JPH0688523A - Waste heat recovery system - Google Patents

Waste heat recovery system

Info

Publication number
JPH0688523A
JPH0688523A JP4239491A JP23949192A JPH0688523A JP H0688523 A JPH0688523 A JP H0688523A JP 4239491 A JP4239491 A JP 4239491A JP 23949192 A JP23949192 A JP 23949192A JP H0688523 A JPH0688523 A JP H0688523A
Authority
JP
Japan
Prior art keywords
combustion engine
internal combustion
cooling
water jacket
cooling medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4239491A
Other languages
Japanese (ja)
Inventor
Hideyo Omori
英世 大森
Atsushi Ogino
温 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP4239491A priority Critical patent/JPH0688523A/en
Publication of JPH0688523A publication Critical patent/JPH0688523A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To feed an expander with an amount of sufficient energy as preventing any knocking from occurring, in the waste heat recovery system of an internal combustion engine converting its waste heat into mechanical energy. CONSTITUTION:A water jacket 7 for cooling the peripheral part of an intake port 2 and another water jacket 8 for cooling each peripheral part of a combustion chamber and an exhaust port 3 both are separately installed in an internal combustion engine 21. A cooling medium circulating route combining a Rankine cycle system is composed of a feed pump 13, the water jacket 8, a heater 16 using exhaust heat as a heat source, an expander 17 converting steam's expansion energy into the mechanical one and a condenser 22. Likewise, this cooling medium circulating route preventing the overheat of fuel gas is composed of the feed pump 13, a pressure regulating valve 15, the water jacket 7 and the condenser 20.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内燃機関の廃熱回収装置
に係り、特に内燃機関で発生した熱により蒸気化した冷
却媒体で作動するエキスパンダにより、廃熱エネルギを
機械的エネルギに変換する内燃機関の廃熱回収装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a waste heat recovery system for an internal combustion engine, and more particularly to converting waste heat energy into mechanical energy by an expander operating with a cooling medium vaporized by the heat generated in the internal combustion engine. The present invention relates to a waste heat recovery device for an internal combustion engine.

【0002】[0002]

【従来の技術】内燃機関においては、燃焼熱や機構部材
間に生じる摩擦熱により内燃機関自身が過熱するのを防
止するための冷却機構が設けられている。代表的な冷却
方式として、内燃機関本体内に設けられたウォータジャ
ケット内に冷却水を循環させる水冷方式が知られてい
る。
2. Description of the Related Art An internal combustion engine is provided with a cooling mechanism for preventing the internal combustion engine itself from overheating due to combustion heat or frictional heat generated between mechanical members. As a typical cooling method, a water cooling method is known in which cooling water is circulated in a water jacket provided in the body of an internal combustion engine.

【0003】また、一般に水冷方式においては、ウォー
タジャケット内で内燃機関から熱を奪うことで昇温した
冷却水を、循環途中で空冷することにより降温させてか
ら再度ウォータジャケット内へと送り込んでいる。すな
わち、一般に広く用いられている内燃機関においては、
燃焼室内で行われる燃焼により発生するエネルギのう
ち、熱エネルギについては、そのほとんどが廃熱として
大気中に放熱され、有効利用されていない。
Generally, in the water cooling system, the cooling water, which has been heated by removing heat from the internal combustion engine in the water jacket, is cooled by air cooling in the middle of circulation, and is then fed again into the water jacket. . That is, in the generally widely used internal combustion engine,
Of the energy generated by the combustion performed in the combustion chamber, most of the heat energy is radiated into the atmosphere as waste heat and is not effectively used.

【0004】そこで、従来より、このように内燃機関か
ら排出される廃熱を有効に利用するための機構が提案さ
れている。例えば、実開昭61−140120号公報
は、内燃機関を冷却水の気化熱で冷却するために、ウォ
ータジャケット内で冷却水を蒸気化させるとともに、冷
却水の循環経路内に蒸気により作動するエキスパンダを
設けて、機械的エネルギを取り出す装置を開示してい
る。
Therefore, conventionally, a mechanism for effectively utilizing the waste heat discharged from the internal combustion engine has been proposed. For example, Japanese Utility Model Laid-Open No. 61-140120 discloses an extract which is operated by steam in a circulation path of cooling water while steaming the cooling water in a water jacket in order to cool the internal combustion engine with heat of vaporization of the cooling water. Disclosed is a device that provides a panda to extract mechanical energy.

【0005】上記公報記載の装置によれば、ウォータジ
ャケットから流出してくる蒸気を冷やして液化させるコ
ンデンサが、エキスパンダにより駆動される冷却ファン
で空冷される。尚、エキスパンダはコンデンサとウォー
タジャケットとの間に設けられている。
According to the apparatus described in the above publication, the condenser for cooling and liquefying the steam flowing out from the water jacket is air-cooled by the cooling fan driven by the expander. The expander is provided between the condenser and the water jacket.

【0006】すなわち、この装置を備える内燃機関で
は、廃熱エネルギが冷却ファンの駆動力として再利用さ
れており、他に独立して冷却ファンを駆動するための動
力を供給する必要がない。従って、内燃機関全体として
の効率が向上し、燃費向上を図ることができる。
That is, in the internal combustion engine equipped with this device, the waste heat energy is reused as the driving force for the cooling fan, and it is not necessary to separately supply power for driving the cooling fan. Therefore, the efficiency of the internal combustion engine as a whole is improved, and the fuel consumption can be improved.

【0007】[0007]

【発明が解決しようとする課題】しかし、上記従来の装
置においてエキスパンダを駆動するためには、エキスパ
ンダに供給される蒸気が大きなエネルギを持っているこ
とが要求される。すなわち内燃機関のウォータジャケッ
ト内において、冷却水の蒸気が十分に昇温されているこ
とが要求される。このため、上記の装置においては、定
常状態における内燃機関の温度が冷却水の沸騰温度以上
に設定されることとなる。
However, in order to drive the expander in the above-mentioned conventional apparatus, it is required that the vapor supplied to the expander has a large amount of energy. That is, it is required that the steam of the cooling water be sufficiently heated in the water jacket of the internal combustion engine. Therefore, in the above device, the temperature of the internal combustion engine in the steady state is set to the boiling temperature of the cooling water or higher.

【0008】ところで、内燃機関の温度、特に吸気ポー
ト近傍の温度は、内燃機関の特性に大きな影響を与え
る。すなわち、その温度が比較的低い場合、内燃機関の
燃焼室に供給される燃料ガスの温度が低く抑えられて出
力向上につながり、逆に燃料ガスの温度が比較的高い
と、出力低下のみならずノッキングの原因ともなる。
By the way, the temperature of the internal combustion engine, particularly the temperature in the vicinity of the intake port, greatly affects the characteristics of the internal combustion engine. That is, when the temperature is relatively low, the temperature of the fuel gas supplied to the combustion chamber of the internal combustion engine is suppressed low, which leads to an increase in output. Conversely, when the temperature of the fuel gas is relatively high, not only the output decreases. It also causes knocking.

【0009】本発明は、上述の点に鑑みてなされたもの
であり、吸気ポート近傍を比較的低温に維持する冷却媒
体循環経路を独立して設けることにより、ノッキングを
防止しつつエキスパンダに十分なエネルギを与えること
ができる内燃機関の廃熱回収装置を提供することを目的
とする。
The present invention has been made in view of the above points, and by independently providing a cooling medium circulation path that maintains a relatively low temperature in the vicinity of the intake port, it is possible to prevent knocking while being sufficient for an expander. It is an object of the present invention to provide a waste heat recovery device for an internal combustion engine that can provide various energy.

【0010】[0010]

【課題を解決するための手段】上記の課題は、内燃機関
の冷却媒体循環経路内に、前記内燃機関で生じる熱によ
り蒸気化した冷却媒体が供給されることにより作動し
て、前記熱のエネルギを機械的エネルギに変換するエキ
スパンダを備える内燃機関の廃熱回収装置において、前
記冷却媒体循環経路は、前記内燃機関の吸気ポート近傍
を冷却する第1の冷却媒体循環経路と、前記内燃機関の
所定の部位を冷却する第2の冷却媒体循環経路とで構成
され、前記第1の冷却媒体循環経路は、前記エキスパン
ダをバイパスすると共に、内圧が前記第2の冷却媒体循
環経路に比べて低圧に設定されている内燃機関の廃熱回
収装置により解決される。
SUMMARY OF THE INVENTION The above-mentioned problem is caused by supplying a cooling medium which is vaporized by heat generated in the internal combustion engine into a cooling medium circulation path of the internal combustion engine to generate energy of the heat. In a waste heat recovery device for an internal combustion engine, comprising: an expander for converting the above into mechanical energy, the cooling medium circulation path includes a first cooling medium circulation path for cooling the vicinity of an intake port of the internal combustion engine, and the internal combustion engine A second cooling medium circulation path that cools a predetermined part, the first cooling medium circulation path bypasses the expander, and the internal pressure is lower than that of the second cooling medium circulation path. It is solved by the waste heat recovery device of the internal combustion engine set to.

【0011】[0011]

【作用】上記構成の内燃機関の廃熱回収装置において、
前記第1の冷却媒体循環経路を流れる冷却水は、比較的
低圧に保持され、圧縮昇温することも、沸点が上昇する
こともない。このため、前記内燃機関の前記吸気ポート
近傍は比較的低温に保たれ、前記内燃機関の燃焼室に供
給される燃料ガスの昇温が防止される。
In the waste heat recovery device for the internal combustion engine having the above structure,
The cooling water flowing through the first cooling medium circulation path is kept at a relatively low pressure, and neither compression temperature rise nor boiling point rise occurs. Therefore, the vicinity of the intake port of the internal combustion engine is kept at a relatively low temperature, and the temperature rise of the fuel gas supplied to the combustion chamber of the internal combustion engine is prevented.

【0012】一方、前記第2の冷却媒体循環経路を流れ
る冷却水は、前第1の冷却媒体循環経路を流れる冷却水
に比べて高圧に保持され、圧縮により昇温すると共に沸
点が上昇する。このため、前記第1の冷却媒体循環経路
内には、高温、すなわち高エネルギの水蒸気が発生す
る。
On the other hand, the cooling water flowing through the second cooling medium circulation passage is kept at a higher pressure than the cooling water flowing through the front first cooling medium circulation passage, and the boiling point rises as the temperature rises due to compression. Therefore, high temperature, that is, high-energy steam is generated in the first cooling medium circulation path.

【0013】従って、前記内燃機関の吸気ポート近傍は
適温に保持されたまま、前記エキスパンダには、高エネ
ルギの蒸気が供給され、前記内燃機関の燃焼室内でノッ
キングを発生させることなく高効率で廃熱が機械的エネ
ルギに変換される。
Therefore, high-energy steam is supplied to the expander while maintaining a proper temperature in the vicinity of the intake port of the internal combustion engine, and it is highly efficient without knocking in the combustion chamber of the internal combustion engine. Waste heat is converted into mechanical energy.

【0014】[0014]

【実施例】次に、本発明に係る内燃機関の廃熱回収装置
の構成をより一層明確にするために、好適な実施例につ
いて説明する。
Next, preferred embodiments will be described in order to further clarify the structure of the waste heat recovery system for an internal combustion engine according to the present invention.

【0015】図1は、本実施例装置を内燃機関に組み込
んだ場合の例を表す構成図を示す。図1において、符号
1は、本実施例装置が組み込まれた内燃機関を示してい
る。また、符号2及び符号3は、内燃機関1の吸気ポー
ト及び排気ポートを示し、それぞれ吸気弁4,排気弁5
を介して内燃機関1の燃焼室に通じている。
FIG. 1 is a block diagram showing an example in which the device of this embodiment is incorporated in an internal combustion engine. In FIG. 1, reference numeral 1 indicates an internal combustion engine in which the device of this embodiment is incorporated. Reference numerals 2 and 3 denote an intake port and an exhaust port of the internal combustion engine 1, respectively, the intake valve 4 and the exhaust valve 5
Through the combustion chamber of the internal combustion engine 1.

【0016】内燃機関1の本体を構成するシリンダブロ
ック6には、冷却水を循環させて内燃機関1が過熱する
のを防止するためのウォータジャケットが設けられてい
る。本実施例装置においては、第1の冷却媒体循環経路
の一部として吸気ポート2の周辺にウォータジャケット
7が、第2の冷却媒体循環経路の一部として燃焼室周辺
及び排気ポート3周辺にウォータジャケット8が設けら
れている。
A cylinder block 6 constituting the main body of the internal combustion engine 1 is provided with a water jacket for circulating cooling water to prevent the internal combustion engine 1 from overheating. In the apparatus of this embodiment, the water jacket 7 is provided around the intake port 2 as a part of the first cooling medium circulation path, and the water jacket 7 is provided around the combustion chamber and the exhaust port 3 as a part of the second cooling medium circulation path. A jacket 8 is provided.

【0017】ウォータジャケット7と8は、シリンダブ
ロック6内では完全に分離されており、それぞれ独立し
た経路で冷却水を循環させている。すなわち、図1に示
すように、ウォータジャケット7の場合、冷却水は流入
路9から供給されて、流出路10へと流れ、また、ウォ
ータジャケット8の場合、流入路11から供給された冷
却水は、燃焼室周辺から排気ポート3周辺へと進み、流
出路12へと流れる。尚、流入路9及び11は、共に供
給ポンプ13の出側に連通する循環路14から分岐して
構成されており、流入路9には圧力調整用のバルブ15
が設けられている。
The water jackets 7 and 8 are completely separated in the cylinder block 6, and circulate the cooling water through independent paths. That is, as shown in FIG. 1, in the case of the water jacket 7, the cooling water is supplied from the inflow passage 9 and flows to the outflow passage 10, and in the case of the water jacket 8, the cooling water is supplied from the inflow passage 11. Goes from the vicinity of the combustion chamber to the vicinity of the exhaust port 3 and flows into the outflow passage 12. The inflow passages 9 and 11 are both branched from the circulation passage 14 communicating with the outlet side of the supply pump 13, and the inflow passage 9 has a valve 15 for pressure adjustment.
Is provided.

【0018】ウォータジャケット8の流出路12は、排
気ポート3から排出される排気ガスの熱を熱源とする加
熱器16に連通し、加熱器16はさらにエキスパンダ1
7の蒸気流入口に連通している。このエキスパンダ17
は、過熱蒸気の膨張エネルギを機械的エネルギに変換す
る機能を有しており、例えば、蒸気が導入されることに
より回転する羽根車と、この羽根車の回転を外部に伝達
する減速歯車等により構成されている。
The outflow passage 12 of the water jacket 8 communicates with a heater 16 which uses the heat of the exhaust gas discharged from the exhaust port 3 as a heat source, and the heater 16 further expands the expander 1.
7 is in communication with the steam inlet. This expander 17
Has a function of converting expansion energy of superheated steam into mechanical energy. For example, an impeller that rotates by introducing steam and a reduction gear that transmits the rotation of the impeller to the outside are provided. It is configured.

【0019】エキスパンダ17の蒸気流出口は、ウォー
タジャケット7の流出路10と共に循環路18に連通し
ている。また、この循環路18と、供給ポンプ13の入
り側に連通する循環路19との間には、蒸気を冷却凝縮
させて液体にするコンデンサ20が設けられている。
The vapor outlet of the expander 17 communicates with the outflow passage 10 of the water jacket 7 and the circulation passage 18. A condenser 20 is provided between the circulation path 18 and a circulation path 19 communicating with the inlet side of the supply pump 13 to cool and condense the vapor into a liquid.

【0020】上記の供給ポンプ13,ウォータジャケッ
ト8及び加熱器16,エキスパンダ17,コンデンサ2
0は、熱エネルギを機械的エネルギに変換する装置とし
て知られているランキンサイクルシステムを構成してい
る。以下、冷却水の流れに沿って本実施例装置の動作に
ついて説明する。
The above-mentioned supply pump 13, water jacket 8 and heater 16, expander 17, condenser 2
0 constitutes a Rankine cycle system known as a device for converting heat energy into mechanical energy. The operation of the apparatus of this embodiment will be described below along the flow of cooling water.

【0021】コンデンサ20で冷却され、供給ポンプ1
3で流速を与えられた冷却水は、循環路14を通ってそ
れぞれのウォータジャケット7,8の流入路9,11へ
と進行する。次いで流入路9に分流された冷却水は、圧
力調整用のバルブ15を経てウォータジャケット7内に
進入し、また流入路11に分流された冷却水は、直接ウ
ォータジャケット8内へ進入する。
Supply pump 1 cooled by condenser 20
The cooling water given the flow velocity in 3 advances through the circulation passage 14 to the inflow passages 9 and 11 of the respective water jackets 7 and 8. Next, the cooling water diverted to the inflow passage 9 enters the water jacket 7 via the valve 15 for pressure adjustment, and the cooling water diverted to the inflow passage 11 directly enters the water jacket 8.

【0022】このため、ウォータジャケット7の内圧
は、ウォータジャケット8の内圧に比べて常に低く維持
される。尚、供給ポンプ13は、廃熱回収装置が付いて
いない通常の内燃機関に設置されるポンプに比べて高い
出力を有しており、調整バルブ15は、本実施例装置の
ウォータジャケット7の内圧が、通常の内燃機関におけ
るウォータジャケットの内圧と同一レベルになるように
設定されている。
Therefore, the internal pressure of the water jacket 7 is always kept lower than the internal pressure of the water jacket 8. The supply pump 13 has a higher output than a pump installed in a normal internal combustion engine that does not have a waste heat recovery device, and the adjusting valve 15 controls the internal pressure of the water jacket 7 of the present embodiment device. Is set to the same level as the internal pressure of the water jacket in a normal internal combustion engine.

【0023】従って、ウォータジャケット8は、通常の
内燃機関における内圧に比べて高い内圧を有することに
なり、内部を循環する冷却水の沸点が上昇する。このた
め、ウォータジャケット8内を循環する冷却水温が上昇
すると共に、そこで発生する蒸気は、高温かつ高圧の高
エネルギ蒸気となる。
Therefore, the water jacket 8 has a higher internal pressure than the internal pressure in a normal internal combustion engine, and the boiling point of the cooling water circulating inside increases. For this reason, the temperature of the cooling water circulating in the water jacket 8 rises, and the steam generated there becomes high-energy steam of high temperature and high pressure.

【0024】一方、ウォータジャケット7の内圧は、上
記したようにウォータジャケット8の内圧ほど高くな
く、廃熱回収装置の付いていない内燃機関の場合とほぼ
同レベルである。このため、ウォータジャケット7内を
循環する冷却水の水温は、内燃機関の冷却を適切に行う
ことができるレベルに保持される。尚、このため、ウォ
ータジャケット7から流出する蒸気は、低温かつ低圧の
蒸気となる。
On the other hand, the internal pressure of the water jacket 7 is not as high as the internal pressure of the water jacket 8 as described above, and is almost the same level as that of the internal combustion engine without the waste heat recovery device. Therefore, the temperature of the cooling water circulating in the water jacket 7 is maintained at a level at which the internal combustion engine can be cooled appropriately. Therefore, the steam flowing out from the water jacket 7 becomes low-temperature and low-pressure steam.

【0025】従って、本実施例装置を備える内燃機関に
おいては、吸気ポート2の近傍が十分に冷却され、燃焼
室に供給される燃料ガスが、吸気ポート2内で過熱され
てしまうようなことはない。このため、従来構成の廃熱
回収装置が組み込まれた内燃機関のように、頻繁にノッ
キングが発生するようなことがない。
Therefore, in the internal combustion engine equipped with the device of this embodiment, the vicinity of the intake port 2 is sufficiently cooled and the fuel gas supplied to the combustion chamber is not overheated in the intake port 2. Absent. Therefore, unlike the internal combustion engine in which the waste heat recovery device having the conventional configuration is incorporated, knocking does not occur frequently.

【0026】ところで、ウォータジャケット8から流出
した高エネルギ蒸気は、加熱器16でさらに過熱され、
より高いエネルギを伴ってエキスパンダ17に供給され
る。すなわち、エキスパンダ17の蒸気流入口と蒸気流
出口との間には、高い圧力差が生じる。このため、エキ
スパンダ17内に設けられている羽根車は、勢い良く回
転し、大きな機械的エネルギが発生する。
By the way, the high-energy steam flowing out from the water jacket 8 is further heated by the heater 16,
It is supplied to the expander 17 with higher energy. That is, a high pressure difference occurs between the steam inlet and the steam outlet of the expander 17. Therefore, the impeller provided in the expander 17 rotates vigorously and a large amount of mechanical energy is generated.

【0027】そして、加熱器16から高エネルギを伴っ
て流出した蒸気は、エネルギを失って低圧蒸気となり、
ウォータジャケット7から流出したきた低圧蒸気と共に
コンデンサ20に流入する。
The steam flowing out of the heater 16 with high energy loses energy and becomes low-pressure steam.
The low-pressure steam flowing out of the water jacket 7 flows into the condenser 20.

【0028】コンデンサ20に流入した低圧蒸気は、こ
こで再び冷却凝縮された後、供給ポンプ13へと進む。
以後、冷却水は上記の循環を繰り返し、吸気ポート2周
辺を効率良く冷却しながら、エキスパンダ17に高圧蒸
気を供給し続ける。
The low-pressure steam that has flowed into the condenser 20 is cooled and condensed here again, and then proceeds to the supply pump 13.
After that, the cooling water repeats the above circulation to efficiently supply the high pressure steam to the expander 17 while efficiently cooling the periphery of the intake port 2.

【0029】このように、本実施例装置は、吸気ポート
2周辺を冷却する冷却媒体循環経路と、排気ポート3周
辺及び燃焼室周辺を冷却する冷却媒体循環経路とを並列
に備えているため、両冷却媒体循環経路の内圧に差異を
設けることが可能となる。このため、吸気ポート2周辺
を適当に冷却しながら、エキスパンダ17には高圧蒸気
を供給することができる。従って、従来構成の廃熱回収
装置のように吸気ポート周辺の過熱に悩まされることな
く、高い効率で廃熱を機械的エネルギとして回収するこ
とができる。
As described above, the apparatus of this embodiment is provided with the cooling medium circulation path for cooling the periphery of the intake port 2 and the cooling medium circulation path for cooling the periphery of the exhaust port 3 and the periphery of the combustion chamber in parallel. It is possible to provide a difference in the internal pressure of both cooling medium circulation paths. Therefore, the high-pressure steam can be supplied to the expander 17 while appropriately cooling the periphery of the intake port 2. Therefore, the waste heat can be recovered as mechanical energy with high efficiency without suffering from overheating around the intake port as in the conventional waste heat recovery device.

【0030】尚、上記実施例においては、ウォータジャ
ケット7を循環する冷却水の温度は、廃熱回収装置の付
いていない一般の内燃機関における冷却水の温度とほぼ
同レベルになるように調整しているが、これに限るもの
ではなく、さらに低い温度に設定してもよい。
In the above embodiment, the temperature of the cooling water circulating through the water jacket 7 is adjusted so as to be substantially the same as the temperature of the cooling water in a general internal combustion engine without a waste heat recovery device. However, the temperature is not limited to this, and may be set to a lower temperature.

【0031】この場合、吸気ポート2周辺の温度は一層
低くなり、燃焼室には、低温の燃料ガスが供給されるこ
とになる。従って、上記実施例装置が有する効果に加え
て、内燃機関の出力が向上するという効果も併せて有す
ることになる。
In this case, the temperature around the intake port 2 becomes lower, and low temperature fuel gas is supplied to the combustion chamber. Therefore, in addition to the effect of the above-described embodiment apparatus, the effect of improving the output of the internal combustion engine is also obtained.

【0032】[0032]

【発明の効果】上述の如く、本発明によれば、吸気ポー
ト周辺を適切な温度に保ちながら、エキスパンダには従
来構成の廃熱回収装置よりさらに圧力の高い蒸気を供給
することができる。従って、内燃機関の燃焼室に吸入さ
れる燃料ガスの温度上昇が抑制され、ノッキングの発生
が防止されると共に、従来構成の廃熱回収装置に比べて
高効率で、内燃機関の廃熱を回収することができるとい
う特長を有している。
As described above, according to the present invention, it is possible to supply the expander with steam having a pressure higher than that of the conventional waste heat recovery device while maintaining the proper temperature around the intake port. Therefore, the temperature rise of the fuel gas sucked into the combustion chamber of the internal combustion engine is suppressed, the occurrence of knocking is prevented, and the waste heat of the internal combustion engine is recovered with higher efficiency than the waste heat recovery device of the conventional configuration. It has the feature of being able to

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る内燃機関の廃熱回収装置の一実施
例の構成図である。
FIG. 1 is a configuration diagram of an embodiment of a waste heat recovery device for an internal combustion engine according to the present invention.

【符号の説明】[Explanation of symbols]

1 内燃機関 2 吸気ポート 3 排気ポート 7,8 ウォータジャケット 9,11 流入路 10,12 流出路 13 供給ポンプ 14,18,19 循環路 15 バルブ 16 加熱器 17 エキスパンダ 20 コンデンサ 1 Internal Combustion Engine 2 Intake Port 3 Exhaust Port 7,8 Water Jacket 9,11 Inflow Path 10,12 Outflow Path 13 Supply Pump 14,18,19 Circulation Path 15 Valve 16 Heater 17 Expander 20 Condenser

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の冷却媒体循環経路内に、前記内
燃機関で生じる熱により蒸気化した冷却媒体が供給され
ることにより作動して、前記熱のエネルギを機械的エネ
ルギに変換するエキスパンダを備える内燃機関の廃熱回
収装置において、 前記冷却媒体循環経路は、前記内燃機関の吸気ポート近
傍を冷却する第1の冷却媒体循環経路と、前記内燃機関
の所定の部位を冷却する第2の冷却媒体循環経路とで構
成され、 前記第1の冷却媒体循環経路は、前記エキスパンダをバ
イパスすると共に、内圧が前記第2の冷却媒体循環経路
に比べて低圧に設定されていることを特徴とする内燃機
関の廃熱回収装置。
1. An expander that operates by supplying a cooling medium vaporized by heat generated in the internal combustion engine into a cooling medium circulation path of the internal combustion engine to convert the heat energy into mechanical energy. In the waste heat recovery device for an internal combustion engine, the cooling medium circulation path includes a first cooling medium circulation path for cooling a vicinity of an intake port of the internal combustion engine and a second cooling medium circulation path for cooling a predetermined portion of the internal combustion engine. And a cooling medium circulation path, wherein the first cooling medium circulation path bypasses the expander and the internal pressure is set to be lower than that of the second cooling medium circulation path. Waste heat recovery device for internal combustion engine.
JP4239491A 1992-09-08 1992-09-08 Waste heat recovery system Pending JPH0688523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4239491A JPH0688523A (en) 1992-09-08 1992-09-08 Waste heat recovery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4239491A JPH0688523A (en) 1992-09-08 1992-09-08 Waste heat recovery system

Publications (1)

Publication Number Publication Date
JPH0688523A true JPH0688523A (en) 1994-03-29

Family

ID=17045568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4239491A Pending JPH0688523A (en) 1992-09-08 1992-09-08 Waste heat recovery system

Country Status (1)

Country Link
JP (1) JPH0688523A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002188402A (en) * 2000-10-10 2002-07-05 Honda Motor Co Ltd Rankine cycle device for internal cumbustion engine
US6513482B1 (en) 1999-03-05 2003-02-04 Honda Giken Kogyo Kabushiki Kaisha Rotary fluid machinery, vane fluid machinery, and waste heat recovery device of internal combustion engine
US6732525B2 (en) 2000-01-18 2004-05-11 Honda Giken Kogyo Kabushiki Kaisha Waste heat recovery device for internal combustion engine
US6880344B2 (en) 2002-11-13 2005-04-19 Utc Power, Llc Combined rankine and vapor compression cycles
US6892522B2 (en) 2002-11-13 2005-05-17 Carrier Corporation Combined rankine and vapor compression cycles
US6962056B2 (en) 2002-11-13 2005-11-08 Carrier Corporation Combined rankine and vapor compression cycles
US6989989B2 (en) 2003-06-17 2006-01-24 Utc Power Llc Power converter cooling
US7013644B2 (en) 2003-11-18 2006-03-21 Utc Power, Llc Organic rankine cycle system with shared heat exchanger for use with a reciprocating engine
US7017357B2 (en) 2003-11-18 2006-03-28 Carrier Corporation Emergency power generation system
US7036315B2 (en) 2003-12-19 2006-05-02 United Technologies Corporation Apparatus and method for detecting low charge of working fluid in a waste heat recovery system
US7100380B2 (en) 2004-02-03 2006-09-05 United Technologies Corporation Organic rankine cycle fluid
JP2008121615A (en) * 2006-11-15 2008-05-29 Toyota Motor Corp Engine
WO2008095641A2 (en) * 2007-02-05 2008-08-14 Voith Patent Gmbh Drive train, in particular vehicle drive train
JP2008248703A (en) * 2007-03-29 2008-10-16 Toyota Motor Corp Engine waste heat recovery system
US7665304B2 (en) 2004-11-30 2010-02-23 Carrier Corporation Rankine cycle device having multiple turbo-generators
KR101270867B1 (en) * 2012-02-29 2013-06-05 에스티엑스조선해양 주식회사 Parallel waste heat recovery system and method with organic rankine cycle for ship
GB2524787A (en) * 2014-04-02 2015-10-07 Eurekagen Ltd Energy recovery system

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6513482B1 (en) 1999-03-05 2003-02-04 Honda Giken Kogyo Kabushiki Kaisha Rotary fluid machinery, vane fluid machinery, and waste heat recovery device of internal combustion engine
US6732525B2 (en) 2000-01-18 2004-05-11 Honda Giken Kogyo Kabushiki Kaisha Waste heat recovery device for internal combustion engine
JP2002188402A (en) * 2000-10-10 2002-07-05 Honda Motor Co Ltd Rankine cycle device for internal cumbustion engine
US6880344B2 (en) 2002-11-13 2005-04-19 Utc Power, Llc Combined rankine and vapor compression cycles
US6892522B2 (en) 2002-11-13 2005-05-17 Carrier Corporation Combined rankine and vapor compression cycles
US6962056B2 (en) 2002-11-13 2005-11-08 Carrier Corporation Combined rankine and vapor compression cycles
US6989989B2 (en) 2003-06-17 2006-01-24 Utc Power Llc Power converter cooling
US7289325B2 (en) 2003-06-17 2007-10-30 Utc Power Corporation Power converter cooling
US7013644B2 (en) 2003-11-18 2006-03-21 Utc Power, Llc Organic rankine cycle system with shared heat exchanger for use with a reciprocating engine
US7017357B2 (en) 2003-11-18 2006-03-28 Carrier Corporation Emergency power generation system
US7036315B2 (en) 2003-12-19 2006-05-02 United Technologies Corporation Apparatus and method for detecting low charge of working fluid in a waste heat recovery system
US7100380B2 (en) 2004-02-03 2006-09-05 United Technologies Corporation Organic rankine cycle fluid
US7665304B2 (en) 2004-11-30 2010-02-23 Carrier Corporation Rankine cycle device having multiple turbo-generators
JP2008121615A (en) * 2006-11-15 2008-05-29 Toyota Motor Corp Engine
US20100050635A1 (en) * 2007-01-23 2010-03-04 Stephan Bartosch Vehicle drive train comprising a retarder and an expander
WO2008095641A2 (en) * 2007-02-05 2008-08-14 Voith Patent Gmbh Drive train, in particular vehicle drive train
WO2008095641A3 (en) * 2007-02-05 2008-10-23 Voith Patent Gmbh Drive train, in particular vehicle drive train
EP2025906A1 (en) 2007-02-05 2009-02-18 Voith Patent GmbH Power transmission, in particular vehicle power transmission
US20090217889A1 (en) * 2007-02-05 2009-09-03 Stephan Bartosch Drive train, in particular vehicle drive train
US8857181B2 (en) * 2007-02-05 2014-10-14 Steamdrive Gmbh Drive train, in particular vehicle drive train
JP2008248703A (en) * 2007-03-29 2008-10-16 Toyota Motor Corp Engine waste heat recovery system
KR101270867B1 (en) * 2012-02-29 2013-06-05 에스티엑스조선해양 주식회사 Parallel waste heat recovery system and method with organic rankine cycle for ship
GB2524787A (en) * 2014-04-02 2015-10-07 Eurekagen Ltd Energy recovery system
US9896068B2 (en) 2014-04-02 2018-02-20 Eurekagen Limited Energy recovery system

Similar Documents

Publication Publication Date Title
JPH0688523A (en) Waste heat recovery system
EP0636779B1 (en) Thermal power engine and its operating method
US6986251B2 (en) Organic rankine cycle system for use with a reciprocating engine
US5661968A (en) Apparatus for cooling a gas turbine in a gas and steam turbine plant
US10012136B2 (en) System and method for recovering thermal energy for an internal combustion engine
US6668538B2 (en) Steam cooled gas turbine system with regenerative heat exchange
US6389797B1 (en) Gas turbine combined cycle system
EP1148220A2 (en) Combustion turbine cooling media supply system and related method
JP3564242B2 (en) Cooling steam system for steam-cooled gas turbine
WO2015064302A1 (en) Engine cooling system
JP2008128254A (en) System having organic rankine cycle circulation for driving at least one inflating device, heat exchanger for driving inflating device, and method for operating at least one inflating device
JPH02259237A (en) Liquid cooling mechanism for internal combustion engine with supercharger
KR20010092653A (en) Apparatus and methods of reheating gas turbine cooling steam and hp steam turbine exhaust in a combined cycle power generating system
JP3716188B2 (en) Gas turbine combined plant
JP2000073753A (en) Waste heat recovery device for internal combustion engine
US6286297B1 (en) Steam cooled type combined cycle power generation plant and operation method thereof
JP6197459B2 (en) Engine cooling system
JP2005113719A (en) Power device provided with internal combustion engine and stirling engine
CN111527297B (en) Device for converting thermal energy from heat lost from an internal combustion engine
JP2005090376A (en) Power unit equipped with internal combustion engine and sterling engine
JP4395275B2 (en) Operation method of combined plant
JPS5941609A (en) Rankine machinery
JPS60224937A (en) Engine with supercharger
JPS5823214A (en) Cooling structure of exhaust valve seat section
JPH06257413A (en) Gas turbine-steam turbine composite plant