JPH0688017B2 - Device for removing contaminants in liquid - Google Patents

Device for removing contaminants in liquid

Info

Publication number
JPH0688017B2
JPH0688017B2 JP1216934A JP21693489A JPH0688017B2 JP H0688017 B2 JPH0688017 B2 JP H0688017B2 JP 1216934 A JP1216934 A JP 1216934A JP 21693489 A JP21693489 A JP 21693489A JP H0688017 B2 JPH0688017 B2 JP H0688017B2
Authority
JP
Japan
Prior art keywords
liquid
water
bubbles
tank
fish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1216934A
Other languages
Japanese (ja)
Other versions
JPH0380985A (en
Inventor
鐵三郎 佐藤
俊朗 丸山
Original Assignee
鐵三郎 佐藤
俊朗 丸山
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鐵三郎 佐藤, 俊朗 丸山 filed Critical 鐵三郎 佐藤
Priority to JP1216934A priority Critical patent/JPH0688017B2/en
Publication of JPH0380985A publication Critical patent/JPH0380985A/en
Publication of JPH0688017B2 publication Critical patent/JPH0688017B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は養殖漁業、活魚輸送、魚飼育などの分野、およ
び食品工業、例えば米のとぎ汁などにおける廃水の処理
における汚濁物質の除去装置に関するものである。
TECHNICAL FIELD The present invention relates to the fields of aquaculture, live fish transportation, fish raising, and the like, and to the food industry, for example, a device for removing pollutants in the treatment of waste water such as rice bran juice. Is.

[従来の技術] 現在実用化されている活魚の養殖あるいは輸送システム
では、主として空気や純酸素などを水中へ供給して活魚
の生命維持をはかることを目的とするものであり、魚の
長期間の飼育ができても、老廃物の水中への蓄積などに
より、衛生的な水環境の維持は困難であった。
[Prior Art] A live fish farming or transportation system currently in practical use is mainly intended to maintain the life of live fish by supplying air or pure oxygen to the water. Even if they could be raised, it was difficult to maintain a hygienic water environment due to the accumulation of waste products in the water.

特に、ビブリオ菌等の有害生菌の除去については、活魚
輸送や魚飼育などにおいて有効な手段はなく、活魚のビ
ブリオ菌等による汚染などは放置せられているのが実情
である。
In particular, with regard to the removal of viable bacteria such as Vibrio bacteria, there is no effective means for transporting live fish, raising fish, etc., and it is the actual situation that contamination of live fish with Vibrio bacteria is left.

しかし、人の衛生上および魚の生命維持の両面より、有
害菌および汚濁物質を除去する改善は緊急の課題であ
る。
However, improvement in removing harmful bacteria and pollutants is an urgent issue from the viewpoint of human hygiene and life support of fish.

また、食品工業で生ずる大量の廃水、例えば米のとぎ汁
などの処理では、曝気槽と沈澱槽とを用いる大規模な装
置を必要としており、より簡単な装置が望まれている。
Further, in the treatment of a large amount of waste water generated in the food industry, such as rice bran juice, a large-scale apparatus using an aeration tank and a precipitation tank is required, and a simpler apparatus is desired.

泡を用いて水の中の懸濁物質を除去する技術に関連する
ものとして、浮遊選鉱法として泡を利用する多くの例が
知られている。これは空気を散気管を通じ水中に放出
し、泡をつくり、それに汚濁物質または金属分などを附
着させ浮上分離するものであり、泡を生成する目的で表
面活性剤が用いられている。
Many examples of utilizing bubbles as a flotation process are known as related to the technique of removing suspended solids in water using bubbles. In this method, air is discharged into water through an air diffuser to form bubbles, and pollutants or metal components are attached to the bubbles to float and separate, and a surfactant is used for the purpose of generating bubbles.

しかし、浮遊選鉱法による方式で利用されている泡の大
きさは大きく、ビブリオ菌等の有害菌を除去するには不
向きのものであり、今日まで、泡を用いてビブリオ菌等
を除去した例はみられない。
However, the size of bubbles used in the flotation method is large, and it is not suitable for removing harmful bacteria such as Vibrio bacteria.To date, examples of removing Vibrio bacteria using bubbles are used. I can't see it.

また、魚の生命維持や食品工業などにおいては泡の生成
に表面活性剤を使用することは不適当であることは論を
待たない。
In addition, it is needless to say that it is inappropriate to use a surfactant for foam formation in the life support of fish and the food industry.

[発明が解決しようとする課題] 従って本発明の課題は、養殖漁業、活魚輸送、魚飼育な
どの分野、および食品工業の廃水における有害菌等の汚
濁物質を、泡を利用し、かつ表面活性剤を用いることな
く連続的に除去する装置を提供せんとするものである。
[Problems to be Solved by the Invention] Therefore, an object of the present invention is to use pollutants such as harmful bacteria in wastewater of aquaculture, live fish transportation, fish breeding, etc., and wastewater of the food industry by using bubbles and surface-active them. It is intended to provide a device for continuous removal without using an agent.

[課題を解決するための手段] 前記課題を解決するために本発明者等は、下記の項目に
ついて検討を重ねた。
[Means for Solving the Problems] In order to solve the above problems, the present inventors have repeatedly studied the following items.

(1)活魚輸送や食品工業などにおいては水発泡のため
に添加する表面活性剤の添加はできないので、発泡を超
微小気泡とすることが必要であり、そのために適当なエ
アレーターを採択せねばならない。
(1) In transportation of live fish or food industry, it is not possible to add a surfactant to be added for water foaming. Therefore, it is necessary to make foaming into ultrafine bubbles. Therefore, an appropriate aerator should be adopted. I have to.

本発明の発明者の一人である佐藤鐡三郎の発明にかかる
曝気装置(特公昭62-34436号等)は簡単に超微細気泡に
よる安定した泡を発生させるのに最適であるので、この
装置を活用する。
The aeration device according to the invention of Ryozaburo Sato, one of the inventors of the present invention (Japanese Patent Publication No. 62-34436 etc.), is suitable for easily generating stable bubbles by ultrafine bubbles. use.

(2)活魚輸送における魚の生命維持や魚を生のまま食
する活魚料理等における人の衛生を考える時に水を含む
環境における有害なバクテリア、特にビブリオ菌を泡で
除去できることが必要である。
(2) It is necessary to remove harmful bacteria in the environment including water, particularly Vibrio bacterium, by bubbles when considering the life support of fish in transportation of live fish and human hygiene in live fish dishes where fish are eaten raw.

(3)泡を連続的に除去しようとする場合には泡と液体
との界面の位置を常にほぼ一定の位置に保持する必要が
ある。そうしないと泡ばかりでなく中の水の殆ど全部を
溢出させて魚をいためたり、また泡が出ない状況が長く
続くと、魚の分泌する成分等が蓄積し悪い影響を及ぼ
す。
(3) When removing bubbles continuously, it is necessary to keep the position of the interface between the bubbles and the liquid at a substantially constant position. Otherwise, not only bubbles but almost all of the water in the water overflows to save the fish, and if no bubbles continue for a long time, the components secreted by the fish will accumulate and have a bad effect.

そこで、これらに対処できる制御を行う必要がある。Therefore, it is necessary to perform control capable of coping with these.

(4)装置としてコンパクトでかつ能率よく泡分離をは
かれるものでなければならない。
(4) The device must be compact and capable of efficiently separating bubbles.

そのためには本発明者らによる曝気装置の特長を生か
し、またその欠点を補うことが必要である。
For that purpose, it is necessary to make the best use of the features of the aeration apparatus by the present inventors and to make up for its drawbacks.

(5)泡による米のとぎ汁などの汚水処理においては流
水の速度を速くしても処理できる処理能力をもつもので
ある必要がある。
(5) In treating sewage such as rice bran soup with foam, it is necessary to have a treatment capacity capable of treating even if the speed of running water is increased.

上記諸項目について鋭意検討の結果、本発明を完成し
た。
The present invention has been completed as a result of intensive studies on the above-mentioned items.

すなわち、本発明によれば以下の構成からなる液中の汚
濁物質除去装置が提供される。
That is, according to the present invention, there is provided a device for removing contaminants in liquid, which has the following configuration.

(1)液体を貯溜するための液槽と該液槽に設置された
中空回転軸とを備え、該中空回転軸の下端にはその軸方
向に沿った翼板と該翼板を上下に挟む板材が設けられる
と共に該中空回転軸の上記板材に挟まれた部分に多数の
空気孔が穿設されおり、該中空軸の回転により生じる負
圧を利用して軸内に空気を吸い込み、上記空気孔から超
微小気泡を回転軸に対して水平方向に放出する泡発生手
段が形成されていることを特徴とする液中の汚濁物質除
去装置。
(1) A liquid tank for storing liquid and a hollow rotating shaft installed in the liquid tank are provided, and a lower end of the hollow rotating shaft sandwiches a vane along the axial direction and the vane vertically. A plurality of air holes are provided in a portion of the hollow rotating shaft sandwiched by the plate members and the air is sucked into the shaft by using a negative pressure generated by the rotation of the hollow shaft. A device for removing contaminants in liquid, characterized in that a bubble generating means for discharging ultra-fine bubbles from a hole in a horizontal direction with respect to a rotation axis is formed.

(2)中空軸の回転によって生じた液の回転を打消す隔
壁板が上記液槽に設けられており、さらに液面位置の制
御手段が該液槽に付設されている上記(1)の液中の汚
濁物質除去装置。
(2) The partition plate for canceling the rotation of the liquid generated by the rotation of the hollow shaft is provided in the liquid tank, and the liquid surface position control means is attached to the liquid tank. Inside contaminant removal device.

(3)液中の超微小気泡が液槽の下部から上部に向かっ
て浮上する一方、中空軸の回転によって発生した負圧に
よって液体が液槽内の上部から下部に向かって流下する
上記(1)の液中の汚濁物質除去装置。
(3) While the ultrafine bubbles in the liquid float from the lower part to the upper part of the liquid tank, the negative pressure generated by the rotation of the hollow shaft causes the liquid to flow down from the upper part to the lower part in the liquid tank. Device for removing contaminants from the liquid of 1).

本発明の汚濁物質除去装置は本発明者による曝気装置
(以下、カーヴァスエアレーターという。)を泡発生の
手段として採用しているところに一つの大きな特長を持
っている。
The pollutant removal device of the present invention has one major feature in that it employs an aeration device (hereinafter, referred to as a carvas aerator) by the present inventor as a means for generating bubbles.

カーヴァスエアレーターは、第1図および第2図に1例
を示すように、液体を貯溜する液槽とモーターにより高
速にて回転する軸13を備えている。回転軸13は中空軸で
あり、図示するように、その上端は液槽の上面に設置し
たモーター5に連結されており、回転軸の下端は槽底付
近に伸び、該下端に泡発生手段が形成されている。すな
わち、該回転軸13の下端には軸方向に沿った翼板16と該
翼板16を上下に挟む上円板(板材)14および下円板(板
材)15が取り付けられており、これらは軸13の回転によ
り一体に回転する。また図示するように、該上下の板材
14、15に挟まれた回転軸13の周面には多数の空気孔17が
設けられている。
The carvas aerator, as shown in FIGS. 1 and 2 by way of example, is provided with a liquid tank for storing liquid and a shaft 13 rotated at a high speed by a motor. The rotary shaft 13 is a hollow shaft, the upper end of which is connected to a motor 5 installed on the upper surface of the liquid tank, the lower end of the rotary shaft extends near the bottom of the tank, and a bubble generating means is provided at the lower end. Has been formed. That is, a blade 16 along the axial direction, an upper disk (plate material) 14 and a lower disk (plate material) 15 that sandwich the blade 16 vertically are attached to the lower end of the rotary shaft 13, and these are installed. The shaft 13 rotates to rotate integrally. Also, as shown in the figure, the upper and lower plate materials
A large number of air holes 17 are provided on the peripheral surface of the rotary shaft 13 sandwiched between the fourteen and fifteen.

水中で翼板16が軸13と一体に回転すると、その背後に負
圧が発生し、これにより軸13の上端から中空な軸内に空
気が吸込まれ、この空気は軸内を通過して軸下端の上記
空気孔17から液中に放出される。この空気は回転状態の
空気孔17から放出されるために、単なる液の撹拌による
空気の吸込みによる泡の発生とは異なり、この種の従来
の自吸引式泡発生装置によって発生する泡よりも格段に
微細な超微小気泡18となって液中に放出され、さらに該
超微小気泡18は回転軸13の遠心力によって上下の円板1
4、15に案内されて回転軸13に直角な水平面内に分散さ
れる。
When the blade 16 rotates integrally with the shaft 13 in the water, a negative pressure is generated behind it, whereby air is sucked into the hollow shaft from the upper end of the shaft 13, and this air passes through the shaft and passes through the shaft. It is discharged into the liquid through the air holes 17 at the lower end. Since this air is discharged from the air hole 17 in the rotating state, unlike the generation of bubbles due to the suction of air by simply stirring the liquid, it is far more than the bubbles generated by the conventional self-suction type bubble generator of this type. The minute ultrafine bubbles 18 are discharged into the liquid, and the ultrafine bubbles 18 are further separated by the centrifugal force of the rotating shaft 13 into the upper and lower discs 1.
The particles are guided by 4 and 15 and dispersed in a horizontal plane perpendicular to the rotation axis 13.

このように本発明装置の特色は、上記泡発生手段によっ
て超微小気泡18が発生し、その運動の方向が回転軸に対
し直角な水平面内に生ずることであり、回転軸に直角な
平面内に気泡を遠心力で分散させ水との混和をよくする
だけでなく、狭い水槽の中で良好な孔をつくりうる事で
ある。
As described above, the feature of the device of the present invention is that the ultra-fine bubbles 18 are generated by the bubble generating means, and the movement direction thereof is generated in the horizontal plane perpendicular to the rotation axis, and in the plane perpendicular to the rotation axis. In addition to improving the mixing with water by dispersing air bubbles by centrifugal force, it is possible to make good holes in a narrow water tank.

泡は水中に浮かんでいる汚濁物質の浮遊物を附着する機
能を持っており、その附着は基本的に泡の表面積に比例
するが、泡は微小な集まりとなればなるほど大きな表面
積を持つので泡を利用する汚濁物質除去装置の性能は超
微小泡を如何にして発生できるかにかかっている。
Bubbles have the function of attaching suspended solids of pollutants floating in water, and the attachment is basically proportional to the surface area of bubbles, but bubbles have a large surface area as they become minute aggregates. The performance of the pollutant removal device that utilizes the above depends on how ultra-fine bubbles can be generated.

その点、カーヴァスエアレーターはこの超微小泡の大量
発生に最適であり、他の如何なる泡発生機構より優れて
いるといえる。
In that respect, the carvas aerator is optimal for the large-scale generation of ultra-fine bubbles, and can be said to be superior to any other bubble generation mechanism.

また本発明のさらなる特色は、上記装置によって発生す
る超微小気泡がビブリオ菌等のバクテリアの取込みに優
れることを見出したことである。すなわち、後の実施例
から明らかなとおり超微小泡は水中のビブリオ菌等のバ
クテリアを泡の中にとり込むと考えられ、この泡を分離
することによってビブリオ菌等を有効に除去できること
は本発明の最大の特長である。
Further, a further feature of the present invention is that the ultrafine bubbles generated by the above apparatus are found to be excellent in the uptake of bacteria such as Vibrio bacterium. That is, it is considered that ultrafine bubbles take in bacteria such as Vibrio bacteria in water into the bubbles as will be apparent from the following examples, and that it is possible to effectively remove Vibrio bacteria by separating the bubbles. Is the greatest feature of.

次に細部機構として泡と水面との境界面と泡の上面を検
出することにより汚濁物質除去装置内の水面を常にある
適当な高さに保ち、それにより泡の溢出を最適に保つも
のである。この手段として排出バルブの制御を行なっ
た。
Next, by detecting the boundary surface between the foam and the water surface and the upper surface of the foam as a detailed mechanism, the water surface in the pollutant removal device is always kept at an appropriate height, and thereby the overflow of the foam is kept optimal. . The discharge valve was controlled as this means.

一方、汚濁物質を除去するための泡は安定して静かに上
昇することが望ましいが、カーヴァスエアレーターによ
り与えられる回転のベクトルは安定した泡の発生には有
害である。そこでこの回転ベクトルを打消すため縦の隔
壁板(邪魔板)を設けるなどの改良を加え、小型のタン
クで処理できる水量を極力多くすることにより実用性を
高め、また他の食品工業などにおける米のとぎ汁などの
汚水処理をも可能にした。
On the other hand, it is desirable that the bubbles for removing pollutants rise stably and quietly, but the vector of rotation given by the Carvas aerator is detrimental to the generation of stable bubbles. Therefore, in order to counteract this rotation vector, improvements such as the provision of vertical partition plates (baffle plates) were added to increase the practicality by maximizing the amount of water that can be processed in a small tank, and rice in other food industries. It has also made it possible to dispose of sewage such as Nojiru soup.

[実施例] 以下、本発明の装置を実施例により説明する。[Examples] Hereinafter, the apparatus of the present invention will be described with reference to Examples.

第1図は本発明の実施例として鯛の輸送、および輸送後
48時間のテストを実施した汚濁物質除去装置を備えた活
魚槽の概要を示すものである。
FIG. 1 shows the transportation of sea bream and the after transportation as an embodiment of the present invention.
It shows an outline of a live fish tank equipped with a pollutant removal device that was tested for 48 hours.

第1図において魚水槽1は水槽容積950で中に海水890
を満し、中に鯛3を50尾(体重約1Kg/尾)入れてい
る。カーヴァスエアレーター4はモーター5により回転
し空気を水中に放出すると共に泡をつくる。モーター5
は400Wのものである。
In FIG. 1, the fish tank 1 has a tank capacity of 950 and seawater of 890.
And 50 sea bream 3 (weighing about 1 kg / tail) inside. The carvas aerator 4 is rotated by a motor 5 to release air into water and create bubbles. Motor 5
Is for 400W.

海水2はポンプ6により魚水槽1からくみ出され装置内
を循環する。泡除去用ダクト7は表面に浮かんだ泡を集
めるものであり、泡は泡溜槽8に滞留して液化され、液
化水の貯留槽9にたまりドレーンバルブ10により系外に
排出される。
Seawater 2 is pumped out of the fish tank 1 by the pump 6 and circulates in the device. The bubble removing duct 7 collects bubbles floating on the surface, and the bubbles are accumulated in the bubble reservoir 8 and liquefied, and are accumulated in the liquefied water reservoir 9 and discharged to the outside of the system by the drain valve 10.

一方泡除去された海水は濾過装置11を通って、パイプ12
により魚水槽1に返される。なお、濾過装置は活性炭、
ゼオライト、ミネラル石などより構成される。本装置を
使用して活魚(鯛)50尾を50Kmトラック輸送し、その後
更に合計48時間にわたり試験計測を行なった。
On the other hand, the seawater from which bubbles have been removed passes through the filtration device 11 and the pipe 12
Returned to the fish tank 1. The filtration device is activated carbon,
Composed of zeolite and mineral stone. Using this device, 50 live fish (sea bream) were transported by 50km truck, and then the test measurement was conducted for a total of 48 hours.

計測は水温、濁度、溶存酸素、溶解性有機物の各項目に
わたって行なわれた。
The measurement was carried out for each item of water temperature, turbidity, dissolved oxygen, and soluble organic matter.

このカーヴァスエアレーター4を汚濁物質除去装置の中
で運転した時の経過時間対水質の変化を第3図に示す。
FIG. 3 shows changes in water quality with respect to elapsed time when the Carvas aerator 4 was operated in the pollutant removal device.

魚槽内の水温はWT(●)として示すように略一定16.6〜
17.1℃に保たれた。
The water temperature in the fish tank is approximately constant as shown by WT (●) 16.6〜
It was kept at 17.1 ° C.

魚槽水のpH(▲)は放魚前pH8.19であったが時間経過に
伴って一時的に2回低下し、その後徐々に上昇してpH7.
86まで回復した。pHの低下はNO3窒素濃度の増加とCO2
濃度の増加が原因と考えられる。魚槽水の溶存酸素濃度
(DO)(○)はほぼ飽和濃度(7.61mg/、17℃)を保
った。これはカーヴァスエアレーターによる鯛の酸素消
費を上まわる酸素の水への供給によるものである。
The pH (▲) of the fish tank water was pH 8.19 before release, but it temporarily decreased twice with the passage of time, and then gradually increased to pH 7.
Recovered to 86. The decrease in pH is considered to be due to the increase of NO 3 nitrogen concentration and the increase of CO 2 concentration. The dissolved oxygen concentration (DO) (○) in the fish tank water was kept almost saturated (7.61 mg /, 17 ℃). This is due to the supply of oxygen to the water, which exceeds the oxygen consumption of the sea bream by the Carvas aerator.

魚槽水の溶解性有機物(DOC)(■)は実験開始時には
6.2mg/であったが、15時間程度までは0.7mg/・hの
割合で直線的に増加し、15時間以降はその割合が低下
し、27時間以後は約0.07mg/・hの低い割合で増加し
た。一方泡液化水のDOC濃度(図示せず)は最初の6時
間では49.5mg/であったが、39〜45時間では923mg/
の高濃度に達した。
Soluble organic matter (DOC) (■) in fish tank water
Although it was 6.2 mg / h, it increased linearly at a rate of 0.7 mg / h for about 15 hours, decreased after 15 hours, and low at about 0.07 mg / h after 27 hours. Increased. On the other hand, the DOC concentration (not shown) of foamed liquefied water was 49.5 mg / in the first 6 hours, but 923 mg / in the 39 to 45 hours.
Reached a high concentration.

DOCは泡液化水に高濃度に濃縮されるが、常に泡の溢出
を適切かつ大量に行うことの重要性が理解された。
Although DOC is highly concentrated in foam liquefied water, it was understood that it is important to always carry out foam overflow appropriately and in large quantities.

一方魚槽水の濁度(Turbidity)(△)は実験の全期間
を通じ増大することなく一定に保たれ、水の清浄化効果
が泡除去により得られることを示している。
On the other hand, the turbidity (△) of the fish tank water was kept constant and did not increase during the whole experiment, indicating that the cleaning effect of water was obtained by removing bubbles.

これをより詳細に説明するのが第4図であり、泡液化水
の濁度値の測定から、もし泥分が泡により除去せられず
増加をつづけたら点線(●)に示すように濁度は45時間
後には11度になる。泡による除去で実線(○)に示すよ
うに2度以下に保たれ、泡除去による大きな効果を示し
ている。
This is explained in more detail in Fig. 4. From the measurement of the turbidity value of the foamed liquefied water, if the mud content is not removed by the foam and continues to increase, the turbidity is shown by the dotted line (●). Will reach 11 degrees after 45 hours. As shown by the solid line (∘), the removal by bubbles kept the temperature below 2 degrees, showing a great effect by the removal of bubbles.

一方本実験で発見せられた最大の成果は第5図に示すよ
うなバクテリア菌、特に病原ビブリオ菌の泡除去による
減少である。
On the other hand, the greatest result discovered in this experiment is the reduction of bacterial bacteria, especially the vibrio pathogenic bacteria, by removing bubbles as shown in FIG.

魚槽水の一般生菌(○)は放魚前には3.1×103(CFU/m
l)であったものが放魚直後には約2倍に増加し、その
後27時間後には5.4×105まで増加したものの48時間後で
もそれ以上の増加は見られず、一方泡液化水の一般生菌
(●)は放魚直後で6.7×105であったものが27時間後に
は5.9×107、48時間後には7.0×107と約108オーダーま
で増加し、泡による除去効果があることがわかった。
General viable bacteria (○) in fish tank water was 3.1 × 10 3 (CFU / m
l) increased about twice immediately after releasing fish, and increased to 5.4 × 10 5 27 hours later, but no further increase was seen 48 hours later, while foamed liquefied water General viable bacteria (●) increased from 6.7 × 10 5 immediately after release to 5.9 × 10 7 after 27 hours and to 7.0 × 10 7 after 48 hours, up to about 10 8 orders, and removal effect by bubbles I found out that there is.

一方、生の魚を食する時に中毒事故の原因となるビブリ
オ菌は第5図中△に示すように、実験開始から終了まで
を通じて魚槽水からは極めて低い値しか検出されず、一
方泡液化水(図中の▲参照)からは27時間後に4.2×103
(CFU/ml)、48時間後には3.9×104(CFU/ml)と高濃度
の病原ビブリオが検出された。
On the other hand, the vibrio bacterium that causes an accident of poisoning when eating raw fish, as shown by △ in Fig. 5, was detected only in extremely low values in the fish tank water from the start to the end of the experiment. 4.2 × 10 3 after 27 hours from water (see ▲ in the figure)
(CFU / ml), and after 48 hours, a high concentration of 3.9 × 10 4 (CFU / ml) was detected.

以上のテスト結果を分析すると、ビブリオ菌の方がより
効率よく泡に濃縮されることが明らかであり、その原因
は菌の大きさがビブリオ菌の方が大きいことも原因の一
つであろう。
Analysis of the above test results reveals that the Vibrio bacterium is more efficiently concentrated in the foam, and the cause may be that the size of the bacterium is larger in the Vibrio bacterium. .

なお泡の発生量(速度)は液化した水量で表わすと平均
210〜225ml/hであった。泡から液化された合計水量は最
初の魚水槽の水量(890)に対して48時間で約1.2%と
少なく、これを増大させることにより泡分離による水質
の改善はより大きくなると推定される。
The amount of bubbles generated (speed) is the average when expressed by the amount of liquefied water.
It was 210-225 ml / h. The total amount of water liquefied from bubbles was as low as about 1.2% in 48 hours with respect to the amount of water in the first fish tank (890), and it is estimated that the water quality improvement due to bubble separation will be greater by increasing this amount.

一方、魚を水槽に入れた直後、輸送車が走り出した直後
などに魚に緊張が加わるので魚による分泌物が多く出て
大量の泡が発生し、泡の溢出口から泡が溢れ出るのが目
視せられ、その他の時には泡液化水が出ないことなどが
観察され、従って泡の溢出速度は状況に応じて制御する
ことが好ましい。
On the other hand, immediately after putting the fish in the aquarium, immediately after the transportation vehicle starts running, tension is applied to the fish, so a large amount of fish secretions are generated and a large amount of foam is generated, and foam overflows from the foam overflow outlet. It is visually observed, and at other times, it is observed that the foam liquefied water does not come out. Therefore, it is preferable to control the overflow rate of the foam depending on the situation.

第6図に示すのは本発明を例示した改良されたカーヴァ
スエアレーター付ビブリオ菌等汚濁物質除去装置の作動
説明図である。
FIG. 6 is an operation explanatory view of the improved apparatus for removing contaminants such as Vibrio bacteria with carvas aerator, which illustrates the present invention.

水タンク19の中には水槽水(魚を含む)または米のとぎ
汁のような液体が入っている。
The water tank 19 contains aquarium water (including fish) or liquid such as rice bran juice.

この水タンク19の水は吸水ポンプ20により泡除去タンク
21に管22を通してカーヴァスエアレーター23より上部に
送水される。
The water in this water tank 19 is removed by the water absorption pump 20 to remove bubbles.
Water is sent to the upper part from Carvas aerator 23 through pipe 22 to 21.

カーヴァスエアレーター23はモーター24により中空軸25
を介して水中で高速回転され超微小気泡26を降下する水
の流れに対し直角の平面内(水平面)に放射状に放出
し、水との混和をよくし、水の中に含まれたビブリオ菌
等のバクテリアおよび汚濁物質を泡に吸着して浮上させ
る。
Carvas aerator 23 has a hollow shaft 25 by a motor 24
The vibrio contained in the water is emitted radially in a plane (horizontal plane) perpendicular to the flow of water that is rotated at high speed in the water and descends the ultrafine bubbles 26 through the water to improve the mixing with the water. Bacteria such as bacteria and contaminants are adsorbed on the bubbles and floated.

この浮上する泡は出来るだけ静かに浮び上っていくこと
が、泡による吸着性を向上させるのに大事である。
It is important that the floating bubbles rise as quietly as possible in order to improve the adsorptivity of the bubbles.

その際カーヴァスエアレーター23により発生された超微
小気泡26が持っている回転の速度ベクトルは泡の安定上
昇には有害である。
At that time, the rotational velocity vector of the ultrafine bubbles 26 generated by the carvas aerator 23 is harmful to the stable rise of the bubbles.

そこで、タンクの内側に隔壁板(邪魔板)27がおかれ水
の回転を打消すよう構成されている。
Therefore, a partition plate (baffle plate) 27 is placed inside the tank so as to cancel the rotation of water.

この作用により泡は静かに上昇し、液面に集った泡と液
面との境界は時にはエマルジョンの状態となる。これが
原因となって泡だけでなく水まで泡溢出口28より溢出
し、受けタンク29にどっと水が入ってくることがある。
By this action, the bubbles rise gently, and the boundary between the bubbles collected on the liquid surface and the liquid surface sometimes becomes an emulsion state. As a result, not only bubbles but also water may overflow from the bubble overflow outlet 28, and water may suddenly enter the receiving tank 29.

これをさけるには注意深く液面30を泡溢出口28に対し、
ある適切なレベルに保つことが要求される。
To avoid this, carefully adjust the liquid level 30 to the bubble overflow outlet 28,
It is required to keep it at an appropriate level.

そのために液面30に浮かんだ小浮体31により液面を検出
しそれにより上下するバー32上部についたセンサー33に
よりタンク21の出口34のバルブ35を制御し液面をコント
ロールする。
Therefore, the liquid level is detected by the small floating body 31 floating on the liquid level 30 and the valve 33 at the outlet 34 of the tank 21 is controlled by the sensor 33 attached to the upper part of the bar 32 which moves up and down accordingly.

以上のように、液面を最適な高さに保つことを可能に
し、また水面の高さを保つのに出口34のバルブ35を自動
制御する制御回路を組み込むことも本発明の大きな特長
である。
As described above, it is also a great feature of the present invention that it is possible to maintain the liquid level at an optimum height, and that a control circuit that automatically controls the valve 35 of the outlet 34 is incorporated to maintain the height of the water level. .

一方、本装置による他のテストで、水の送水速度を高く
すればするほど、良好な泡が発生し、送水速度は泡除去
タンク21の水量を1分間で全部循環するくらいの速度ま
たはこれの2〜3倍の速度としてもよいことが確認され
ており、本発明の装置は活魚輸送だけでなく食品工業の
米のとぎ汁のような汚濁物を含んだ水の処理にも有効と
考えられる。
On the other hand, in another test using this device, the higher the water feed rate, the better the foam generated, and the water feed rate was such that the amount of water in the bubble removal tank 21 was completely circulated in one minute or this. It has been confirmed that the speed may be 2 to 3 times higher, and the device of the present invention is considered to be effective not only for transporting live fish but also for treating water containing pollutants such as rice bran juice in the food industry.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の汚濁物質除去装置を備えた活魚槽例の
概要図、 第2図は本発明の装置で使用する曝気装置例の斜視図、 第3図は本発明装置による活魚水槽水の水温(WT)、溶
解性有機炭素(DOC)、溶存酸素濃度(DO)、濁度(Tur
bidity)、およびpHの経時変化を示すグラフ、 第4図は同じく水槽水の濁度および泡液化水の濁度から
推定される本発明装置を使用しない場合の水槽水の濁度
の経時変化を示すグラフ、 第5図は同じく本発明の装置による活魚水槽水の一般生
菌数、ビブリオ菌数および泡液化水中の一般生菌数、ビ
ブリオ菌数の経時変化を示すグラフ、 第6図は本発明による他の汚濁物質除去装置例の概要図
である。 図中符号: 1……魚水槽;2……海水;3……鯛;4……曝気装置;5……
モーター;6……ポンプ;7……泡除去用ダクト;8……泡溜
槽;9……泡液化水貯留槽;10……ドレーンバルブ;11……
濾過装置;12……パイプ;13……回転軸;14……上円板;15
……下円板;16……翼板;17……孔;18……超微小気泡;19
……水槽;20……吸引ポンプ;21……泡除去タンク;22…
…パイプ;23……曝気装置;24……モータ;25……中空軸;
26……超微小気泡;27……隔壁板;28……泡溢出口;29…
…タンク;30……液面;31……小浮体;32……バー;33……
センサー;34……出口;35……バルブ。
FIG. 1 is a schematic diagram of an example of a live fish tank equipped with the pollutant removal device of the present invention, FIG. 2 is a perspective view of an example of an aeration device used in the device of the present invention, and FIG. 3 is a live fish tank water by the device of the present invention. Water temperature (WT), soluble organic carbon (DOC), dissolved oxygen concentration (DO), turbidity (Tur
bidity) and a graph showing changes in pH with time, and FIG. 4 shows changes with time in turbidity of aquarium water when the device of the present invention is not used, which is also estimated from turbidity of aquarium water and turbidity of foamed liquefied water. A graph showing the same, FIG. 5 is a graph showing a general viable cell count, a viable cell count of a live fish aquarium water and a general viable cell count of a foam-liquefied water, and a time-dependent change of the vibrio cell count by the apparatus of the present invention, and FIG. It is a schematic diagram of another example of a pollutant removal device according to the invention. Symbols in the figure: 1 …… Fish tank; 2 …… Seawater; 3 …… Sea bream; 4 …… Aeration device; 5 ……
Motor; 6 ... Pump; 7 ... Foam removal duct; 8 ... Foam reservoir; 9 ... Foam liquefied water reservoir; 10 ... Drain valve; 11 ...
Filtration device; 12 ...... pipe; 13 ... rotating shaft; 14 ... upper disk; 15
...... Lower disk; 16 ...... Vane; 17 …… Hole; 18 …… Ultra-small bubble; 19
…… Water tank; 20 …… Suction pump; 21 …… Bubble removal tank; 22…
… Pipe; 23 …… Aerator; 24 …… Motor; 25 …… Hollow shaft;
26 …… Ultra-small bubbles; 27 …… Partition plate; 28 …… Foam overflow outlet; 29…
… Tank; 30… Liquid level; 31… Small floating body; 32… Bar; 33 ……
Sensor; 34 ... Outlet; 35 ... Valve.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】液体を貯溜するための液槽と該液槽に設置
された中空回転軸とを備、該中空回転軸の下端にはその
軸方向に沿った翼板と該翼板を上下に挟む板材が設けら
れると共に該中空回転軸の上記板材に挟まれた部分に多
数の空気孔が穿設されおり、該中空軸の回転により生じ
る負圧を利用して軸内に空気を吸い込み、上記空気孔か
ら超微小気泡を回転軸に対して水平方向に放出する泡発
生手段が形成されていることを特徴とする液中の汚濁物
質除去装置。
1. A liquid tank for storing a liquid, and a hollow rotary shaft installed in the liquid tank, wherein a lower end of the hollow rotary shaft is provided with a vane along the axial direction and the vane up and down. A plurality of air holes are provided in a portion of the hollow rotary shaft sandwiched by the plate members, and air is sucked into the shaft by using a negative pressure generated by the rotation of the hollow shaft, A device for removing contaminants in liquid, characterized in that a bubble generating means for discharging ultrafine bubbles from the air holes in the horizontal direction with respect to the rotation axis is formed.
【請求項2】中空軸の回転によって生じた液の回転を打
消す隔壁板が上記液槽に設けられており、さらに液面位
置の制御手段が該液槽に付設されている請求項1に記載
の液中の汚濁物質除去装置。
2. The partition wall plate for canceling the rotation of the liquid generated by the rotation of the hollow shaft is provided in the liquid tank, and the liquid surface position control means is attached to the liquid tank. The device for removing contaminants in the liquid described.
【請求項3】液中の超微小気泡が液槽の下部から上部に
向かって浮上する一方、中空軸の回転によって発生した
負圧によって液体が液槽内の上部から下部に向かって流
下する請求項1に記載の液中の汚濁物質除去装置。
3. Ultra-fine bubbles in the liquid float up from the lower part to the upper part of the liquid tank, while the negative pressure generated by the rotation of the hollow shaft causes the liquid to flow down from the upper part to the lower part in the liquid tank. The device for removing contaminants from liquid according to claim 1.
JP1216934A 1989-08-23 1989-08-23 Device for removing contaminants in liquid Expired - Lifetime JPH0688017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1216934A JPH0688017B2 (en) 1989-08-23 1989-08-23 Device for removing contaminants in liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1216934A JPH0688017B2 (en) 1989-08-23 1989-08-23 Device for removing contaminants in liquid

Publications (2)

Publication Number Publication Date
JPH0380985A JPH0380985A (en) 1991-04-05
JPH0688017B2 true JPH0688017B2 (en) 1994-11-09

Family

ID=16696219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1216934A Expired - Lifetime JPH0688017B2 (en) 1989-08-23 1989-08-23 Device for removing contaminants in liquid

Country Status (1)

Country Link
JP (1) JPH0688017B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6303957B2 (en) 2014-09-26 2018-04-04 株式会社デンソー Drive device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52143554A (en) * 1976-05-26 1977-11-30 United States Filter Corp System for separating impurties suspended by mixing gas in liquid
JPS6447330A (en) * 1987-08-17 1989-02-21 Kuroki Shigemitsu Container system for transportation of live fish

Also Published As

Publication number Publication date
JPH0380985A (en) 1991-04-05

Similar Documents

Publication Publication Date Title
US5078867A (en) Aquarium filter/protein skimmer system
US5562821A (en) Foam fractionator
US6273402B1 (en) Submersible in-situ oxygenator
JP2009133173A (en) Grease trap device
JPH04503323A (en) Methods and equipment for treating water
CN212712967U (en) Impurity filtering device in sewage
JPH0688017B2 (en) Device for removing contaminants in liquid
JP2007029947A (en) Flotation separation method for organic waste water and device therefor
JP2001170617A (en) Foam separation device and water cleaning system using the same
JPH04267984A (en) Removal of pollutant in liquid
JP3836576B2 (en) Fluidized bed wastewater treatment equipment
JPH11289911A (en) Method for purifying water quality in aquarium, etc., treating device and treating system
JP2004033847A (en) Float type water cleaning equipment using floating filter medium
JPH0583212B2 (en)
JP2975933B1 (en) Foam removal device
EP1494970B1 (en) Apparatus for stock raising
JPH09154433A (en) Water tank apparatus for transporting live fish
KR101102179B1 (en) Method of treating organic waste water and organic sludge and treatment equipment therefor
JP4369804B2 (en) Floating separation method for organic wastewater
JP3515534B2 (en) Pollutant removal equipment
JP3668358B2 (en) Structure of bioreactor with carrier
KR102278779B1 (en) Half-pipe skimmer and water treatment device having the same
CN218435310U (en) System for water-oil separation
JP2004351278A (en) Method and apparatus for treating organic wastewater produced from fishing port, fish market, or the like
JPS6321554B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081109

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091109

Year of fee payment: 15

EXPY Cancellation because of completion of term