JPH0688197A - Surface layer of dynamic and static vanes - Google Patents

Surface layer of dynamic and static vanes

Info

Publication number
JPH0688197A
JPH0688197A JP4125240A JP12524092A JPH0688197A JP H0688197 A JPH0688197 A JP H0688197A JP 4125240 A JP4125240 A JP 4125240A JP 12524092 A JP12524092 A JP 12524092A JP H0688197 A JPH0688197 A JP H0688197A
Authority
JP
Japan
Prior art keywords
layer
dynamic
static vanes
coated
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4125240A
Other languages
Japanese (ja)
Other versions
JP2977369B2 (en
Inventor
Tadayoshi Endo
忠良 遠藤
Masaharu Nakamori
正治 中森
Isamu Kayano
勇 榧野
Koji Takahashi
孝二 高橋
Takahito Kitai
敬人 北井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4125240A priority Critical patent/JP2977369B2/en
Publication of JPH0688197A publication Critical patent/JPH0688197A/en
Application granted granted Critical
Publication of JP2977369B2 publication Critical patent/JP2977369B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To develop the heat resistant alloy dynamic and static vanes of a gas turbine having excellent heat resistance and oxidation resistance by forming an alloy layer of a specific compsn. and a ceramic layer of ZrO2.Y2O3 ceramics and Al2O3, Cr2O3, etc., on the surfaces of the dynamic and static vanes. CONSTITUTION:The alloy consisting, by weight %, 20 to 25% Cr, 6 to 8% Al, 0.5 to 1% Y and the balance Ni or Ni and Co is plasma thermally sprayed under a low pressure at 20 to 50mum on the outside surfaces of the Ni or Co heat resistant dynamic and static vanes of the gas turbine. The ZrO2-Y2O3 ceramics consisting of 8 to 20% Y2O3 and the balance ZrO2 coated by atm. plasma thermal spraying thereon. Further, the surface thereof is coated with the ceramics such as Al2O3, Cr2O3, MgO, CaO and SiO2, at 10 to 50mum thickness by a chemical vapor deposition or low pressure thermal plasma spraying. The heat resistance, oxidation resistance and corrosion resistance of the dynamic and static vanes are greatly improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はガスタービンの高温化、
高効率化に対応可能な動・静翼表面層に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a moving / stator blade surface layer that can be used for high efficiency.

【0002】[0002]

【従来の技術】コンバインドサイクルプラントに代表さ
れる高効率化された最近の産業用ガスタービンのタービ
ン入口ガス温度の上昇は著しく1300℃以上となって
いる。このような高温ガスに曝露される動・静翼に使用
される耐熱合金は精力的に研究開発が行なわれ、その許
容使用温度も年々上昇しているが、実用合金では850
〜900℃程度である。このため、実機ガスタービンで
は薄肉化した内部空気冷却翼が用いられている。
2. Description of the Related Art The temperature of the gas at the turbine inlet of a recent highly efficient industrial gas turbine represented by a combined cycle plant rises significantly to 1300 ° C. or more. Heat-resistant alloys used for moving and stationary blades exposed to such high-temperature gas have been energetically researched and developed, and the allowable operating temperature has been increasing year by year.
It is about 900 ° C. For this reason, a thin-walled internal air cooling blade is used in the actual gas turbine.

【0003】一方、使用される燃料はLNG、副生ガス
や重油におよび最近では石炭を液化又はガス化して利用
することも研究されており、空気冷却翼の高温酸化や高
温腐食防止を目的として低圧プラズマ溶射法(以下、V
PSという)によりNiCrAlY又はCoNiCrA
lYなどの耐食合金のコーティングを施した後、ZrO
2 −Y2 3 を大気プラズマ溶射法(以下、APSとい
う)でコーティングし、この遮熱効果を利用して基材合
金の温度を低下させ、その結果としてガス温度の高温化
に対処している。
On the other hand, the fuel to be used is LNG, by-product gas or heavy oil, and recently, the use of liquefied or gasified coal has also been studied, with the aim of preventing high temperature oxidation and high temperature corrosion of air cooling blades. Low pressure plasma spraying method (hereinafter V
Depending on PS) NiCrAlY or CoNiCrA
After applying a corrosion resistant alloy coating such as LY, ZrO
2- Y 2 O 3 is coated by the atmospheric plasma spraying method (hereinafter referred to as APS), the temperature of the base alloy is lowered by utilizing this heat shielding effect, and as a result, the gas temperature is increased. There is.

【0004】[0004]

【発明が解決しようとする課題】高温化されたガスター
ビンにおいて、直接燃焼ガスと接触する動・静翼はガス
温度の上昇にともなって酸化速度が増加し、前記のよう
な遮熱コーティングを行った場合でも燃料や燃焼空気よ
り高温腐食成分がもち込まれると、これらが最表層のZ
rO2 −Y2 3 層を透過して中間層のNiCrAlY
又はCoNiCrAlYまで到達し、これを腐食又は高
温酸化させる。このため中間層と最表層の境界部に腐食
又は酸化生成物ができ、これらは体積膨張を伴なうた
め、ZrO2−Y2 3 層が剥離することがしばしば見
受けられる。このため、より高温耐食、耐酸化性にすぐ
れたコーティングをもつ動・静翼の開発がまたれてい
る。
In a gas turbine heated to a high temperature, the moving and stationary blades that come into direct contact with the combustion gas have an increased oxidation rate with an increase in the gas temperature. Even if the high temperature corrosive component is introduced from the fuel or combustion air, these will cause Z in the outermost layer.
The intermediate layer of NiCrAlY is transmitted through the rO 2 —Y 2 O 3 layer.
Alternatively, it reaches CoNiCrAlY and is corroded or oxidized at high temperature. As a result, corrosion or oxidation products are formed at the boundary between the intermediate layer and the outermost layer, and these are accompanied by volume expansion, so that it is often found that the ZrO 2 —Y 2 O 3 layer peels off. For this reason, the development of moving and stationary blades with coatings that are superior in high temperature corrosion resistance and oxidation resistance has been struggling.

【0005】本発明は上記技術水準及び上記要望に応
じ、耐熱性、耐酸化性及び耐食性にすぐれた動・静翼の
表面層を提供しようとするものである。
According to the above-mentioned state of the art and the above-mentioned demands, the present invention aims to provide a surface layer of a moving / stator blade having excellent heat resistance, oxidation resistance and corrosion resistance.

【0006】[0006]

【課題を解決するための手段】本発明はNiCrAlY
又はCoNiCrAlY合金を低圧プラズマ溶射にてコ
ーティングした第1層、ZrO2 −Y2 3 を大気プラ
ズマ溶射してコーティングした第2層及び化学的蒸着又
は低圧プラズマ溶射にてコーティングした緻密なセラミ
ック層よりなる第3層からなる動・静翼表面層である。
The present invention is directed to NiCrAlY.
Or a first layer coated with CoNiCrAlY alloy by low pressure plasma spraying, a second layer coated with ZrO 2 —Y 2 O 3 by atmospheric plasma spraying and a dense ceramic layer coated by chemical vapor deposition or low pressure plasma spraying It is a moving / stator blade surface layer consisting of a third layer.

【0007】本発明は従来のものと同様に、中間層であ
るNiCrAlYまたはCoNiCrAlYとZrO2
−Y2 3 セラミック層をコーティングした構成は同一
であるが、本発明はさらに第3層として酸素透過量が少
なくなるようなセラミックよりなる材質(成分)、例え
ばAl2 3 ,Cr2 3 ,MgO,CaO,SiO 2
などを選択し、これらを緻密にコーティングする手法、
例えば化学的蒸着法(CVDという)またはVPSを採
用して付加したことに特徴があり、本発明の動・静翼表
面層はこれら3層をコーティングした後、熱処理するこ
とによって得られる。
The present invention, like the prior art, uses an intermediate layer.
NiCrAlY or CoNiCrAlY and ZrO2
-Y2O3Same structure coated with ceramic layers
However, according to the present invention, as the third layer, the oxygen transmission amount is small.
Material (component) made of ceramic that disappears, for example
If Al2O3, Cr2O3, MgO, CaO, SiO 2
, Etc., and the method of coating these precisely,
For example, chemical vapor deposition (called CVD) or VPS is used.
It is characterized in that it is added by using
The surface layer should be heat treated after coating these three layers.
Obtained by.

【0008】本発明の第1層であるNiCrAlYは2
0〜25wt%Cr,6〜8wt%Al,0.5〜1w
t%Y,残部:Niよりなる合金が、CoNiCrAl
Yは20〜25wt%Cr,6〜8wt%Al,0.5
〜1wt%Y,残部:Co,NiよりなりCo/Ni比
が任意な合金が一般的に使用され、そのコーティングは
VPSで行われ、層厚は20〜50μmである。
The first layer of the present invention, NiCrAlY, is 2
0-25wt% Cr, 6-8wt% Al, 0.5-1w
t% Y, balance: Ni is an alloy consisting of CoNiCrAl
Y is 20 to 25 wt% Cr, 6 to 8 wt% Al, 0.5
An alloy consisting of ˜1 wt% Y, balance: Co, Ni and having an arbitrary Co / Ni ratio is generally used, the coating is performed by VPS, and the layer thickness is 20 to 50 μm.

【0009】本発明の第2層であるZrO2 −Y2 3
セラミック層としては8〜20wt%Y2 3 ,残部Z
rO2 よりなる安定化ジルコニアが一般的に用いられ、
そのコーティングはAPSで行われ、その層厚は一般的
に100〜500μmである。
The second layer of the present invention, ZrO 2 --Y 2 O 3
The ceramic layer is 8 to 20 wt% Y 2 O 3 , the balance Z
Stabilized zirconia consisting of rO 2 is commonly used,
The coating is performed with APS and the layer thickness is generally 100-500 μm.

【0010】本発明の第3層である緻密なセラミック層
としては上述したものが使用されるが、第2層のZrO
2 −Y2 3 層の熱膨張率に近いものを選択して、熱膨
張率の差によって剥離、割れが生じ難くすることが好ま
しい。ZrO2 −Y2 3 の熱膨張率は10×10-6
Kであるので、これに比較的に熱膨張率が近いAl2
3 (8.1×10-6/K)、Cr2 3 (8.7×10
-6/K)などが好ましく、また、これらのコーティング
方法は酸素及び腐食性成分の透過を抑える目的で緻密な
膜とする必要からCVD,VPSを採用すべきである。
また、その層厚は一般的には10〜50μmである。
As the dense ceramic layer which is the third layer of the present invention, the above-mentioned ones are used, but the second layer of ZrO 2 is used.
It is preferable to select a material having a thermal expansion coefficient close to that of the 2- Y 2 O 3 layer so that peeling and cracking are less likely to occur due to the difference in thermal expansion coefficient. The thermal expansion coefficient of ZrO 2 —Y 2 O 3 is 10 × 10 −6 /
Since it is K, Al 2 O having a coefficient of thermal expansion relatively close to that of Al 2 O
3 (8.1 × 10 −6 / K), Cr 2 O 3 (8.7 × 10
-6 / K) and the like, and these coating methods should employ CVD and VPS because it is necessary to form a dense film for the purpose of suppressing permeation of oxygen and corrosive components.
The layer thickness is generally 10 to 50 μm.

【0011】[0011]

【作用】本発明方法で製作した3層構造の表面層の遮熱
コーティングの作用は、最表面層の緻密セラミックコー
ティングが酸素又は腐食性成分を母材から隔離し、母材
の酸化、腐食を防止する。すなわち、ZrO2 −Y2
3 は遮熱効果は有するが酸素透過性能が大きいため簡単
に酸素を母材まで移動させ、その結果、母材を酸化、腐
食させるが、本発明の第3層のコーティングにより外界
からの酸素、腐食性成分を遮断させることを可能とする
ほか、それ自身も遮熱効果を有するので表面層の耐熱性
も向上させる。
The effect of the thermal barrier coating on the surface layer of the three-layer structure manufactured by the method of the present invention is that the dense ceramic coating of the outermost surface layer separates oxygen or corrosive components from the base material, and prevents oxidation and corrosion of the base material. To prevent. That is, ZrO 2 —Y 2 O
Although 3 has a heat shield effect, but has a large oxygen permeability, oxygen is easily moved to the base material, and as a result, the base material is oxidized and corroded. In addition to making it possible to block corrosive components, it also has a heat-shielding effect by itself, thus improving the heat resistance of the surface layer.

【0012】本発明の動・静翼表面層による遮熱効果の
原理を図2に示す。図2において、TBCとは熱遮蔽コ
ーティング( Thermal Barrer Coating ) を意味する。
FIG. 2 shows the principle of the heat shield effect of the surface layer of the moving / stator blade of the present invention. In FIG. 2, TBC means a thermal barrier coating.

【0013】[0013]

【実施例】本発明の実施例を図1によって説明する。図
1はガスタービン動・静翼材に用いられる耐熱合金EC
Y768(Coベース)、IN738LC(Niベー
ス)の合金基材1に、先ずVPSにてNiCrAlY
(20〜25wt%Cr,6〜8wt%Al,0.5〜
1wt%Y,残部Ni)又はCoNiCrAlY(20
〜25wt%Cr,6〜8wt%Al,0.5〜1wt
%Y,残部Co,Ni、Co/Ni比は任意)よりなる
20〜50μm厚の第1層2を形成し、その上にAPS
にてZrO2 −Y2 3 (Y2 3 :8〜20%、Zr
2 :残部)よりなる100〜500μm厚の第2層3
を形成し、さらにその上にCVD又はVPSにてセラミ
ック層よりなる10〜50μm厚の第3層4を形成させ
た後、熱処理して動・静翼表面層を得た。
Embodiment An embodiment of the present invention will be described with reference to FIG. Figure 1 is a heat-resistant alloy EC used for gas turbine dynamic and stationary vane materials.
Y768 (Co base), IN738LC (Ni base) alloy base material 1 is first coated with NiCrAlY by VPS.
(20-25 wt% Cr, 6-8 wt% Al, 0.5-
1 wt% Y, balance Ni) or CoNiCrAlY (20
-25 wt% Cr, 6-8 wt% Al, 0.5-1 wt
% Y, the balance Co, Ni, and the Co / Ni ratio are arbitrary), and a first layer 2 having a thickness of 20 to 50 μm is formed, and APS is formed thereon.
ZrO 2 -Y 2 O 3 (Y 2 O 3 at: 8 to 20%, Zr
O 2 : the remainder) 100 to 500 μm thick second layer 3
Was further formed, and a third layer 4 of a ceramic layer having a thickness of 10 to 50 μm was formed thereon by CVD or VPS, followed by heat treatment to obtain a moving / stator vane surface layer.

【0014】その具体例を下記表1に示す。Specific examples thereof are shown in Table 1 below.

【表1】 [Table 1]

【0015】上記具体例の動・静翼表面層及び第1層が
CoNiCrAlY:50μm、第2層がZrO2 −Y
2 3 :200μmよりなるコーティング層の従来例
9、第1層がNiCrAlY:30μm、第2層がZr
2 −Y2 3 :250μmよりなるコーティング層の
従来例10を、900℃(15分間)と室温(15分
間)の間のヒートサイクル試験によるコーティング層の
密着性確認試験結果を、まとめて図3に示す。図3よ
り、従来例9,10では450〜500サイクルでZr
2 −Y2 3 層が剥離したのに対し、本発明の具体例
では最低でも850サイクル(具体例8)の耐久性を示
し、具体例3,6などでは1000サイクル以上の耐久
性を示した。
In the above-mentioned specific example, the surface layer of the moving and stationary vanes and the first layer are CoNiCrAlY: 50 μm, and the second layer is ZrO 2 -Y.
Conventional example 9 of coating layer consisting of 2 O 3 : 200 μm, first layer is NiCrAlY: 30 μm, second layer is Zr
The conventional example 10 of the coating layer composed of O 2 —Y 2 O 3 : 250 μm was used to summarize the adhesion confirmation test results of the coating layer by the heat cycle test between 900 ° C. (15 minutes) and room temperature (15 minutes). As shown in FIG. From FIG. 3, in the conventional examples 9 and 10, Zr is 450-500 cycles.
While the O 2 —Y 2 O 3 layer was peeled off, the specific examples of the present invention showed durability of at least 850 cycles (specific example 8), and the specific examples 3 and 6 exhibited durability of 1000 cycles or more. Indicated.

【0016】また、1000℃大気中、5000時間加
熱による高温酸化条件における高温酸化試験の結果を図
4に示す。この結果、従来例9,10はCoNiCrA
lY又はNiCrAlYとZrO2 −Y2 3 の界面に
11〜15μm厚さの酸化皮膜が生成したのに対し、本
発明ではその酸化皮膜は約2μm以下であって、酸素透
過防止効果が優れていることが確認された。
FIG. 4 shows the result of a high temperature oxidation test under high temperature oxidation conditions by heating at 1000 ° C. in the atmosphere for 5000 hours. As a result, in Conventional Examples 9 and 10, CoNiCrA was used.
While an oxide film with a thickness of 11 to 15 μm was formed at the interface between 1Y or NiCrAlY and ZrO 2 —Y 2 O 3 , in the present invention, the oxide film has a thickness of about 2 μm or less, which is excellent in the effect of preventing oxygen permeation. Was confirmed.

【0017】[0017]

【発明の効果】本発明の動・静翼表面層は3層構造を有
しているので、耐熱性、耐酸化性及び耐食性に優れてい
るものが得られる。
Since the surface layer of the moving and stationary blades of the present invention has a three-layer structure, it is possible to obtain one having excellent heat resistance, oxidation resistance and corrosion resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の動・静翼表面層の構成の説明図FIG. 1 is an explanatory diagram of a structure of a moving / stator blade surface layer of the present invention.

【図2】本発明の動・静翼表面層による遮熱効果の説明
FIG. 2 is an explanatory view of a heat shield effect by the surface layer of the moving / stator blade of the present invention.

【図3】本発明の動・静翼表面層のヒートサイクル試験
の結果を示す図表
FIG. 3 is a chart showing the results of a heat cycle test of the surface layer of the moving and stationary blades of the present invention.

【図4】本発明の動・静翼表面層の高温酸化試験の結果
を示す図表
FIG. 4 is a chart showing the results of a high temperature oxidation test of the surface layer of the moving and stationary blades of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 孝二 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂製作所内 (72)発明者 北井 敬人 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂製作所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Koji Takahashi 2-1-1, Niihama, Arai-cho, Takasago-shi, Hyogo Mitsubishi Heavy Industries, Ltd. Takasago Works (72) Inventor Keito Kitai 2-chome, Niihama, Arai-cho, Takasago-shi, Hyogo No. 1 Mitsubishi Heavy Industries Takasago Plant

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 NiCrAlY又はCoNiCrAlY
合金を低圧プラズマ溶射にてコーティングした第1層、
ZrO2 −Y2 3 を大気プラズマ溶射してコーティン
グした第2層及び化学的蒸着又は低圧プラズマ溶射にて
コーティングした緻密なセラミック層よりなる第3層か
らなる動・静翼表面層。
1. NiCrAlY or CoNiCrAlY
First layer coated with alloy by low pressure plasma spraying,
Second layer and the dynamic-stationary blade surface layer and a third layer made of a dense ceramic layer coated by a chemical vapor deposition or low pressure plasma spraying of the ZrO 2 -Y 2 O 3 was coated by air plasma spraying.
JP4125240A 1992-05-19 1992-05-19 Moving and stationary blade surface layer Expired - Lifetime JP2977369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4125240A JP2977369B2 (en) 1992-05-19 1992-05-19 Moving and stationary blade surface layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4125240A JP2977369B2 (en) 1992-05-19 1992-05-19 Moving and stationary blade surface layer

Publications (2)

Publication Number Publication Date
JPH0688197A true JPH0688197A (en) 1994-03-29
JP2977369B2 JP2977369B2 (en) 1999-11-15

Family

ID=14905263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4125240A Expired - Lifetime JP2977369B2 (en) 1992-05-19 1992-05-19 Moving and stationary blade surface layer

Country Status (1)

Country Link
JP (1) JP2977369B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10505299A (en) * 1995-06-26 1998-05-26 ゼネラル・エレクトリック・カンパニイ Protected thermal barrier composite with multiple coatings
EP1260602A1 (en) * 2001-05-23 2002-11-27 Sulzer Metco AG Process for producing a thermally insulating coating system on a metallic substrate
WO2002103075A1 (en) * 2001-06-13 2002-12-27 Mitsubishi Heavy Industries, Ltd. Method for repairing ni base alloy component
KR100668947B1 (en) * 2005-06-16 2007-01-12 한국전력공사 Surface treatment method for increasing oxidation resistance of Ni-based superalloy and the parts for a gas turbine employing the same
JP2008248393A (en) * 2000-04-27 2008-10-16 Standard Aero Ltd Multilayer thermal barrier coating
JP2011012287A (en) * 2009-06-30 2011-01-20 Hitachi Ltd Heat-resistant member, and gas turbine hot part
CN104057657A (en) * 2014-06-21 2014-09-24 上海君山表面技术工程股份有限公司 Composite structure roller
CN107385379A (en) * 2017-07-05 2017-11-24 西安文理学院 A kind of preparation method of blast furnace energy recovery turbine blade surface corrosion-proof wear coating

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262447A (en) * 2006-03-27 2007-10-11 Mitsubishi Heavy Ind Ltd Oxidation-resistant film and its deposition method, thermal barrier coating, heat-resistant member, and gas turbine
JP5393669B2 (en) 2008-06-25 2014-01-22 三菱重工業株式会社 Thermal spraying method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10505299A (en) * 1995-06-26 1998-05-26 ゼネラル・エレクトリック・カンパニイ Protected thermal barrier composite with multiple coatings
JP2008248393A (en) * 2000-04-27 2008-10-16 Standard Aero Ltd Multilayer thermal barrier coating
JP4709249B2 (en) * 2000-04-27 2011-06-22 スタンダード エアロウ リミテッド Multi-layer insulation film
EP1260602A1 (en) * 2001-05-23 2002-11-27 Sulzer Metco AG Process for producing a thermally insulating coating system on a metallic substrate
US8168261B2 (en) 2001-05-23 2012-05-01 Sulzer Metco A.G. Process for applying a heat shielding coating system on a metallic substrate
WO2002103075A1 (en) * 2001-06-13 2002-12-27 Mitsubishi Heavy Industries, Ltd. Method for repairing ni base alloy component
US7172787B2 (en) 2001-06-13 2007-02-06 Mitsubishi Heavy Industries, Ltd. Method of repairing a Ni-base alloy part
KR100668947B1 (en) * 2005-06-16 2007-01-12 한국전력공사 Surface treatment method for increasing oxidation resistance of Ni-based superalloy and the parts for a gas turbine employing the same
JP2011012287A (en) * 2009-06-30 2011-01-20 Hitachi Ltd Heat-resistant member, and gas turbine hot part
CN104057657A (en) * 2014-06-21 2014-09-24 上海君山表面技术工程股份有限公司 Composite structure roller
CN107385379A (en) * 2017-07-05 2017-11-24 西安文理学院 A kind of preparation method of blast furnace energy recovery turbine blade surface corrosion-proof wear coating
CN107385379B (en) * 2017-07-05 2019-05-21 西安文理学院 A kind of preparation method of blast furnace energy recovery turbine blade surface corrosion-proof wear coating

Also Published As

Publication number Publication date
JP2977369B2 (en) 1999-11-15

Similar Documents

Publication Publication Date Title
US6924040B2 (en) Thermal barrier coating systems and materials
US5683761A (en) Alpha alumina protective coatings for bond-coated substrates and their preparation
JP2601964B2 (en) Corrosion resistant magnesium titanate coating for gas turbine
US20110151132A1 (en) Methods for Coating Articles Exposed to Hot and Harsh Environments
JP3434504B2 (en) Insulation method for metal substrate
JP6980022B2 (en) Thermal barrier coating system compatible with overlays
JP2002522646A (en) Multi-layer thermal insulation coating system
US11852078B2 (en) Reflective coating and coating process therefor
JP2003129210A (en) Heat-insulating coating material, gas turbine member, and gas turbine
JP2008064089A (en) Turbine engine component and manufacturing method
JPH0688197A (en) Surface layer of dynamic and static vanes
JP2006328499A (en) Thermal barrier coating, gas turbine high-temperature component, and gas turbine
JPH07292453A (en) Heat shielding coating method for preventing high temperature oxidation
KR101125329B1 (en) Method for forming thermal barrier coating on hot-gas-path components of gas turbine during operation
JP2006117975A (en) Structure of thermal barrier coating, and method for manufacturing thermal barrier coating
JPS61174385A (en) Ceramic-coated fire resistant member and its production
US20180355477A1 (en) Thermal coating system with aluminide
JPS62211387A (en) Production of ceramic coated heat resistant member
JPH09228021A (en) High temperature corrosion resistant composite surface treatment
JPS5811796A (en) Heat protective heat resistant alloy structure and coating of surface of heat resistant alloy
RU2065505C1 (en) Turbine blade and method for its manufacture
JPS62211389A (en) Ceramic coated turbo charger and its production
JPS62211390A (en) Ceramic coated heat resistant member and its production
US20230313993A1 (en) Thermally stable thin-film reflective coating and coating process
JPH11268175A (en) Ceramic heat-shielding coating

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990817

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 13