurrence site could be determined by finding the combination condition and comparing it with the prepared combination condition for each partial discharge occurrence site. As a result, the location of the partial discharge can be determined depending on the presence or absence of the partial discharge pulse, so that it is possible to achieve a significantly more reliable orientation than the conventional method based on the difference in the maximum partial discharge charge, and the insulation diagnosis engineer's experience It is possible to provide an electrical insulation diagnosis method that eliminates the need for judgment and is therefore easy to carry out and has high orientation accuracy. In addition, since it is possible to grasp the insulation abnormality for each defect, it becomes possible to accurately identify the life expectancy, and it is possible to grasp the planned repair plan and the repair contents. A long repair period and economic burden are eliminated, and a high preventive maintenance effect can be obtained. In particular, in rotating electrical machines using resin-based insulated coils, it is possible to clearly distinguish defects in the external corona prevention layer and end corona prevention layer, which have a large effect on the remaining life, from the occurrence of voids due to deterioration of the main insulating layer. The relatively light repair of repairing the corona preventive layer has the advantage of significantly extending the remaining life of the rotating electric machine.

【図面の簡単な説明】[Brief description of drawings]

第1図は実施例方法を説明するための部分放電測定回路
の原理的構成図、第2図,第3図,および第4図は、実
施例方法により異なる人工欠陥を有する回転電機コイル
を用いて求めた最大放電電荷一周波数特性線図、第5図
は第2図,第3図,および第4図から求めた部分放電発
生部位別組合わせ条件、第6図は回転電機コイルを示す
破砕断面図、第7図は従来方法による最大放電電荷一電
圧特性線図である。 1…鉄心、2…コイル、3…整型コイル導体、4…対地
主絶縁層、5…外部コロナ防止層、6…エンドコロナ防
止層、11…高電圧電源、12…結合コンデンサ、13
…部分放電測定器、100…供試体、101…正極性放
電パルス、102…負極性放電パルス。
FIG. 1 is a principle configuration diagram of a partial discharge measuring circuit for explaining an embodiment method, and FIGS. 2, 3, and 4 show a rotary electric machine coil having an artificial defect which differs depending on the embodiment method. Fig. 5 shows the maximum discharge charge-frequency characteristic diagram obtained from Fig. 5, Fig. 5 shows the combination conditions for each partial discharge generation site obtained from Fig. 2, Fig. 3, and Fig. 4, and Fig. 6 shows the crushing of a rotating electric machine coil. FIG. 7 is a cross-sectional view and FIG. 7 is a maximum discharge charge-voltage characteristic diagram by the conventional method. 1 ... Iron core, 2 ... Coil, 3 ... Adjustable coil conductor, 4 ... Main insulating layer against ground, 5 ... External corona prevention layer, 6 ... End corona prevention layer, 11 ... High voltage power supply, 12 ... Coupling capacitor, 13
... Partial discharge measuring instrument, 100 ... Specimen, 101 ... Positive discharge pulse, 102 ... Negative discharge pulse.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】供試電気機器等の絶縁に交流高電圧を印加
して部分放電を検出することにより前記絶縁の異常診断
を行う方法において、商用周波交流電圧および数Hz以
下、好ましは数分の一Hz以下の低周波交流電圧を印加し
てそれぞれ部分放電パルスをその正負極性別に測定し、
前記印加電圧の周波数,部分放電検出の有無,および部
分放電パルスの極性の組合せ条件を前記絶縁の部分放電
発生部位ごとにあらかじめ定まる組合せ条件と照合する
ことにより部分放電発生部位を標定することを特徴とす
る電気絶縁診断方法。
1. A method for diagnosing an insulation abnormality by applying a high AC voltage to the insulation of a test electrical device or the like to detect a partial discharge, in a commercial frequency AC voltage and several Hz or less, preferably several. Applying a low-frequency AC voltage of 1 Hz or less and measuring partial discharge pulses for each positive and negative polarity,
Characterizing the combination of the frequency of the applied voltage, the presence / absence of partial discharge detection, and the polarity of the partial discharge pulse with the combination condition determined in advance for each partial discharge occurrence part of the insulation to locate the partial discharge occurrence part Electrical insulation diagnosis method.
【請求項2】特許請求の範囲第1項記載の方法におい
て、供試電気機器が高電圧回転電機であり、その鉄心ス
ロットに収納されたコイルの対地主絶縁層の表面に形成
された外部コロナ防止層およびエンドコロナ防止層を有
するものであることを特徴とする電気絶縁診断方法。
2. The method according to claim 1, wherein the electric device under test is a high-voltage rotating electric machine, and an outer corona formed on the surface of the ground main insulating layer of the coil housed in the iron core slot. A method for diagnosing electrical insulation, comprising an anti-corrosion layer and an anti-corona prevention layer.
【請求項3】特許請求の範囲第1項または第2項記載の
方法において、あらかじめ定まる組合せ条件が各周波数
条件,各正負極性条件で部分放電が有るとき対地主絶縁
層の内部部分放電と判定するものであることを特徴とす
る電気絶縁診断方法。
3. The method according to claim 1 or 2, wherein when the predetermined combination condition is a partial discharge under each frequency condition and each positive and negative polarity condition, it is determined to be an internal partial discharge of the ground main insulating layer. A method for diagnosing electrical insulation, characterized in that
【請求項4】特許請求の範囲第2項記載の方法におい
て、あらかじめ定まる組合わせ条件が低周波負極性条件
で部分放電がなく、上記条件を除く他の条件で部分放電
があるとき外部コロナ防止層の異常に基づくスロット放
電と判定するものであることを特徴とする電気絶縁診断
方法。
4. The method according to claim 2, wherein the predetermined combination condition is a low-frequency negative polarity condition and there is no partial discharge, and there is a partial discharge under other conditions except the above conditions. A method for diagnosing electrical insulation, characterized in that it is determined as slot discharge based on layer abnormality.
【請求項5】特許請求の範囲第2項記載の方法におい
て、あらかじめ定まる組合わせ条件が低周波条件で部分
放電がなく、商用周波条件で部分放電があるときエンド
コロナ防止層の異常に基づくエンド放電と判定するもの
であることを特徴とする電気絶縁診断方法。
5. The method according to claim 2, wherein the predetermined combination condition is low frequency condition without partial discharge and commercial frequency condition with partial discharge. End due to abnormality of end corona preventive layer. A method for diagnosing electrical insulation, characterized in that it is judged as discharge.
JP17228487A 1987-07-10 1987-07-10 Electrical insulation diagnosis method Expired - Lifetime JPH068852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17228487A JPH068852B2 (en) 1987-07-10 1987-07-10 Electrical insulation diagnosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17228487A JPH068852B2 (en) 1987-07-10 1987-07-10 Electrical insulation diagnosis method

Publications (2)

Publication Number Publication Date
JPS6416971A JPS6416971A (en) 1989-01-20
JPH068852B2 true JPH068852B2 (en) 1994-02-02

Family

ID=15939072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17228487A Expired - Lifetime JPH068852B2 (en) 1987-07-10 1987-07-10 Electrical insulation diagnosis method

Country Status (1)

Country Link
JP (1) JPH068852B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288884B (en) * 2011-09-13 2014-06-18 华北电力大学(保定) External insulation discharging detecting method based on ultraviolet light spots
CN104360242A (en) * 2014-10-01 2015-02-18 玉林市科邦技术服务有限公司 System for online monitoring discharging failures of high-voltage switch cabinet

Also Published As

Publication number Publication date
JPS6416971A (en) 1989-01-20

Similar Documents

Publication Publication Date Title
Paoletti et al. Partial discharge theory and technologies related to medium-voltage electrical equipment
US6483319B1 (en) Method of conducting broadband impedance response tests to predict stator winding failure
US7508119B2 (en) Multifunction sensor system for electrical machines
US5032826A (en) Core monitor that uses rotor shaft voltages
US20050218906A1 (en) System and method for monitoring of insulation condition
KR100730968B1 (en) A method for determining the presence of water in materials
Kimura Progress of insulation ageing and diagnostics of high voltage rotating machine windings in Japan
US6392419B1 (en) Apparatus for and method of monitoring the status of the insulation on the wire in a winding
US6573727B2 (en) Method and apparatus for evaluation of insulation in variable speed motors
Warren et al. Recent developments in diagnostic testing of stator windings
Rux et al. Assessing the condition of hydrogenerator stator winding insulation using the ramped high direct-voltage test method
JPH068852B2 (en) Electrical insulation diagnosis method
Gutten et al. Frequency diagnostics of insulating system of power transformers
Phloymuk et al. Partial discharge behaviors of a surface discharge problem of the stator insulation for a synchronous machine
Phloymuk et al. The Dissipation Factor (tan δ) Monitoring of A Stator Winding Insulation of A Synchronous Machine
JP4802302B2 (en) Diagnosis method for water tree deterioration of power cables
CN113009286A (en) Method for diagnosing insulation defect at end part of stator wire rod of generator
Brncal et al. Analysing of insulating system oil-paper of power transformers by frequency dielectric spectroscopy
Rao et al. Assessment of Stator Winding Insulation. Part 1-Review of Deterioration Mechanisms and Condition Monitoring Techniques
Brncal et al. Frequency diagnostics of transformer insulating parameters
Phloymuk et al. Dielectric Properties Analysis of Gas Turbine Synchronous Generator by Polarization and Depolarization Current Measuremen
Prasad et al. PD Measurement of Rotating Machine for Condition Monitoring
Vogelsang et al. Performance testing of high voltage generator-and motor insulation systems
He Investigation on Diagnostic Methods of Rotating Machines and Influence Factors Based on Existing Testing Products
Saodah et al. Internal On-line Partial Discharge Analysis of 68.75 MVA Generator Stator Winding Insulation.